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Abstract

In the Bag-of-Words (BoW) model, the vocabulary is of
key importance. Typically, multiple vocabularies are gen-
erated to correct quantization artifacts and improve recall.
However, this routine is corrupted by vocabulary correla-
tion, i.e., overlapping among different vocabularies. Vo-
cabulary correlation leads to an over-counting of the in-
dexed features in the overlapped area, or the intersection
set, thus compromising the retrieval accuracy. In order to
address the correlation problem while preserve the bene-
fit of high recall, this paper proposes a Bayes merging ap-
proach to down-weight the indexed features in the intersec-
tion set. Through explicitly modeling the correlation prob-
lem in a probabilistic view, a joint similarity on both image-
and feature-level is estimated for the indexed features in the
intersection set.

We evaluate our method on three benchmark datasets.
Albeit simple, Bayes merging can be well applied in vari-
ous merging tasks, and consistently improves the baselines
on multi-vocabulary merging. Moreover, Bayes merging is
efficient in terms of both time and memory cost, and yields
competitive performance with the state-of-the-art methods.

1. Introduction
This paper considers the task of Bag-of-Words (BoW)

based image retrieval, especially on multi-vocabulary merg-
ing. We aim at improving the retrieval accuracy while main-
taining affordable memory and time cost.

The vocabulary (also called the codebook or quantizer)
lies at the core of the BoW based image retrieval system.
It functions by quantizing SIFT descriptors [9] to discrete
visual words. The quantized visual words are the nearest

Sets of Indexed Features

Query Feature

Inverted File 1

Inverted File 2

B

A

A∩B

VW 1

VW 2

Vocabulary 1

Vocabulary 2

Figure 1. An Illustration of vocabulary correlation. Given a query
feature, it is quantized to two visual words in two vocabularies.
Then, two sets of indexed features, A and B, are identified from
the two inverted files, respectively. The area of the intersection set
A ∩ B (denoted as Card(A ∩ B)) encodes the extent of correla-
tion between the two sets. In this paper, we focus on the indexed
features in A ∩ B.

centers to the feature vectors in the feature space. In order
to reduce quantization error and improve recall, multiple
vocabularies are often generated, and each feature is quan-
tized to different visual words from multiple vocabularies.
The primary benefit of using multiple vocabularies is that
more candidate features are recalled, which corrects quan-
tization artifacts to some extent.

However, the routine of multi-vocabulary merging is af-
fected by a crucial problem, i.e., vocabulary correlation [3]
(see Fig. 1). Given a query feature, based on the inverted
files with two individual vocabularies, two sets of indexed
features A and B are identified, sharing an intersection set
A ∩ B. In this paper, the area of A ∩ B is approximated
by Card(A ∩ B). The larger Card(A ∩ B) is, the larger
the correlation will be. In an extreme case, total correlation
occurs if Card(A ∩ B) = Card(A ∪ B), and merging A
and B brings no benefit.
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A straightforward method for multi-vocabulary merging
consists in concatenating the BoW histograms of differen-
t vocabularies [11]. In a microscopic view of this method,
the indexed features in A ∩ B are counted twice in Fig. 1.
Nevertheless, since images in this area are mostly irrelevant
ones (the number of relevant images is always very smal-
l), the over-counting may actually compromise the retrieval
accuracy [12].

In this paper, we consider the situation in which the giv-
en vocabularies are correlated, and we aim to reduce the
impact of correlation. To address this problem, this paper
proposes to model the vocabulary correlation problem from
a probabilistic view. In a nutshell, we jointly estimate an
image- and feature-level similarity for the indexed features
in the intersection set (or overlapping area). Given a query
feature, lists of indexed features are extracted from multiple
inverted files. Then, we identify the intersection and union
sets of the lists, from which the cardinality ratio is calcu-
lated. This ratio thus encodes the extent of correlation (see
Fig. 1). For the indexed images in the intersection set, its
similarity with the query is estimated as a function of the
cardinality ratio, and subsequently added to the matching
score. Experiments on several benchmark datasets demon-
strate that Bayes merging is effective, and yields competi-
tive results with the state-of-the-art methods.

2. Related Work
Vocabulary Generation The vocabulary provides a dis-

crete partitioning of the feature space by visual words. Typ-
ically, either flat kmeans [12, 4] or hierarchical kmeans [11]
is employed to train a vocabulary in an unsupervised man-
ner. Improved methods include incorporating contextual in-
formation into the vocabulary [19], building super-sized vo-
cabulary [16, 20, 10], making use of the active points [15],
etc.

Matching Refinement Feature-to-feature matching is a
key issue in the BoW model. The baseline approach em-
ploys a coarse word-to-word matching, resulting in undesir-
able low precision. To improve precision, some works ana-
lyze the spatial contexts [16, 21, 24] of SIFT features, and
use the spatial constraints as solution to refining matching.
Another line of works extracts binary signatures from SIFT
descriptors [4] or its contexts [23, 8]. The feature matching
is thus refined by a further check of the Hamming distance
between binary signatures. In this paper, however, we ar-
gue that even if two features are adjacent in the feature s-
pace, the corresponding images are probably very different.
Therefore, we are supposed to look one step further by es-
timating a joint similarity on both image- and feature-level
from clues in multiple vocabularies.

Multiple Vocabularies It is well known that multi-
vocabulary merging is effective in improving recall [3, 18].
Typically, multi-vocabulary merging can be performed ei-

ther at score level, e.g., by concatenating the BoW his-
tograms [11], or at rank level, e.g., by rank aggregation [7].
On the other hand, some works also provide clues that mul-
tiple vocabularies also improve precision [1, 17]. To ad-
dress the problem of vocabulary correlation, Xia et al. [18]
propose to create the vocabularies jointly and reduce cor-
relation from the view of vocabulary generation. A more
relevant work includes [3], which uses PCA to implicitly
remove correlation of given vocabularies, resulting in a low
dimensional image representation. Our work departs from
previous works in two aspects. First, we explicitly mod-
el the vocabulary correlation problem from a probabilistic
view. Second, our work is proposed for the BoW based im-
age retrieval task, which differs from NN search problems.

3. Background
3.1. Notations

Assume that the K vocabularies are denoted as V(k) =
{v(k)1 , v

(k)
2 , ..., v

(k)
sk }, k = 1, ...,K, where v

(k)
i represents a

visual word and sk is the vocabulary size. Correspondingly,
built on V(k), K inverted files are organized as W(k) =

{W (k)
1 ,W

(k)
2 , ...,W

(k)
sk }, k = 1, ...,K, where each entry

W
(k)
i contains a list of indexed features.
Given a query SIFT feature x, it is quantized to a visual

word tuple
(
v(1), v(2), ..., v(K)

)
, where v(k), k = 1, ...,K

is the nearest centroid in V(k) to x. With the K visual
words we can identify K sets of indexed features in entries
{W (k)

ik
}Kk=1. From the K sets, we can define three types of

sets to be used in this paper.

Definition 1 (kth-order intersection set) The intersection
set of k, and only k sets, denoted as ∩(k), k ≥ 2.

Definition 2 (kth-order union set) The union set of k, and
only k sets, denoted as ∪(k), k ≥ 2.

Definition 3 (difference set) The set in which no overlap-
ping exists, i.e., ∪(K) −

∑K
k=2 ∩(k), K ≥ 2.

3.2. Baselines

Single vocabulary baseline (B0) For a single vocabu-
lary, we adopt the baseline introduced in [12, 4]. Specifi-
cally, vocabularies are trained by AKM on the independent
Flickr60K data [4], and average IDF [22] weighting scheme
is used. We replace the original SIFT descriptor with root-
SIFT [13]. In this scenario, we denote the matching func-
tion between two features x and y as,

f0(x, y) = δvx,vy (1)

where vx and vy are visual words of x and y in the vocabu-
lary, respectively, and δ(·) is the Kronecker delta response.
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Figure 2. The distribution of the cardinality ratio on 10K, 100K,
1000K images, respectively. We use two vocabularies of size 20K.

Conventional vocabulary merging (B1) Given K vo-
cabularies, B1 simply concatenates multiple BoW his-
tograms [11]. It is equivalent to a simple score-level addi-
tion of the outputs of multiple vocabularies. The matching
function between features x and y can be defined as

f1(x, y) =
K∑

k=1

δ
v
(k)
x ,v

(k)
y

(2)

where v(k)x and v
(k)
y are visual words in vocabulary V(k) for

x and y, respectively. Eq. 2 shows that in baseline B1, an
indexed feature is counted k times if it is in the kth-order
intersection set ∩(k), and only once if in the difference set
(since there is no overlapping).

Multi-index based vocabulary merging (B2) In [1], a
multi-index is organized as a multi-dimensional structure.
In its nature, given K vocabularies, two features are consid-
ered as a match iff they are in the Kth-order intersection set
∩(K) of the indexed feature lists. Therefore, in baseline B2,
the matching function is defined as

f2(x, y) =

K∏
k=1

δ
v
(k)
x ,v

(k)
y

(3)

Eq. 3 only counts the indexed features in ∩(K), discarding
the rest. Therefore, the recall is low for B2.

4. Proposed Method
For multi-vocabulary merging, the major problem is the

over-counting of the intersection sets ∩(k), k = 1, ...,K.
On the other hand, the major benefit is a high recall, which
is encoded in the difference set. Taking both issues into
consideration, we propose to exert a likelihood on the inter-
section sets and preserve the difference set (scored as B1).
Without loss of generality, we start from the case of two vo-
cabularies and then generalize it to multiple vocabularies.

4.1. Model Formulation

Given a query feature x in image Q, two sets of indexed
features A and B are identified in two inverted files, respec-
tively. Here, we want to evaluate the likelihood that a SIFT

feature y is a true neighbor of x given that y belongs to the
intersection set of A and B. This likelihood can be modeled
as the following conditional probability,

w(x, y) = p(y ∈ Tx | y ∈ A ∩ B). (4)

In Eq. 4, we define Tx as the set of features which are vi-
sually similar to x (locally) and belong to the ground truth
images of Q (globally). On the other hand, Fx is defined as
the features which violate any of the two criteria. Therefore,
Tx and Fx satisfy the follows

p(y ∈ Tx) + p(y ∈ Fx) = 1. (5)

For simplicity, we denote y ∈ A ∩ B as A ∩ B, y ∈ Tx as
Tx, and y ∈ Ty as Ty , Then, using the formula of Bayes’
theorem as well as Eq. 5, we get

p(Tx | A ∩ B) = p(A ∩ B |Tx) · p(Tx)

p(A ∩ B)

=
p(A ∩ B |Tx) · p(Tx)

p(A ∩ B |Tx) · p(Tx) + p(A ∩ B |Fx) · p(Fx)
.

(6)
Then, re-formulating Eq. 6, we have

p(Tx | A ∩ B) =
(
1 +

p(A ∩ B |Fx)

p(A ∩ B |Tx)
· p(Fx)

p(Tx)

)−1

. (7)

In Eq. 7, there are actually three random variables to esti-
mate, i.e., p(A∩B |Fx) (term 1), p(A∩B |Tx) (term 2),
and p(Fx)/p(Tx) (term 3). In Section 4.2, we will exploit
the estimation of these probabilities.

4.2. Probability Estimation

Estimation of term 1 In Eq. 7, the term p(A ∩ B |Fx)
encodes the probability that feature y lies in the set A ∩ B
given that y is a false match of query feature x. In this
case, we should consider the distribution of the x’ false
matches in sets A and B. In large databases, the number
of true matches (both locally and globally) is limited. In
other words, false matches dominate the space covered by
A and B. Therefore, we assume that false matches are uni-
formly distributed in A and B, and term 1 can be estimated
as

p(A ∩ B |Fx) =
Card(A ∩ B)
Card(A ∪ B)

, (8)

where Card(·) represents the cardinality of a set. Eq. 8 im-
plies that, the probability that a false match falls into A∩B
is proportional to the cardinality ratio Card(A∩B)

Card(A∪B) . Intuitive-
ly, the larger the intersection set is, the more probable that
a false match will fall into it. Fig. 2 depicts the distribution
of this cardinality ratio on different database scales.

Estimation of term 2 In contrast to term 1, the proba-
bility encoded in term 2 reflects the likelihood that y, a true
neighbor of query x, falls into the intersection set A ∩ B.
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Figure 3. Distribution of term 2 as a function of Card(A∩B)
Card(A∪B)

on
Oxford (left) and Holidays (right) datasets. Least Square Fitting
of degree 1 is performed on Oxford, plotted as the red line. We
find that the same line also fits the trends of Holidays dataset.

Still, we estimate this probability as a function of the
cardinality ratio Card(A∩B)

Card(A∪B) . However, since the number of
true matches is very small compared to false ones, we do
not adopt the method in estimating term 1. Instead, image
data with ground truth is used to analyze the distribution.

Specifically, empirical analysis is performed on Oxford
and Holidays datasets. Given a feature x in the query im-
age Q, true matches are defined as the features which have
a Hamming distance [4] smaller than 20 to x and which ap-
pear in the ground truth images of Q. Then we calculate the
ratio of the number of true matches in A∩B to the number
of true matches in A ∪ B. Finally, the relationship between
the ratio and Card(A∩B)

Card(A∪B) is depicted in Fig. 3.

A surprising fact from Fig. 3 is that p(A ∩ B |Fx) in-
creases linearly with Card(A∩B)

Card(A∪B) . Contrary to our expecta-
tion, true matches do not aggregate around the query point.
Instead, they tend to scatter in the high-dimensional feature
space. Otherwise, the curves in Fig. 3 would take on a
log(·)-like profile. On the other hand, Fig. 3 also implies
that the indexed features in A ∩ B are mostly false match-
es. This explains why the over-counting compromises the
retrieval accuracy. Moreover, we also find that the trend in
Fig. 3 seems to be database-independent.

Estimation of term 3 Term 3, i.e., p(Fx)/p(Tx), can be
interpreted as the ratio of the probability of y being a false
match to y being a true match. Typically, as the database
grows, the number of false images will become larger, and
the value of term 3 will increase. To model this property,
and thus making our system adjustable to large scale set-
tings, we set term 3 as

p(Fx)

p(Tx)
= log (N · c) , (9)

where N is the number of images in the database, and c is
a weighting parameter. Note that we add a log(·) operator
due to numerical considerations.
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Figure 4. The estimation of Eq. 4 as a function of Card(A∩B)
Card(A∪B)

.
Four curves are presented, corresponding to N = 5K, 10K, 100K,
and 1M, respectively. The vocabulary sizes are both 20K.

4.3. Similarity Interpretation

Using the estimation methods introduced in Section. 4.2,
we are able to provide an explicit implementation of the
probability model (Eq. 4). Specifically, we assume four
database sizes are involved, i.e., 5K, 10K, 100K, 1M, and
we set the parameter c to 1 for better illustration. The de-
rived probability function is plotted against Card(A∩B)

Card(A∪B) in
Fig. 4. From the curves in Fig. 4, we can get several impli-
cations in terms of physical interpretation.

First, when the intersection area is very small (the car-
dinality ratio is close to zero), it is very likely that y is a
true match if it falls into this area. In this scenario, the dis-
criminative power of the intersection set is high, and can be
trusted when merging vocabularies.

Second, when the cardinality ratio approaches 1, i.e., set-
s A and B share a large overlap, the probability of y being
a true match is small. This makes more sense if we take
into consideration the fact that false images dominate the
entire feature space. Moreover, a larger intersection means
a larger dependency (or correlation) between two vocabu-
laries, in which situation our method exerts a punishment
(low weight) and overcomes this problem to some extent.

Third, as the database becomes larger, the curves lean
towards the origin. In fact, for large databases, the chances
that y is a true match will be more remote under each cardi-
nality ratio. Nevertheless, the cardinality ratio tends to get
smaller (see Fig. 2) as the database grows, so the estimated
probability will be compensated to some extent.

As a summary, Fig. 4 reveals some interesting properties
of A∩B. The formula Eq. 4 will be adopted into the BoW-
based image retrieval framework in Section. 4.5.

4.4. Generalization to Multiple Vocabularies

In this section, we generalize our method to the case of
multiple vocabularies (K ≥ 2).

Given K vocabularies, a query feature x is quantized to
K visual words, and subsequently K sets of indexed fea-
tures are identified, i.e., {Ai}Ki=1. If a database feature
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Algorithm 1 Bayes merging for image retrieval
Input:

The query image Q with L descriptors x1, x2, ..., xL;
The K vocabularies V(1),V(2), ...,V(K);
The K inverted files W(1),W(2), ...,W(K);

Iteration:
1: for n = 1 : L do
2: Quantize xn into K visual words v(1), ..., v(K);
3: Identify K lists of indexed features A(1), ...,A(K);
4: Find all kth-order intersection sets, k = 2, ...,K;
5: Find all kth-order union sets, k = 2, ...,K;
6: for each indexed feature in ∪K do
7: Find the kth-order intersection set it falls in;
8: Find the kth-order union set it falls in;

9: Calculate
Card(∩(k))
Card(∪(k))

;

10: Calculate matching strength using Eq. 10;
11: Vote for the candidate image using Eq. 11;
12: end for
13: end for

y falls into the kth-order intersection set of {Ai}Ki=1, the
probability of it being a true match to x is defined as

w(x, y) = p(y ∈ Tx | y ∈ A1 ∩ A2 ∩ ... ∩ Ak). (10)

Using the similarity function derived in Section 4.3, we can
estimate Eq. 10 as a function of the cardinality ratio of the
kth-order intersection and union sets Card(A1∩A2∩...∩Ak)

Card(A1∪A2∪...∪Ak)
.

4.5. Proposed Image Retrieval Pipeline

In this section, the matching function of the Bayes merg-
ing method is defined as follows,

f(x, y) =

{
kw(x, y), if y ∈ ∩k, k ≥ 2∑K

i=1 δv(k)
x ,v

(k)
y

, otherwise
(11)

where w(x, y) is the similarity function defined in Eq. 10.
If w(x, y) = 1, Bayes merging reduces to the baseline B1.

The pipeline of Bayes merging is summarized in Algo-
rithm 1. In the offline steps, K vocabularies are trained and
the corresponding K inverted files are organized. During
online retrieval, given a query image Q with L descriptors,
for each feature xn, we quantize it to K visual words (step
2). Then, K lists of indexed features are identified (step 3),
from which all kth-order intersection and union sets are i-
dentified (step 4, 5). For each indexed feature in ∪K , we
find the kth-order intersection and union sets it falls in (step
7, 8), and calculate the cardinality ratio (step 9). Finally,
matching strength is calculated according to Eq. 10 and
used in the matching function as Eq. 11 (steps 10 and 11).

For one query feature, we have to traverse ∪K twice in
Algorithm 1, which doubles the query time. However, in

Dataset # images # queries # descriptors Evaluation

Holidays 1491 500 4,455,091 mAP
Oxford 5063 55 13,516,660 mAP
Ukbench 10200 10200 19,415,079 N-S score

Table 1. Details of the datasets in the experiments.

Value of c in Eq. 9 10 20 30 40 50

Oxford, mAP(%) 46.72 46.80 46.77 46.73 46.73
Holidays, mAP(%) 58.35 58.47 58.51 58.50 58.36

Table 2. The impact of parameter c on image retrieval accuracy.
Results (mAP in percent) on Oxford 5K and Holidays datasets are
presented. We set c = 30 from these results.

the supplementary material, we demonstrate that we can
accomplish this process by traversing ∪K only once, thus
solving the efficiency problem of Bayes merging.

5. Experiments
In this section, the proposed Bayes merging is evaluat-

ed on three benchmark datasets, i.e., Holidays [4], Oxford
[12], and Ukbench [11]. The details of the datasets are sum-
marized in Table 1. We also add the Flickr 1M dataset [4] of
one million images to test the scalability of our method. All
the vocabularies are trained independently on the Flickr60K
dataset [4] using AKM [12] with different initial seeds.

5.1. Parameter Analysis

One parameter, i.e., the weighting parameter c in Eq. 9
is involved in the probabilistic model. We evaluate c on
the Holidays and Oxford datasets, and record in Table 2 the
mAP results against different values of c. We can see that
the mAP results remain stable when c ranges from 10 to 50,
probably due to the effect of the log operator in Eq. 9. We
therefore set c to 30 in the following experiments.

5.2. Evaluation

Comparison with the baselines We first compare Bayes
merging with the baselines, i.e., B0, B1, B2 defined in Sec-
tion 3.2. The results are demonstrated in Fig. 5 and Fig. 6.
From these results we find that baseline B2 does not benefit
from introducing multiple vocabularies, and that its perfor-
mance drops when merging more vocabularies, because the
recall further decreases. We speculate that Multiple Assign-
ment will bring benefit [1, 17] to B2. Moreover, baseline
B1 brings limited improvements over B0. In fact, B1 has
a higher recall than B0, but this benefit is impaired by vo-
cabulary correlation in which many irrelevant images are
over-counted.

In comparison, it is clear that Bayes merging yields great
improvements. Take Holidays for example, when merging
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Figure 6. Image retrieval performance as a function of the vocabulary size. Methods include the three baselines, i.e., B0, B1, B2, as well as
the proposed Bayes merging of two and three vocabularies, i.e., Bayes(2) and Bayes(3), respectively. mAP on (a) Holidays and (b) Oxford,
and N-S score on (c) Ukbench are presented.
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Figure 5. Image retrieval accuracy as a function of the num-
ber of merged vocabularies. Results of Holidays (Top), Oxford
(Middle), and Ukbench (Bottom) are presented. We compare
three baselines, i.e., B0, B1, and B2 (see Section. 3.2), with our
method (Bayes) (Left). We also show the results combined with
Hamming Embedding (HE) (Right). The vocabulary size is 20K.

two vocabularies of size 20K, the gains in mAP over the
three baselines are 9.28%, 8.64%, and 21.21%, respective-
ly. The improvement is even higher for three vocabularies.
Nevertheless, we favor two vocabularies due to the fact that
the marginal improvement is prominent, while introducing
little computational complexity.

Impact of vocabulary sizes The vocabulary size may
have an impact on the effectiveness of Bayes merging. To

this end, we generate vocabularies of size 10K, 20K, 50K,
100K, and 200K on the independent Flickr60K data. In Fig.
6, we demonstrate the results obtained from various vocab-
ulary sizes on the three datasets. Except for the three base-
lines, we also report results obtained by Bayes merging of
two or three vocabularies.

From Fig. 6, we can see that B1 still yields limited im-
provement over B0. Moreover, B1 and B2 perform better
under those larger vocabularies. This is due to the fac-
t that larger vocabularies reduce correlation. But for large
databases, vocabularies are never large enough, so the cor-
relation problem would be more severe in the large-scale
case. Moreover, it is clear that the Bayes merging method
exceeds the baselines consistently under different vocabu-
lary sizes. Meanwhile, Bayes merging of three vocabularies
has a slightly higher performance than two vocabularies.

Merging vocabularies of different sizes Bayes merg-
ing can also be generalized to merging vocabularies of dif-
ferent sizes, and the procedure is essentially the same with
Algorithm 1. As with the contribution of each vocabulary,
we adopt the same unit weight for all vocabularies, as it is
shown to yield satisfying performance in [3]. In this paper,
we report the merging results on Oxford dataset in Table 4.

Table 4 demonstrates that merging vocabularies of dif-
ferent sizes marginally improves mAP on Oxford. For ex-
ample, Bayes merging of two vocabularies of size 10K and
20K improves over the 2×10K and 2×20K Bayes methods
by 1.07% and 0.34%, respectively. We speculate that vo-
cabularies of different sizes provide extra complementary
information, which can be captured by our method. How-
ever, since the smaller vocabulary introduces more noise,
the benefit is limited.

Combination with Hamming Embedding To test
whether Bayes merging is complementary to some prior art-
s, we combine it with Hamming Embedding (HE) [4] and
burstiness weighting [5] using the default parameters. HE
effectively improves the precision of feature matching. In

4326



Methods Holidays, mAP(%) Oxford, mAP(%) Ukbench, N-S
2×20K 3×20K 2×50K 2×20K 3×20K 2×100K 2×20K 3×20K 2×100K

B0 49.23 49.23 54.17 37.80 37.80 38.80 3.11 3.11 3.17
B1 49.87 50.49 56.64 39.78 39.97 41.28 3.15 3.16 3.22
Bayes 58.51 60.40 59.22 46.77 49.36 49.72 3.31 3.30 3.35
B1 + HE 77.61 78.08 77.48 58.97 59.52 60.08 3.51 3.51 3.48
Bayes + HE 81.20 81.56 80.60 63.32 63.53 63.96 3.61 3.62 3.57
Bayes + HE + Burst 81.53 81.92 81.08 65.01 64.82 64.73 3.62 3.62 3.59

Table 3. Results on three benchmark datasets for different methods: baselines B0 and B1, the proposed method (Bayes), Hamming Embed-
ding (HE) [4], and burstiness weighting (Burst) [5]. We consider the merging of 2×20K, 3×20K, and 2×50K vocabularies, respectively.

Method B1 B2 Bayes
10K + 20K 40.89 32.85 47.11
20K + 50K 41.20 34.70 48.85
10K + 20K + 50K 42.31 35.82 49.05

Table 4. The mAP of Bayes merging of vocabularies of different
sizes on Oxford dataset. In comparison, Bayes merging of two
vocabularies of the same size yields an mAP of 46.04%, 46.77%,
and 47.79% for the 10K, 20K, 50K vocabularies, respectively.

our experiment, HE with a single vocabulary achieves an
mAP of 76.24% and 56.65% on Holidays and Oxford, and
an N-S score of 3.49 on Ukbench, respectively.

The results in Fig. 5 and Table 3 indicate that Bayes
merging yields consistent improvements of the B0 + HE
method. Specifically, when merging two vocabularies of
20K, the mAP is improved from 76.24% to 81.20% and
from 56.65% to 63.32% on Holidays and Oxford, respec-
tively. Similar trend can be observed on Ukbench: N-S s-
core rises from 3.49 to 3.61. In its nature, HE results in re-
fined matching in the feature space (locally). Complemen-
tarily, the Bayes merging jointly considers the image- and
feature-level similarity. Therefore, while good matching in
the feature space can be guaranteed by HE, our method pun-
ishes those of a false match in the image space. In this s-
cenario, we actually raise an interesting question: can we
simply trust feature-to-feature similarity in image retrieval?

In addition, combining burstiness weights brings about
extra, though limited improvement (see Table 3). Our im-
plementation differs from [5] in that we do not apply the
weights on images in the intersection set, but instead on the
difference set (A ∪ B − A ∩ B) only. A performance sum-
mary of various methods is presented in Table 3.

Large-scale experiments To test the scalability of our
method, we add the Flickr1M distractor images [4] to the
Holidays and Oxford datasets. For comparison, we report
the results of baselines B0 and B1. From Fig. 7, it is clear
that Bayes merging outperforms the two baselines signifi-
cantly. On Holidays dataset mixed with one million images,
Bayes merging achieves mAP of 39.60%, compared with
28.19% and 29.26% of baseline B0 and B1, respectively.

10
3

10
4

10
5

10
6

25

30

35

40

45

50

55

60

65

Database size

m
A

P
 (

%
)

Holidays

Bayes(2)

B
1

B
0

10
4

10
5

10
6

20

25

30

35

40

45

50

Database size

m
A

P
 (

%
)

Oxford

Bayes(2)

B
1

B
0

Figure 7. The mAP results as a function of the database size on
Holidays and Oxford datasets. Three methods are compared, i.e.,
baselines B0, B1, and Bayes merging of two vocabularies. The
vocabulary size is 20K for all methods.

In terms of efficiency, the baseline method B0 consumes
4 bytes per feature, and 1.9 GB for indexing one million
images. The Bayes merging of two vocabularies doubles
the memory cost to about 3.8 GB on Flickr1M.

On the other hand, it takes 2.52s and 4.87s for B0 and B1

to perform one query on 1 million image size, respectively,
using a server with 3.46 GHz and 64GB memory. Bayes
merging involves identifying the intersection set and calcu-
late the cardinality ratio. In fact, the cardinality ratio can
be computed and stored offline. Moreover, as shown in the
supplementary material, we are able to perform both the
identification and the voting tasks by traversing the two lists
of indexed features only once. Therefore, our method only
marginally increases the query time to 5.12s.

Comparison with state-of-the-arts We first compare
our method with [3] which employs PCA to addresses the
correlation problem implicitly. In [3], merging four 16K
vocabularies and eight 8K vocabularies yield an mAP of
55.8% and 56.7%, respectively. Moreover, merging vo-
cabularies of multiple sizes obtains a best mAP of 58.8%
on Holidays. In comparison, the result obtained by Bayes
merging is 58.5% and 60.4% for two and three vocabularies
of size 20K, respectively.

Second, we compare the Bayes merging with the Rank
Aggregation (RA) method [2, 7] in Table 5. Following [7],
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Method Bayes Rank aggregation
# vocabularies 2 3 3 5 7 9
Holidays, mAP(%) 58.5 60.4 49.9 50.7 51.0 51.0
Oxford, mAP(%) 46.8 49.4 39.5 40.8 41.2 41.4

Table 5. Comparisons with rank aggregation (RA). Different num-
bers of vocabularies are trained to test RA. Vocabulary size is 20K.

Method Bayes [20] [6] [5] [16] [15]
Holidays, mAP(%) 81.9 80.9 81.3 83.9 78.1 -
Oxford, mAP(%) 65.0 68.7 61.5 64.7 - 66.4
Ukbench , N-S 3.62 3.60 3.42 3.54 3.56 3.50

Table 6. Comparisons with the state-of-the-art methods.

we take the median of multiple ranks as the final rank. Since
RA works on the rank level, it does not address the corre-
lation problem, so its performance is limited. The results
demonstrate the superiority of Bayes merging.

Finally, we compare the results of Bayes merging with
state-of-the-arts in Table 6. On the three datasets, we achive
mAP = 81.9% on Holidays, mAP = 65.0% on Oxford, and
N-S = 3.62 on Ukbench. We have also tested on the da-
ta provided by [14], where the codebook size is 65K. On
Oxford datastet, the mAP is 77.3%. Note that some sophis-
ticated techniques are absent in our system, such as spatial
constraints [6, 16], semantic consistency [20], etc. Still, the
results demonstrate that the performance of Bayes merging
is very competitive. We also provide some sample retrieval
results in the supplementary material.

6. Conclusion
Multi-vocabulary merging is an effective method to

improve the recall of visual matching. However, this
process is impaired by vocabulary correlation. To address
the problem, this paper proposes a Bayes merging approach
to explicitly estimate the matching strength of the indexed
features in the intersection sets, while preserving those in
the difference set. In a probabilistic view, Bayes merging
is capable of jointly modeling an image- and feature-
level similarity from multiple sets of indexed features.
Specifically, we exploit the probability that an indexed
feature is a true match (both locally and globally) if it is
located in the intersection sets of multiple inverted files.
Extensive experiments demonstrate that Bayes merging
effectively reduces the impact of vocabulary correlation,
thus improving the retrieval accuracy significantly. Further,
our method is efficient, and yields competitive results with
state-of-the-arts.
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