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Abstract

We propose a multi-view depthmap estimation approach
aimed at adaptively ascertaining the pixel level data asso-
ciations between a reference image and all the elements of
a source image set. Namely, we address the question, what
aggregation subset of the source image set should we use to
estimate the depth of a particular pixel in the reference im-
age? We pose the problem within a probabilistic framework
that jointly models pixel-level view selection and depthmap
estimation given the local pairwise image photoconsistency.
The corresponding graphical model is solved by EM-based
view selection probability inference and PatchMatch-like
depth sampling and propagation. Experimental results on
standard multi-view benchmarks convey the state-of-the art
estimation accuracy afforded by mitigating spurious pixel-
level data associations. Additionally, experiments on large
Internet crowd sourced data demonstrate the robustness of
our approach against unstructured and heterogeneous im-
age capture characteristics. Moreover, the linear computa-
tional and storage requirements of our formulation, as well
as its inherent parallelism, enables an efficient and scalable
GPU-based implementation.

1. Introduction
Multi-view depthmap estimation (MVDE) methods

strive to determine a view dependent depthfield by leverag-
ing the local photoconsistency of a set overlapping images
observing a common scene. Applications benefiting from
high quality depthmap estimates include dense 3D model-
ing, classification/recognition [20] and image based render-
ing [6]. However, achieving highly accurate depthmaps is
inherently difficult even for well controlled environments
where factors such as viewing geometry, image-set color
constancy, and optical distortions are rigorously measured
and/or corrected. Conversely, practical challenges for ro-
bust depthmap estimation from non-controlled input im-
agery (i.e. Internet collected data) include mitigating het-
erogeneous resolution and scene illuminations, unstructured
viewing geometry, scene content variability and image reg-

istration errors (i.e. outliers). Moreover, the increasing
availability of crowd sourced datasets has explicitly brought
efficiency and scalability to the forefront of application re-
quirements, while implicitly increasing the importance of
data association management when processing such large
scale datasets.

The input for MVDE is commonly assumed to consist
of a convergent set of images along with reliable estimates
of their pose and calibration parameters. The extracted
depthmap will correspond to the pixel-wise 3D structure hy-
potheses that best explain the available image observations
in terms of some measure of visual similarity w.r.t. a ref-
erence image. Ironically, the potential robustness afforded
by having multiple available images is compromised by the
inherent variability in pairwise photoconsistency observa-
tions. In practice, correct depth hypotheses may provide
low photoconsistency in a source image subset (e.g. oc-
clusions or illumination aberrations), while incorrect depth
hypotheses may register high image similarity (e.g. repet-
itive structure or homogeneous texture). These technical
challenges render multi-view depth hypothesis evaluation
as a problem of robust model fitting, where a demarcation
among inlier and outlier photoconsistency observations is
required. We tackle this implicit data association problem
by addressing the question: What aggregation subset of the
source image set should be used to estimate the depth of a
particular pixel in the reference image.

We propose a probabilistic framework for depthmap es-
timation that jointly models pixel-level view selection and
depthmap estimation given pairwise image photoconsis-
tency. An overview is depicted in Figure 1. The cor-
responding graphical model is solved by EM-based view
selection probability inference and PatchMatch-like depth
sampling and propagation. Our approach iteratively alter-
nates between exploration of the depth search space and
updating our formulated probabilistic model. The insight
leveraged by our method is the spatial smoothness in the
photoconsistency at the correct depth hypothesis of a given
pixel w.r.t. the images in the source image dataset [22, 13].
Our expectation of having a high overlap of photoconsistent
source images among neighboring pixels in the reference
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Figure 1. Overview of our approach. Input imagery is used to jointly estimate a depthmap and pixel level view associations. Blue regions in
the view selection probacility map indicate pixels in the reference image lacking reliable observations in the corresponding source image.

image, leads to modeling the depth estimation problem as
a Markov process where the unobserved states correspond
to binary indicator variables for the selection probability of
each source image.

We summarize the contributions and advantages of the
framework as follows. Accuracy: Mitigation of spurious
data associations at the pixel level provides state-of-the-
art accuracy results for single depthmap estimation. Effi-
ciency: Deployment of PatchMatch sampling and propaga-
tion enables reduced computational burden as well as GPU
implementation. Scalability: Linear storage requirement
w.r.t. the number of source images, as opposed to the expo-
nential growth in the joint view selection and depth estima-
tion model by Strecha et al. [22], enables handling selection
instances comprising hundreds of images.

2. Related Work
Depthmap estimation handling occlusion firstly emerged

in two view stereo [25, 24, 28]. In principle, the additional
view redundancy available to MVDE can be leveraged to
resolve occlusions. Kang et al. [17] explicitly address oc-
clusion in multi-baseline stereo by only using the subset
of the heuristically selected overlapping cameras with the
minimum matching cost. The heuristic provides occlusion
robustness as long as there is a sufficient number of unoc-
cluded views (typically 50%). Campbell et al. [5] choose
the best few depth hypotheses for each pixel, following
with a MRF optimization to determine a spatially consis-
tent depthmap. Their method chooses source images based
on spatial proximity of cameras. Strecha et al. [21] han-
dle occlusion in wide-baseline multi-view stereo by includ-
ing visibility within a probabilistic model, where the depth
smoothness is enforced on neighboring pixels according to
the color gradient. The work of Strecha et al. [21] is further
extended in [22] where the depth and visibility are jointly
modeled by hidden Markov random fields. In [22] the mem-
ory used for visibility configuration of each pixel is 2K ,
which grows exponentially with respect to the number of
input images K. Hence, the approach is limited to very
few images (three images in their evaluation). In contrast,
our memory usage is linear with the number of images K.
Gallup et al. [11] present a variable-baseline and variable-
resolution framework for MVDE, exploring the attainment

of pixel-specific data associations for capture from approx-
imately linear camera paths. While that work illustrates the
benefits of fine grain data association strategies in multi-
view stereo, it does not easily generalize to irregularly cap-
tured datasets.

Lightweight depthmap fusion relies on the mutual depth
consistency between multiple depthmaps. Shen [19] com-
putes the depthmap for each image using PatchMatch
stereo, and enforces depth consistency over neighboring
views. Hu & Mordohai [15] follows a scheme similar to
Camppbell et al. [5] but select the final depth through a
process enforcing mutual consistency across all depthmaps.
These methods require the depthmaps of other views to be
available, while in contrast our method directly outputs an
accurate depthmap. Some other methods aim at generating
a consistent 3D model instead of depthmaps. Furukawa et
al. ([10]) present an accurate Patch-based MVS approach
that starts from a sparse set of matched keypoints, which
were repeatedly expanded until visibility constraints are in-
voked to filter out false matches. Zaharescu et al. [29]
propose a mesh evolution framework based on a new self-
intersection removal algorithm. Jancosek et al. [16] propose
a method that additionally reconstructs surfaces that do not
have direct support in the input 3D points by exploiting vis-
ibility in 3D meshes. In contrast, our focus is on multi-view
depthmap estimation.

Robust stereo performance for crowd sourced data is an
ongoing research effort. Frahm et al. [8] discern a suit-
able input datum by using appearance clustering using a
color augmented GIST descriptor along with feature-based
geometric verification. Furukawa et al. [9] use structure
from motion (SFM) to purge redundant imagery but retain
high resolution geometry. Their iterative clustering merges
sparse 3D points and cameras based on visibility analysis.
Although intra-cluster image partitioning is not performed,
the cluster size is limited in an effort to maintain computa-
tional efficiency. Goesele et al. [13] address the viewpoint
selection for crowd sourced imagery by building small size
image clusters using the cardinality of the set of common
features among viewpoints and a parallax-based metric. Im-
ages were resized to the lowest common resolution in the
cluster. Pixel depth is then computed using four images se-
lected from the cluster based on local color consistency. As



our experiments will show, image wide selection may not
robust to outlier pose estimates.

The recently proposed PatchMatch is incorporated in our
method as an efficient sampling scheme. The PatchMatch
was firstly introduced to solve the two view stereo prob-
lem in [4]. PatchMatch initializes each pixel with a random
slanted plane at random depth, and is followed by the prop-
agations. The nearby and the current pixels’ slanted planes
are tested and the one with the best cost is kept. Besse et
al. [2] combine the PatchMatch sampling scheme and be-
lief propagation to infer an MRF model that has smoothness
constraints. While the original PatchMatch stereo was a se-
quential method, Bailer et al. [1] parallelize the algorithm
by restricting the propagations to only horizontal and ver-
tical directions. We further explore the potential of Patch-
Match in wide baseline stereo with large hypotheses space.

3. Joint View Selection and Depth Estimation
In this section we provide an overview of our Patch-

Match propagation scheme (§3.1), describe our probabilis-
tic graphic model (§3.2), describe our variational inference
approximation to the model’s posterior probability (§3.3
and §3.4) and finalize describing our implementation (§3.5).

3.1. PatchMatch Propagation for Stereo

Our algorithm uses single oriented planes instead of the
multiple oriented in [1], to reduce the three-dimensional
search space (depth and two angles for the orientated
plane) to one dimension. We alternatively perform up-
ward/downward propagations during the odd iterations and
perform rightward/leftward propagations during even itera-
tions. To calculate the depth at pixel (i, j) for the rightward
propagation, only the depth at positions (i, j − 1) and (i, j)
are tested on pixel (i, j) (Fig. 2). Likewise, only one neigh-
bor is considered for all other propagations. The propaga-
tion schemes of [4] and [1] are shown in Fig. 2.

In the absence of proper depth hypotheses, we addition-
ally draw and test H random depth hypotheses for each
pixel during propagations. We use H = 1 and have 3 depth
hypotheses tested per pixel in a propagation, i.e. the depths
of current and the neighboring pixel along with one random
depth. Without loss of generality, we limit our discussion
henceforth to the rightward horizontal propagation.

3.2. Graphical Model

In our algorithm, the depth is estimated for a reference
image X ref, given a set of M (unstructured) source images
X1, X2, ...XM with known camera calibration parameters,
which are the output of a typical structure from motion sys-
tem such as VisualSFM[27]. We denote the correct depth
associated with each pixel l on image X ref as θl.

Photo-consistency values for the correct depth of a given
pixel across a set of source images may be incongruent for

Figure 2. The black and blue arrows show the propagation direc-
tions and the sampling schemes. Left: Top left to bottom right
propagation in [4]. Middle: Rightward propagations in [1]. Right:
Our rightward propagation.

some of the source images. This may be attributed to a
diversity of factors such as occlusions, calibration errors,
illumination aberration, etc. Therefore, depth estimation
for a given pixel entails the determination of which sub-
set of source images will provide the most robust estimate.
Our model defines M binary variables Zml ∈ {0, 1},m =
1, 2...M for each pixel l in the reference image X ref, where
Zml is 1 if image Xm is selected for depth estimation of
pixel l, and 0 otherwise.

We first define the likelihood function. We denote the
color patch centered at pixel l in the reference image asX ref

l .
Given a pixel l and its correct depth θl in the reference im-
age X ref, a color patch Xm

l on source image m can be de-
termined through homography warping [19]. If Zml = 1,
the probability that the observed color patch Xm

l is color-
consistent with X ref

l should be high. We use NCC (nor-
malized cross correlation) to compare the two color patches
Xm
l and X ref

l as a robust proxy to single pixel comparisons,
and denote the NCC measurement as ρml . In the case when
Zml = 0, Xm

l has arbitrary colors due to factors such as
occlusion or calibration errors, so the probability of ob-
serving Xm

l is unrelated to X ref
l and considered uniformly

distributed. Therefore we propose the following likelihood
function

P (Xm
l |Zml , θl, X ref

l )=

{
1
NAe

− (1−ρml )2

2σ2 if Zml = 1
1
N U if Zml = 0,

(1)

where A equals to
∫ 1

−1 exp{−
(1−ρ)2
2σ2 }dρ and N is a con-

stant. Note that NCC value ranges in [−1, 1] and equals
1 with the best color consistency. Consistent with our in-
tuition, a color patch Xm

l with high NCC value ρml has
high probability P (Xm

l |Zml = 1, θl, X
ref
l ). U is the uni-

form distribution in the range [−1, 1] with probability den-
sity 0.5. Note that NCC computation is affine invariant
and multiple pairs of color patches can generate the same
NCC value. To simplify the analysis without affecting
depthmap quality, Eq. (1) assumes the number of color
patchesXm

l that can generate any specific NCC value is the
same and equals to N . Since only the ratio P (Xm

l |Zml =
1, θl, X

ref
l )/P (Xm

l |Zml = 0, θl, X
ref
l ) matters in the model



inference discussed in §3.3 and §3.4, we can safely ignore
the constant N in Eq. (1).

In Eq. (1) σ is the parameter determining the suitability
of an image based on NCC measurement ρml . As seen in
Fig. 3(b) a soft threshold τ is determined by σ. If ρml is
larger than τ , it is more likely that image m is selected,
and vice versa. Since X ref

l is observed for each pixel,
P (Xm

l |Zml , θl, X ref
l ) is simply denoted as P (Xm

l |Zml , θl)
in the rest of the paper.

The depths of nearby pixels are considered independent,
while the pairwise smoothness is put on the nearby selection
variables along the current propagation direction (Fig. 3(a))
through the transition probabilities:

P (Zml |Zml−1) =
( γ 1−γ
1−γ γ

)
. (2)

Setting γ close to 1 encourages neighboring pixels to have
similar selection preference for source images Xm. To en-
able parallel computation, we only enforce pairwise con-
straint on the pixels of the same row in the horizontal prop-
agations. Note Fig. 3(a) only shows one row of selection
variables for each of the source images.

Finding the optimal selection Z and depth θ given all
the images X equates to computing the maximum of the
posterior probability (MAP) P (Z,θ|X). The Bayesian ap-
proach firstly computes the joint probability based on the
graphical model (Fig. 3(a)) and normalizes over P (X). The
joint probability is

(3)P (X,θ,Z) =
M∏
m=1

[P (Zm1 )

L∏
l=2

P (Zml |Zml−1)

L∏
l=1

P (Xm
l |Zml , θl)]

L∏
l=1

P (θl),

where L is the number of pixels along the propagation di-
rection of the reference image. We use an uninformative
uniform distribution for prior P (Zm1 ) as well as depth prior
P (θl) since we have no preference without observations.
However, computing P (X) is intractable as it requires to
sum over all possible values of Z and θ.

We interleave pixel level inference of image selection
probability with fixed depth, and depth updating with fixed
image selection probability. Our approach is a variant of
the generalized EM (GEM)[18]. Similarly to [18], we use
variational inference theory to justify our algorithm.

3.3. Variational Inference

Variational inference is to consider a restricted fam-
ily of distributions q(Z,θ) and then seek the member of
this family to approximate the real posterior distribution
P (Z,θ|X), in the sense that the KL divergence between
these two is minimized [3]. The restriction is imposed
purely to achieve tractability. The real posterior distribu-
tion is over the set of unobserved variables θ = {θl|l =
1, ..., L} and Z = {Zm|m = 1, ...,M}, where Zm =
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Figure 3. (a) θl is the depth of pixel l. Zm
l is the selection of image

m at pixel l. Xm
l is the observation (colors) on the source image

m given depth θl.

{Zm1 , Zm2 , ..., ZmL } is a chain in the graph. We put restric-
tions on the family of distributions q(Z,θ), assuming that
it is factorizable into a set of distributions ([3]):

q(Z,θ) =
∏M

m=1
qm(Zm)

∏L

l=1
ql(θl). (4)

For tractability, we further constrain each ql(θl), l =
1, 2, ..., L to the family of Kronecker delta functions:

ql(θl) = δ(θl = θ∗l ) =

{
1, if θl = θ∗l
0, otherwise

(5)

where θ∗l is a parameter to be estimated. This assumption is
in contrast to most other works [21, 22, 25, 24], which dis-
cretize the depth as a means to recover the whole posterior
distribution of the depth. Once the distribution ql(θl) is de-
termined, θl is set to θ∗l to maximize the approximate poste-
rior distribution Eq. (4), so θ∗l is actually the final estimated
depth. Conversely, the depths θ can be considered as pa-
rameters shared by different chains instead of as variables.
This assumption seamlessly combines the PatchMatch sam-
pling scheme in the graph model inference.

The variational method seeks to find a member
qopt(Z,θ)=

∏M
m=1 q

opt
m (Zm)

∏L
l=1 q

opt
l (θl) from the family

q(Z,θ), minimizing the KL divergence between q(Z,θ)
and P (Z,θ|X) under the constraint that qm(Zm),m =
1, ...M are normalized (ql(θl) is guaranteed to be normal-
ized as it is constrained to be a Kronecker delta function):

minimize
q(Z,θ)

KL(q(Z,θ)||P (Z,θ|X))

subject to
∑

Zm
qm(Zm) = 1, m = 1, . . . ,M.

(6)

Note the optimization is performed over distributions, but
not over variables. To optimize over qm(Zm), the standard
solution [3] is log (qm(Zm)) = E\m[log (P (X,θ,Z))] +
const, where E\m is the expectation of log (P (X,θ,Z))
taken over all variables not in qm(Zm) [3]. Then we have

qopt
m (Zm) ∝ Ψ(Zm)

∏L

l=1
P (Xm

l |Zml , θl = θ∗l ), (7)



where Ψ(Zm)=P (Zm1 )
∏l=L
l=2 P (Zml |Zml−1). The right side

of Eq. (7) has form of joint probability of a Hidden Markov
Chain with fixed transition probability from Eq. (2) and
fixed emission probability Eq. (1). The probability of
each hidden variable q(Zml ) can be efficiently inferred by
forward-backward algorithm [3]. See §3.4 for more details.
This corresponds to the E step of the GEM algorithm.

To optimize over ql(θl) we seek an optimal parameter
θopt
l for the distribution ql(θl) that minimizes Eq. (6). Sup-

pressing the terms not involving θl gives

θopt
l = argmax

θ∗l

M∑
m=1

q(Zml =1) lnP (Xm
l |Zml =1, θl=θ∗l ). (8)

By substituting Eq. (1) into Eq. (8), we get

θopt
l = argmin

θ∗l

∑M

m=1
q(Zml = 1)(1− ρml )2, (9)

where ρml is a function of θ∗l . To find θopt
l in the above equa-

tion, 3 depth hypotheses sampled based on PatchMatch are
tested, and the one that maximizes Eq. (9) is assigned to
the parameter of the distribution ql(θl). This step is the M
step of the GEM algorithm. Note that the righthand side of
Eq. (9) is a weighted sum of (1 − ρml )2 with weight equal
to the image selection probability. Hence, a small value of
q(Zml = 1), designating image m as not favorable, con-
tributes less in evaluating the parameter θ∗l .

Improvement: Eq. (9) is computationally expensive for
hundreds of source images. Based on Eq. (9), it is unnec-
essary to compute ρml if the corresponding image selection
probability q(Zml = 1) is very small. Hence, we propose a
Monte Carlo based approximation [3]. Rewriting Eq. (9) as

θopt
l = argmin

θ∗l

∑M

m=1
P (m)(1− ρml )2 (10)

where the new distribution P (m) =
q(Zml =1)∑M
m=1 q(Z

m
l =1)

can be
deemed as the probability of image m being the best for
depth estimation of pixel l. We draw samples based on the
distribution P (m) to obtain a subset S, then

θopt
l = argmin

θ∗l

1

|S|
∑

m∈S
(1− ρml )2. (11)

Empirically, 15 samples suffice to attain good results.
Both distributions qopt

m (Z) and qopt
l (θl) are coupled. The

computation of θ∗l requires q(Zml ) to be known (Eq. (9)),
but to infer q(Zml ) in Eq. (7), we need θ∗l available. The
next subsection introduces the update scheme that computes
the distributions iteratively.

3.4. Update Schedule

The common way to compute approximate distributions
is coordinate descent optimization method. Namely, one

Step 1

   

    

   

 

 
… … … … 

 Step 2 

   

    

   

 

 
… … … … 

Step 3

   

    

   

 

 
… … … … 

   

    

   

 

 
… … … … 

New Iter.

Step 1

Figure 4. Update schedule. See text for more details.

distribution is optimized while other distributions remain
fixed. Choosing which distribution to optimize over in each
step is arbitrary or scheduled based on application, but it
always decreases the cost function in Eq. (6). We choose
to interleave updates of ql(θl) and qm(Zm) as it is able to
quickly propagate the correct depth into nearby pixels. For
clarity, our explanations below use one chain and omit the
image index m for each variable.

For more details on Hidden Markov Chain inference, we
refer the reader to text [3]. The forward-backward algo-
rithm is used to infer the probability of hidden variables Zl.

q(Zl) =
1

A
α(Zl)β(Zl), (12)

where A is the normalization factor. α(Zl) and β(Zl) are
the forward and backward message for variable Zl com-
puted using the following Equations,

α(Zl) = p(Xl|Zl, θl)
∑
Zl−1

α(Zl−1)P (Zl|Zl−1), (13)

β(Zl) =
∑
Zl+1

β(Zl+1)P (Xl+1|Zl+1, θl+1)P (Zl+1|Zl).

(14)
Both the forward and backward messages are computed re-
cursively (e.g. α(Zl) is computed using α(Zl−1)). In Fig. 4,
the variables covered in red area and blue area contribute to
the forward and backward messages respectively.

We perform the following update schedule as is shown
in Fig. 4. In step 1, compute q(Zl) using Eq. (12), (13)
and (14) for each source image (i.e. q(Zml ),m = 1...M ).
In step 2, update the depth from θoldl to θnewl using Eq. (9)
or Eq. (11). In step 3, with θnewl , we recompute forward
message α(Zl), which is further used to compute α(Zl+1)
recursively in Eq. (13). Next we start at variable Zl+1 with
the same process until reaching the end of the row in the
image. Before the update process, the backward message
for each variable can be computed recursively (Eq. (14))
and stored in memory.

3.5. Algorithm Integration

We now describe the computational framework imple-
menting our depth estimation and view selection formula-



Input: All images, depthMap (randomly initialized or
from previous propagation)
Output: Updated depthMap
m – image index, l – pixel index

Eq. Step
For l = L to 1

For m = 1 to M
Compute backward message βm

l (14) 1
For l = 1 to L

For m = 1 to M
Compute forward message αm

l (13) 1
Compute q(Zm

l ) (12) 1
Draw depth hypotheses by PatchMatch
Estimate θ∗l for ql(θl) (9 / 11) 2
For m = 1 to M

Recompute forward message αm
l (13) 3

Table 1. The algorithm of a row/column propagation.

tion. The depthmap is initialized with random values within
the depth range. Alternatively, sparse 3D measurements
may be included within our initialization. Next, the right-
ward, downward, leftward and upward propagations are ap-
plied in sequence. Each propagation (except in the first it-
eration) uses the depth results of the former propagation.
Within each propagation, updates of the depth and the se-
lection probability are interleaved as described in §3.4. Af-
ter two or three sweeps, each containing the four direction
propagations, the depthmap reaches a stable state. Con-
vergence may alternatively be verified through tracking the
number of modified depth estimates up to a threshold. As
each row is independent from other rows given our graph-
ical model and processed in exactly the same way during
one propagation, it can be easily parallelized for leveraging
GPUs. We describe the algorithm for processing one row
within rightward propagation in Table 1.

Discussion. The estimation of the exact image-wide
MAP for our graphical model would require a Hidden
Markov Random Field (MRF) formulation instead of our
Hidden Markov Chain approximation. Our choice of using
propagation direction specific chain models was driven by
computational efficiency/tractability. The proposed frame-
work enables us to easily interleave the propagation with
hidden variable inference while fostering implementation
parallelism. The enforcement of smoothness constraints
on the hidden variables enables non-oscillating behavior
of our evolving depth estimates. Our PatchMatch based
framework has linear computational and storage complex-
ity w.r.t. to input data size while being independent of the
size of the depth search space. Namely, since the number
of tested depth hypotheses (3 for each propagation) is small
and constant, the computation complexity of our method
is O(WHM), where W , H , and M are the width, height
and number of images. Methods using complete hypotheses
search, e.g. [25, 22], require O(WHMD) computations,

2cm 10cm 2 cm 10cm
Error fountain-P11 Herzjesu-P9
Ours 0.732 0.911 0.619 0.833

Ours(P) 0.769 0.929 0.650 0.844
LC[15] 0.754 0.930 0.649 0.848

FUR[10] 0.731 0.838 0.646 0.836
ZAH[29] 0.712 0.832 0.220 0.501
TYL[26] 0.732 0.822 0.658 0.852
JAN[16] 0.824 0.973 0.739 0.923

Table 2. The percentage of pixels with absolute error less than 2cm
and 10cm. Entries Ours(P) and Ours denote our results with and
without postprocessing. Reported values are from [15])

where D is the size of hypotheses space normally reaching
up to thousands of hypotheses.

4. Experiments

We evaluate the accuracy of our method on standard
ground truth benchmarks and highlight our robustness on
multiple crowd sourced datasets. In both evaluation sce-
narios we juxtapose our results with current state-of-the-art
methods. We implemented our method in CUDA and exe-
cuted on an Nvidia GTX-Titan GPU. For all experiments,
the total number of multi-directional propagations is set to
3 and we use σ = 0.45 in the likelihood function (Eq. (1))
and γ = 0.999 in the transition probabilities (Eq. (2)).

Ground truth evaluation. We evaluated on the Strecha
datasets (Fountain-P11 and Herzjesu-P9) [23] as they in-
clude ground truth 3D structure measurements. We use all
dataset images at full resolution, set the NCC patch size
to 15 by 15, and approximate the depth range from sparse
3D points. We measure pixel-wise depth errors as our goal
is to generate a single depthmap instead of one consistent
3D scene model. We calculate the number of pixels with
a depth error less than 2cm and 10cm from the ground
truth and compare with [15, 10, 29, 26, 16]. All the pix-
els with accessible ground truth depth are evaluated to con-
vey both the accuracy and the completeness of the estimated
depthmaps. We omit evaluation of the dataset’s two ex-
tremal views as done in [15].

We use slanted planes of a single orientation instead of
fronto-parallel planes [12]. The single dominant orientation
direction can be estimated by projecting sparse 3D points
onto the ground plane as described in [12]. We further apply
two optional depthmap refinement schemes to increase the
final accuracy. Our basic depth refinement uses a smaller
NCC patch (5x5), while eliminating random depth sam-
pling, during an additional propagation sweep. We then
use deterministic fine-grain sampling (20 hypotheses) in the
depth neighborhood (±1 cm) of each pixel’s depth estimate
as proposed in [19]. Finally, a median filter of size 9x9 is
applied to each raw depthmap. Table 2 shows our method is
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Figure 5. Left: Comparison against best-K aggregation. Right:
Raw depthmap output of a partially occluded subregion with re-
sults for different dataset-aggregation combinations.

comparable to the state-of-the-art methods. Note the results
of [15, 26, 16] are obtained through multi-depthmap fusion,
while our method directly estimates individual depthmaps.

Advantages of pixel level view selection. Figure
5 shows our comparison to the occlusion-robust best-K
planesweeping method [17], where for a given depth hy-
pothesis, the cost is the average of the best K costs, with
K being predefined. When K is set to the number of source
images, it degenerates to the basic planesweeping algorithm
that computes the cost using all source images. We compute
depthmaps of the fountain-P11 data with varying K and oth-
erwise fixed parameters, using 2000 planes. The percent-
age of pixels within 2cm difference from the ground truth
is taken as a measure of the error. We run the planesweep-
ing using two different dataset types. In the first case, all
10 source images are used. Alternatively, we use the neigh-
boring left and the right images. Fig. 5 shows our results
outperform all fixed aggregation schemes and illustrates the
raw depthmap output of a partially occluded subregion.

Run times for our method are compared with optimized
GPU planesweeping code. Fig. 7(a) shows the linear de-
pendence of computation time to the number of planes, as
well the diminishing accuracy improvements provided by
increasing the search space resolution. Our PatchMatch
sampling and propagation scheme only requires depth range
specification, foregoing explicit search space discretization.

Robustness to noisy SFM estimates. The advantage of
pixel-level view selection across the entire dataset is high-
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Figure 6. Top: Front and back of Alexander Nevsky Cathedral
and estimated 3D model. Bottom: original image, depthmap of
our method and [13] with wrong and correct camera poses.

lighted in Fig. 6, where we compare our results for cor-
rupted SFM estimates against those obtained using the ap-
proach in [13]. Fig. 6 depicts Alexander Nevsky Cathe-
dral in Sofia having indistinguishable structure in the tower
structure (i.e. view invariant appearance due to structural
symmetry). A set of 136 images, comprised by two mutu-
ally exclusive subsets observing the front or back, was fed
into VisualSFM [27] yielding a corrupted 3D model where
symmetric structure is fused along with the disjoint cam-
era clusters. The approach in [13] initially selects a global
subset of 20 images based on the corrupted SFM estimates
and select independently for each pixel’s depth estimation
a fixed number (typically 4) of images from the global sub-
set (similar to using K-best aggregation with K=4). If the
global subset is unbalanced or is contaminated by corrupted
estimates, the completeness of the model is compromised,
as shown in Figure 6 where the background dome is miss-
ing. We consider the entire dataset and implicitly mitigate
such outliers. Moreover, we re-executed [13] with manually
filtered camera poses and indeed achieved correct results.

Robustness to varying capture characteristics. We
tested our algorithm on Internet photo collections (IPC)
downloaded from the Flickr for six different scenes: Paris
Triumphal Arch (195 images), Brandenburg Gate (300 im-
ages), Notre Dame de Paris (300 images), Great Buddha
(212 images), Mt. Rushmore (206 images), and Berlin
Cathedral (500 images). In order to control GPU memory,
we optionally resize imagery to no more than 1024 pixels
for each dimension. Camera poses were calculated using
VisualSFM [27]. The average run time for Berlin Cathe-
dral is 98.3 secs/image. For illustration, sky region pixels
are masked out using [7] as post-processing. To compare
with Goesele’s method [13], we run the author’s code on
the same dataset with default parameters except for setting
the matching window size to the same as ours (7x7). The
results shown in Fig. 8 illustrate that, while both approaches
are robust to wide variations in illumination, scale and scene
occlusions across the datasets, our approach tends to pro-
vide increased completeness of depthmap estimates. We at-
tribute this to our more flexible view selection framework.
In contrast to [13], we avoid making initial hard image dis-
criminations through an initial global image subset.

To quantitatively compare the accuracy of our results
with [13], in the absence of ground truth geometry for
crowd sourced datasets, we revisit the accuracy of both
methods in the Strecha Fountain dataset. The method in
[13] rejects outlier depth estimates based on the NCC val-
ues and the viewing angles. Hence, we only compare the
accuracy of the reliable pixels as classified by [13] (com-
prising 75.4% of total image pixels). Figure 7(b) shows our
approach outperforming both [13] and planesweep for high
accuracy thresholds. We expect the same accuracy ranking
to carry over to the crowd sourced data results.
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Figure 8. Each image triplet depicts a reference image along with our and Goesele’s ([13]) depthmap output (Best viewed in color).
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Figure 7. Fountain dataset performance. Left: Average running
time. Right: Percentage of pixels given different thresholds. PLA
is the planesweep algorithm with all source images and K=3, while
GOS is the method in [13].

5. Future Work
We presented an efficient and effective method for joint

view selection and depthmap estimation. Future research
direction includes integrating online plane normal estima-
tion for each pixel. We will explore the use of more so-
phisticated filtering mechanisms such as the one presented
in [14] to further improve both efficiency and accuracy.
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