
Hierarchical Feature Hashing for Fast Dimensionality Reduction

Bin Zhao Eric P. Xing
School of Computer Science, Carnegie Mellon University

{binzhao,epxing}@cs.cmu.edu

Abstract

Curse of dimensionality is a practical and challenging
problem in image categorization, especially in cases with
a large number of classes. Multi-class classification en-
counters severe computational and storage problems when
dealing with these large scale tasks. In this paper, we pro-
pose hierarchical feature hashing to effectively reduce di-
mensionality of parameter space without sacrificing classi-
fication accuracy, and at the same time exploit information
in semantic taxonomy among categories. We provide de-
tailed theoretical analysis on our proposed hashing method.
Moreover, experimental results on object recognition and
scene classification further demonstrate the effectiveness of
hierarchical feature hashing.

1. Introduction
Over the past few years, there have been growing inter-

ests in building general purpose image classifiers for real
world visual recognition [9, 25, 2, 17, 20], with hundreds
or thousands of classes. Accompanying the growth of im-
age number and concept space is the huge dimensionality
of image feature vectors. For example, [20] builds more
than 130K features to represent each image for a 1000-class
problem, and for the same problem, [17] represents each
image with more than 600K features. Moreover, results
in [17] imply that higher dimensional feature representation
results in better image classification.

Worse still, a k-class classification problem defines a pa-
rameter vector for each class, and d-dimensional feature
representation for each image would result in kd parame-
ters to learn. Take linear classification as an example: given
x ∈ Rd and y ∈ Y with |Y| = k, the joint input-label
mapping [26] could be defined as Γ(x, y) = ey ⊗ x, where
Γ(x, y) ∈ Rkd is obtained by tensor product of x and vector
ey ∈ Rk, where ey has every element as 0, except the y-th
element being 1. Linear classifier is obtained by learning
parameter vector w ∈ Rkd, such that the label for image
x is given by y∗ = arg maxyw

>Γ(x, y). For large scale
problems, kd could be in the scale of billions. Storing such

Figure 1. Left: class taxonomy structured as a tree, with a given
data x from class Lily; Right: the hierarchically hashed feature
representation for (x, Lily), where ΦFlower is the hash function
defined uniquely for class Flower.

huge number of parameters in memory would be a chal-
lenge, let alone the intermediate variables generated during
learning. Therefore, how to train multi-class classifiers with
high-dimensional feature representation and large concept
space, is a practical and challenging research problem.

One fruitful line of research in large scale image cate-
gorization tries to exploit the inherent structure in the im-
age categories. Specifically, image classes in large scale
problems are rarely organized in a flat fashion, but rather
with a hierarchical taxonomy [9, 28]. For example, Fig-
ure 1 shows an example of tree hierarchy, where leaf nodes
are individual image categories1, and each internal node de-
notes the cluster of categories in the subtree rooted by the
given node. Having access to this taxonomy structure has
been shown to benefit the accuracy of the learning algo-
rithms [19, 11, 10, 29]. However, hierarchical classifiers
that define a parameter vector for each node in the taxonomy
structure [8, 22] result in even larger number of parameters,
than flat multi-class classifiers.

In this paper, we propose Hierarchical fEature haSHING
(HESHING), to aggressively reduce dimensionality, when
the taxonomy structure in the image categories is known.
Specifically, HESHING hashes all input-label pairs (x, y)
into a common lower dimensional space with Ψ : X ×Y →
Rd′ . A linear classifier parameterized by w ∈ Rd′ , trained
in the space defined by Ψ, determines the label y∗ for a
new image x as y∗ = arg maxyw

>Ψ(x, y). The parame-
ter vector for a multi-class classifier therefore lives in Rd′

instead of in Rkd, where d′ � kd. More precisely, a unique
hash function Φ is defined for each node in the category

1An image can only be classified to one of the leaf categories.

1

Figure 2. From left to right: (a) tree with leafs at same depth; (b)
tree with leafs at different depths; (c) extended tree for (b).

taxonomy, and the hierarchical feature hash for class y is
the vector concatenation of all feature hashes along the path
from root node to the leaf node corresponding to y. For
example, Figure 1 shows the hierarchical feature hash for
input vector x associated with class Lily, where the tree
path is {Plant, Flower, Lily}. In theoretical analysis, we
show that HESHING preserves inner products between two
vectors with high probability, following an exponential tail
bound. Moreover, the expected number of features lost due
to collision in HESHING is minimal. Finally, we show that
the classifier learned directly in the hashed space achieves
similar effects in exploiting class taxonomy, as much more
expensively learned hierarchical classifier.

Notations. We assume class labels are structured as a
tree, where all leaf nodes are at the same depth, as shown
in Figure 2(a). For class hierarchies where leaf labels ap-
pear on different level of the tree, such as the one shown
in Figure 2(b), we could always extend the shorter path by
replicating its leaf node, as shown in Figure 2(c). Given
class taxonomy with depth T , define the set of class labels
in level t as Yt. Specifically, Y1 will only contain the root
node of the tree, and YT contains all leaf class labels. For
example, for the tree in Figure 2(a), we have that Y1 = {1},
Y2 = {2, 3} and Y3 = {4, 5, 6, 7, 8}. Moreover, define the
tree path for class y from root node to leaf node y as P(y).
For example, class 6 in Figure 2(a) corresponds to tree path
P(6) = {1, 2, 6}. Finally, for any function f indexed by u,
we will use fu(x) = f(x, u) interchangeably throughout
the paper and they mean exactly the same.

1.1. Previous Work

While there has been little work in visual recognition that
exploits feature hashing for dimensionality reduction, the
following three lines of research are related to our work.

Dimensionality reduction: For image categorization
with ultra high-dimensional feature representation, con-
ventional dimensionality reduction [13] or feature selec-
tion [12] methods, such as PCA, ICA and manifold-based
methods, and L1-regularization based feature selection
methods, such as Lasso [24] and structured Lasso [14], run
out of favor due to high computational cost. Moreover,
these methods only reduce the dimensionality of the input
feature vectors, but have no mechanism to cope with the
high dimensionality resulted from large concept space. On
the other hand, randomized projection [21] does not need
to learn projection matrix, but loses sparsity of the original
feature vectors, and introduces additional overhead to store
the projection matrices. However, HESHING preserves in-

formation as well as randomized projection, but also pre-
serves sparsity with no need for projection matrix.

Hashing: Feature hashing has been previously studied
in binary classification problems[23, 27], and successfully
applied to applications such as email spam filtering [27].
To our knowledge, HESHING is the first attempt to ex-
ploit category taxonomy in hash design for aggressive di-
mensionality reduction. Moreover, we show in Theorem 2
that the redundancy introduced by HESHING greatly re-
duces information loss due to hash collision. Furthermore,
hierarchical feature hashing should not be confused with
locality-sensitive hashing [1, 18], one of the approximate-
nearest-neighbor algorithms, designed for efficient data in-
dexing. In hierarchical feature hashing, hashing technique
is adopted to reduce dimensionality for multi-class classifi-
cation, instead of approximate nearest neighbor search.

Hierarchical classification: Given class taxonomy, hi-
erarchical classifiers exploiting category taxonomy have
been studied in the literature [15, 8, 6, 2, 30, 4, 3]. These
approaches could be roughly separated into two groups: (1)
learn each parameter vector separately, or (2) learn all pa-
rameter vectors together. However, the first group of meth-
ods face the well-known error propagation problem, where
errors made close to the root node are propagated through
the tree and yield misclassification. On the other hand,
learning all parameter vectors together suffers severely from
curse of dimensionality, especially on problems with large
concept space. However, as shown in Theorem 3, HESH-
ING achieves similar effect as hierarchical classifier in ex-
ploiting class taxonomy, but with a much smaller memory
footprint, and consequently much more favorable on large
scale visual recognition problems.

1.2. Summary of Contributions

To conclude the introduction, we summarize the main
contributions of this paper as follows. (1). We propose
an approach to aggressively reduce the dimensionality of
parameter space in multi-class visual recognition, with no
learning, preserves feature sparsity and introduces no addi-
tional overhead to store any projection matrix. (2). We pro-
vide detailed theoretical analysis on the proposed method.
(3). Empirical results on object recognition and scene clas-
sification demonstrate its effectiveness: better classification
accuracy with much smaller memory footprint.

2. Hierarchical Feature Hashing
Given taxonomy structure of image categories (e.g., Fig-

ure 1), we impose similarity requirements between feature
representations for adjacent labels in the hierarchy. Specif-
ically, assume the joint input-output feature representation
for image x with class y is Ψ(x, y), with the optimal label
predicted as y∗ = arg maxyw

>Ψ(x, y). In the spirit of
Bayesian methods, we require Ψ(x, Lily) to be more simi-

lar to Ψ(x, Rose), than Ψ(x,Maple) in Figure 1. Follow-
ing such feature representation, the resulting classifier may
tolerate minor mistakes, such as predicting a sibling of the
correct label, but avoids gross errors, such as predicting a
node in a completely different part of the taxonomy.

Definition 1. Define Ȳ = ∪Tt=1Yt as the set of all labels in
the taxonomy tree with depth T . For any u ∈ Ȳ , denote by
hu a hash function hu : N → {1, . . . ,m}, and ξu another
hash function ξu : N → {±1}, such that ∀u′ 6= u: hu

′ 6=
hu and ξu

′ 6= ξu. For any feature-label pair (x, y) with
y ∈ YT , hierarchical feature hash Ψ(x, y) is defined as

Ψ(x, y) =
1√
|P(y)|

 Φ(x, u1)
...

Φ(x, u|P(y)|)

 (1)

where P(y)={u1, . . . , u|P(y)|} with |P(y)|=T is the path
from root node to leaf y, and Φ(x, u) ∈ Rm is defined as
∀i ∈ {1, . . . ,m} : Φi(x, u) =

∑
j:hu(j)=i ξ

u(j)xi.

For hierarchical feature hashing, any hash function
could be used, as long as it has uniform distribution among
the m hash brackets. We will discuss more details in Sec-
tion 4. HESHING maps any input-output pair (x, y) ∈ Rd×
Y into a much lower dimensional space, where a singlemT -
dimensional parameter vector w is learned for multi-class
classification. Since we usually have mT � d|Y|, learn-
ing multi-class classifier in the hashed space takes much
less memory and computational time than in the original
feature space. This is especially important for large scale
image categorization with high-dimensional feature repre-
sentation and large concept space. Moreover, for closely
related classes sharing common nodes on their tree paths,
such as Lily and Rose in Figure 1, their hierarchical feature
hashes are similar, in the sense that parts of their feature
vectors are the same. For example, the hierarchical fea-
ture hash for (x, Lily) is the concatenation of Φ(x, P lant),
Φ(x, F lower) and Φ(x, Lily), and the hierarchical feature
hash for (x, Rose) only differs in the last part Φ(x, Rose).
If we denote the learned parameter vector in hashed space as
w = [w>1 , . . . ,w

>
T]>, where ∀t ∈ {1, . . . , T}, wt ∈ Rm

discriminates between classes at level t. Therefore, HESH-
ING congregates discriminative information from all levels
of the class taxonomy, and at the same time maintains a very
small memory footprint.

HESHING could be used with any classification algo-
rithm. In this paper, we adopt the max-margin classifier [7]
and formulate multi-class classification as follows:

min
w,ξ

λ

2
||w||2 +

1

n

n∑
i=1

ξi (2)

s.t. ∀i = 1, . . . , n, r = 1, . . . , k

w>Ψ(xi, yi) + δyir −w>Ψ(xi, r) ≥ 1− ξi

where δyir = 1 if yi = r and 0 otherwise. Optimization
problem (2) is solved using stochastic gradient descent [5].

3. Analysis
In this section, we provide theoretical analysis on hier-

archical feature hashing.

3.1. Preserving Inner Product

One of the most important requirements for dimensional-
ity reduction is to preserve inner product [21], such that, for
any two input data samples, the inner product between their
resulting low-dimensional representations is close to that of
their corresponding high-dimensional features. The follow-
ing theorem shows that under hierarchical feature hashing,
the inner product between any two vectors is preserved with
high probability.

Theorem 1. Given (x, y) and (x′, y′), where x,x′ ∈ Rd,
and ‖x‖2 = ‖x′‖2 = 1. For hierarchical feature hashing
defined in (1), ∀ε < 1, if m ≥ 288 log(6/δ)

ε2|P(y)| and ‖x‖∞ ≤√
3|P(y)|

8m log(6m/δ) , we have that

P
(∣∣〈Ψ(x, y),Ψ(x′, y′)〉 − 〈x,x′〉

∣∣ ≥ ε) ≤ δ (3)

Proof. For inner product, we have that

〈x−x′,x−x′〉=‖x‖22+‖x′‖22−2〈x,x′〉 (4)

⇒ 〈x,x′〉= 1

2

(
‖x‖22+‖x′‖22−‖x−x′‖22

)
(5)

Similarly, for inner product in the hashed space

〈Ψ(x, y),Ψ(x′, y′)〉= 1

2

(
‖x‖2Ψ+‖x′‖2Ψ−‖x−x′‖2Ψ

)
(6)

where ‖x‖2Ψ =Ψ(x, y)>Ψ(x, y). Using (5) and (6), we get

2
∣∣〈Ψ(x, y),Ψ(x′, y′)〉−〈x,x′〉

∣∣= ∣∣‖x‖2Ψ−‖x‖22
+‖x′‖2Ψ−‖x′‖22+‖x−x′‖2Ψ−‖x−x′‖22

∣∣
≤
∣∣‖x‖2Ψ−‖x‖22∣∣+∣∣‖x′‖2Ψ−‖x′‖22∣∣+∣∣‖x−x′‖2Ψ−‖x−x′‖22∣∣ (7)

We need to bound each of the three terms in the right hand
side of (7). Specifically, we will show that

P
(
2
∣∣‖x‖2Ψ − ‖x‖22∣∣ > ε‖x‖22

)
≤ 1

3
δ (8)

P
(
2
∣∣‖x′‖2Ψ − ‖x′‖22∣∣ > ε‖x′‖22

)
≤ 1

3
δ (9)

P
(
2
∣∣‖x− x′‖2Ψ − ‖x− x′‖22

∣∣ > ε‖x− x′‖22
)
≤ 1

3
δ (10)

Without loss of generality, we will prove the first inequal-
ity, and the other two could be shown similarly. Since
‖x‖2 = 1, we need to show P

(∣∣‖x‖2Ψ − 1
∣∣ > 1

2ε
)
≤ 1

3δ.
Before getting into details of the proof, we first introduce
the following two lemmas from [16] and [27]:

Lemma 1. ∀x ∈ Rd with ||x||2 = 1, define diago-
nal matrix Dx ∈ Rd×d as (Dx)jj = xj . For any
column-normalized matrix A ∈ Rm×d, define ‖x‖A =
maxy:‖y‖2=1 ‖ADxy‖2. For any i.i.d. random ±1 di-
agonal matrix Ds, the following holds: ∀x, if ||x||A ≤

ε

6
√

log(1/δ)
, then P (|‖ADsx‖2 − 1| > ε) ≤ δ.

Lemma 2. Define hash function hu(x) : N→ {1, . . . ,m},
if x is such that ||x||2 = 1 and ‖x‖∞ ≤

√
3

8m log(m/δ) , then

define σ2
∗ = maxi

∑d
j=1 x

2
jδihu(j) where i ranges over all

hash buckets. We have that P
(
σ2
∗ >

2
m

)
≤ δ.

In hierarchical feature hashing, each node u in the class
taxonomy corresponds to a unique pair of hash functions
(hu, ξu). For any u ∈ P(y), define Au ∈ Rm×d as Auij =
δihu(j) and Du

s as (Du
s)jj = ξu(j). Define the tree path

from root to leaf for label y as P(y) = {u1, . . . , u|P(y)|}
where u1 is the root node and u|P(y)| = y is the leaf. Con-
sequently, we will have a sequence of matrices {Au} and
{Du

s}, where u runs through {u1, . . . , u|P(y)|}. Define

A=

Au1

. . .
Au|P(y)|

, x̃=
1√
|P(y)|

 x
...
x

 (11)

Ds=

Du1
s

. . .
D
u|P(y)|
s

, y=

 yu1

...
yu|P(y)|

 (12)

where x̃ ∈ Rd|P(y)| is obtained by stacking up |P(y)| repli-
cates of x, and each yu ∈ Rd with u ∈ {u1, . . . , u|P(y)|},
such that y ∈ Rd|P(y)| and ||y||2 = 1. Moreover, de-
fine diagonal matrix Dx ∈ Rd×d as (Dx)jj = xj , and
Dx̃ ∈ Rd|P(y)|×d|P(y)| as (Dx̃)jj = x̃j . Clearly, we have
that Dx̃ = 1√

P(y)
diag(Dx, . . . ,Dx), with |P(y)| repli-

cates of Dx aligned on its diagonal. Next we will check
the conditions of Lemma 1 for {A, x̃,Ds,Dx̃}. First,
each matrix Au is column normalized, as exactly one el-
ement in each column of Au is 1 and all other elements
are 0, thus, Au is column normalized. Consequently, A
is also column normalized. For x̃, we have that ‖x̃‖2 =

1
|P(y)| |P(y)|‖x‖2 = ‖x‖2 = 1, and

‖ADx̃y‖22 =
∑

u∈P(y)

1

|P(y)| ‖A
uDxy

u‖22

=
∑

u∈P(y)

1

|P(y)|

 m∑
i=1

(
d∑
j=1

δihu(j)xjy
u
j

)2
=
∑

u∈P(y)

1

|P(y)|

 m∑
i=1

(
d∑
j=1

√
δihu(j)xj

√
δihu(j)y

u
j

)2
≤
∑

u∈P(y)

1

|P(y)|

[
m∑
i=1

(
d∑
j=1

δihu(j)x
2
j

d∑
j=1

δihu(j)y
u
j

2

)]
(13)

≤
∑

u∈P(y)

1

|P(y)|

[
m∑
i=1

(
σ2
∗

d∑
j=1

δihu(j)y
u
j

2

)]
(14)

=
∑

u∈P(y)

σ2
∗

|P(y)|

[
m∑
i=1

d∑
j=1

δihu(j)y
u
j

2

]

=
∑

u∈P(y)

σ2
∗

|P(y)| ||y
u||22 =

σ2
∗

|P(y)| (15)

where (13) applies Cauchy-Schwarz inequality, (14) is true
according to the definition of σ2

∗ and (15) uses the fact
that ‖y‖2 = 1. Moreover, ‖x̃‖∞ = 1√

|P(y)|
‖x‖∞ ≤√

3
8m log(6m/δ) . Using Lemma 2, we have

P
(
‖ADx̃y‖22 >

2

m|P(y)|

)
≤ 1

6
δ (16)

or equivalently, ‖ADx̃y‖22 ≤ 2
m|P(y)| with probability at

least 1− δ/6. Since this holds for any y with ‖y‖2 = 1 and
m ≥ 288 log(6/δ)

ε2|P(y)| , we have with probability at least 1− δ/6,

‖x̃‖A ≤

√
2

m|P(y)| ≤
ε/2

6
√

log(6/δ)
(17)

Applying Lemma 1 and union bound, we have

P
(
|‖ADsx̃‖2 − 1| > 1

2
ε

)
≤ 1

3
δ (18)

Furthermore, we have

ADsx̃=
1√
|P(y)|

 Au1Du1
s x

...
Au|P(y)|D

u|P(y)|
s x

 (19)

Since ∀u ∈ {u1, . . . , u|P(y)|} and ∀i ∈ {1, . . . ,m},
(AuDu

sx)i =
∑d
j=1 δihu(j)ξ

u(j)xj = Φi(x, u), we have
that ‖ADsx̃‖2 = ‖Ψ(x, y))‖2 = ‖x‖Ψ. Therefore,
P
(
|‖x‖Ψ − 1| > 1

2ε
)
≤ 1

3δ. Similarly, we could prove
(9) and (10). Combine the three inequalities together us-
ing union bound, we get (3), where we used the fact that
‖x− x′‖22 ≤ 2. �

3.2. Feature Loss due to Collision

Hierarchical feature hashing reduces memory footprint
of multi-class classification by potentially projecting mul-
tiple features into the same hash bracket, which we call a
collision. One of the key fears of using HESHING is that in-
formation might be lost due to collision, which unavoidably
restrains the best-possible prediction. However, hierarchi-
cal feature hashing utilizes multiple hash functions, each
defined for a node in the corresponding tree path. As long
as one of the multiple hash functions avoids collision on xj ,
the information residing in xj could be exploited in learn-
ing. We first formally define feature loss as follows.

Definition 2. Feature lost due to collision: For any (x, y)
with x ∈ Rd, we say feature xj is lost due to collision, if
∀u ∈ P(y), ∃j′ 6= j, such that h(j, u) = h(j′, u).

According to the above definition, information of the j-
th feature of x is considered lost if for all u ∈ P(y), xj is
projected to a hash bracket shared by another feature. We
study the expected number of features lost due to collision
in the following theorem.

Theorem 2. Given a tree-structured class hierarchy, define
τ = miny |P(y)| as length of the shortest tree path. For hi-
erarchical feature hashing defined in (1), the expected num-
ber of features lost due to collision is at most

Ec = d

(
d− 1

m

)τ
(20)

Proof. We will first consider one feature, say xj . For xj ,
∀u ∈ P(y), since the hash function hu has a uniform dis-
tribution over all hash brackets, the probability of another
feature j′ 6= j colliding with j in hash function hu is 1

m .
Mathematically, this means for j′ 6= j:

P
(
hu(j′) = hu(j)

)
=

1

m
(21)

Define Pju as the probability of the j-th feature lost due to
collision in hu, then we have that

Pju = P
(
∃j′ 6= j : hu(j′) = hu(j)

)
= P

(
∪j′ 6=jhu(j′) = hu(j)

)
≤

∑
j′ 6=j

P
(
hu(j′) = hu(j)

)
=
d− 1

m
(22)

where we used union bound. The probability Pj that j-th
feature is lost due to collision, which means that it collides
with other features in all |P(y)| hashes is therefore upper
bounded by P|P(y)|

ju . Finally, the expected number of fea-
tures lost due to collision, Ec satisfies

Ec = d · Pj ≤ d
(
d− 1

m

)|P(y)|

≤ d
(
d− 1

m

)τ
(23)

since τ = miny |P(y)| and we usually have m > d. �
Let’s take the feature representation in [20] as an example,
where d = 130K and τ = 5. Assume we use m = 220,
which is only 0.8% of kd, the number of parameters if we
learn in the original feature space. According to Theorem 2,
HESHING loses less than 4 features due to collision.

3.3. Comparison with Hierarchical Classifier
Given taxonomy structure for image categories, one

could also build hierarchical classifier to exploit the taxon-
omy. One group of approaches [22, 8] formulate as follows:

min
{wu},ξ

λ

2

T∑
t=1

∑
u∈Yt

‖wu‖2+
1

n

n∑
i=1

ξi (24)

s.t. ∀i = 1, . . . , n, r = 1, . . . , k

1√
T

∑
u∈P(yi)

w>uxi+δyir−
1√
T

∑
v∈P(r)

w>vxi≥1−ξi

where each node u in the class taxonomy corresponds to
a unique parameter vector wu, and the prototype for each
image category is the sum of parameter vectors along the
tree path. For example in Figure 2(a), the prototype for class
6 is W6 = w1+w2+w6. The following theorem compares
(24) with HESHING based multi-class classification.

Theorem 3. ∀{wu}u∈Yt,t∈{1,...,T} with wu ∈ Rd, define

wh =

∑
u∈Y1 Φ(wu, u)

...∑
u∈YT

Φ(wu, u)

 (25)

Denote objective value of problem (24) for {wu} with the
smallest feasible

∑n
i=1 ξi as OHieSVM ({wu}), and objec-

tive value of problem (2) for wh with the smallest feasi-
ble
∑n
i=1 ξi as OHieHash(wh). Then |OHieSVM ({wu})−

OHieHash(wh)| is minimal. Moreover, the decision values
according to {wu} and wh are close.

Proof. We first introduce following Lemma 3 to upper
bound the interaction between different hash mappings.

Lemma 3. Let Φu = (hu, ξu) and Φv = (hv, ξv), u 6= v,
be two different hash functions. Then for any w,x ∈ Rd,
the inner product 〈Φu(w),Φv(x)〉 is bounded by

P (|〈Φu(w),Φv(x)〉|>ε)≤2e
− mε2/2

‖w‖22‖x‖22+mε‖w‖∞‖x‖1/3 (26)

Due to space limit, we move proof of Lemma 3 to the
supplementary material. Let’s start with Problem (24),
given {wu}, each ξi could be optimized individually,

ξ∗i= max
r=1,...,k

1−δyir−
1√
T

∑
u∈P(y)

w>uxi+
1√
T

∑
v∈P(r)

w>vxi

 (27)

Consequently, the optimal objective value correspond-
ing to {wu} could be computed as OHieSVM ({wu}) =
λ
2

∑T
t=1

∑
u∈Yt‖wu‖22+ 1

n

∑n
i=1 ξ

∗
i . Similarly, for Problem

(2), OHieHash(wh) = λ
2 ‖wh‖22 + 1

n

∑n
i=1ξ

∗∗
i , with each ξi

also optimized individually,

ξ∗∗i = max
r=1,...,k

{
1−δyir−w

>
hΨ(xi, yi)+w>hΨ(xi, r)

}
(28)

Next we will show that both |
∑T
t=1

∑
u∈Yt‖wu‖22−‖wh‖22|

and |ξ∗i − ξ∗∗i | are minimal. Specifically,∣∣∣∣∣
T∑
t=1

∑
u∈Yt

‖wu‖22−‖wh‖22

∣∣∣∣∣
=

∣∣∣∣∣∣
T∑
t=1

∑
u∈Yt

‖wu‖22−
T∑
t=1

∥∥∥∥∥∑
u∈Yt

Φ(wu, u)

∥∥∥∥∥
2

2

∣∣∣∣∣∣ (29)

=

∣∣∣∣∣
T∑
t=1

∑
u∈Yt

(
‖wu‖22−‖Φ(wu, u)‖22

)

−2

T∑
t=1

∑
u6=v:u,v∈Yt

Φ(wu, u)>Φ(wv, v)

∣∣∣∣∣∣ (30)

≈

∣∣∣∣∣
T∑
t=1

∑
u∈Yt

(
‖wu‖22−‖Φ(wu, u)‖22

)∣∣∣∣∣ (31)

≤
T∑
t=1

∑
u∈Yt

∣∣‖wu‖22−‖Φ(wu, u)‖22
∣∣ ≈ 0 (32)

where (31) is true according to Lemma 3, and (32) is true
by applying Theorem 1 to a single node tree with only root
node u. Similarly, ∀r ∈ {1, . . . , k} :∣∣∣∣∣∣ 1√

T

∑
u∈P(r)

w>u xi−w>hΨ(xi, r)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1√
T

∑
u∈P(r)

w>uxi−
1√
T

T∑
t=1

∑
u∈Yt

Φ(wu, u)>Φ(xi, y
t
i)

∣∣∣∣∣∣ (33)

≈ 1√
T

∣∣∣∣∣∣
∑

u∈P(r)

w>uxi−
T∑
t=1

Φ(wyti
, yti)

>Φ(xi, y
t
i)

∣∣∣∣∣∣ (34)

≤ 1√
T

∑
u∈P(r)

∣∣∣w>u xi−Φ(wu, u)>Φ(xi, u)
∣∣∣ ≈ 0 (35)

where (34) is true since ∀u 6= yti : |Φ(wu, u)>Φ(xi, y
t
i)| ≈

0 according to Lemma 3, and (35) is true according to The-
orem 1. Consequently, we have that |ξ∗i − ξ∗∗i | ≈ 0. There-
fore, we have that for any {wu}u∈Yt,t∈{1,...,T}, and corre-
sponding wh defined in (25),

|OHieSVM ({wu})−OHieHash(wh)| ≈ 0 (36)

Therefore, parameter vector wh constructed in (25) is ap-
proximately the optimal solution to Problem (2), i.e., the
parameter vector learned in hierarchical feature hashing.
Moreover, given a new data point x ∈ Rd, the predic-
tion task now consists of calculating w>h Ψ(xi, r) for any
r ∈ YT . The results in (32) shows that the decision value
computed in hashed feature space is very close to the de-
cision value, 1√

T

∑
u∈P(r) w

>
u xi, computed in the original

feature space using hierarchical classifier. �
Moreover, since the weight vector actually learned in the

hashed space has information about the collision of features,
it could be trained to handle such collisions by avoiding
putting heavy weights on those ambiguous features, hence
resulting in even better classification.

4. Experiments
In this section, we test hierarchical feature hashing on

two fundamental computer vision tasks: object recognition
and scene classification.

4.1. Basic Setup

We first describe the evaluation metrics in terms of clas-
sification accuracy and memory footprint. For the classi-
fication accuracy, we report two measures: flat error and
hierarchical error. Specifically, given an image, flat error
equals 1 if the predicted class is not its true class, and 0
otherwise. On the other hand, hierarchical error reports the
minimum height of the lowest common ancestor between
true and predicted classes. For example in Figure 2(a), if the
predicted class is 4 while true class is 8, hierarchical error

Data set T #Class #Train #Test
amphibian 4 8 8857 1200
fish 8 11 12503 1650
furniture 4 23 32959 3450
geo 5 12 19804 1800
music 6 25 38013 3750
reptile 7 29 29851 4350
tool 6 26 31087 3900
SUN 3 397 19850 19850

Table 1. Data sets details.

for this image is 2. For both criteria, the overall error score
for an algorithm is the average over all test images. For
memory footprint, we report the amount of memory taken
during training.

We compare our method to three different feature rep-
resentations. The first setting learns multi-class classi-
fiers in the original feature space: (1). one-vs-rest clas-
sification (OVR), with each binary classifier trained using
SVM; (2). multi-class SVM (MSVM) [7]; (3). hierar-
chical SVM (HieSVM) [8]; (4). tree classifier (TreeSVM)
through a top-down approach, which trains a multi-class
SVM at each node in the class taxonomy [15]. The sec-
ond setting FlatHash also solves Problem 2 for multi-class
classifier, but applies flat feature hashing using only leaf
class, ignoring class taxonomy structure. For example in
Figure 1(a), the flat feature hashing for (x, Lily) is just
Φ(x, Lily). The third setting applies PCA for dimensional-
ity reduction, and utilizes one-vs-rest classification (PCA).
All classifiers are trained with stochastic gradient descent.

We adopt MurmurHash2 as the hash function in both hi-
erarchical feature hashing and flat feature hashing. To ob-
tain a unique hash function Φu for each class u, we set the
seed in MurmurHash to u and compute the hash. However,
it should be noted that our result is not dependent on specific
choice of hash implementations.

4.2. Object Recognition on ImageNet

We first experiment on the object recognition task on Im-
ageNet [9], consisting of images collected from the web that
are organized according to the WordNet hierarchy. Specif-
ically, we report results on 7 subtrees of ImageNet that are
used in the study in [9]: amphibian, fish, furniture, geo-
logical formation (geo), musical instrument (music), reptile
and tool. The training, validation and test sets for these sub-
trees are taken from the 2010 ImageNet Large Scale Visual
Recognition Challenge data set. We used two feature rep-
resentations for each image: (1) low dimensional feature
composed using SIFT-based bag-of-words representation,
and (2) high dimensional feature computed the same way
as in [17]. Specifically, for both feature representations, we
start with computing dense SIFT descriptors for each im-
age, and then run k-means clustering on a random subset

2https://sites.google.com/site/murmurhash/

of 1 million SIFT descriptors to form a visual vocabulary.
For the low dimensional features, we generate 1000 visual
words and build bag-of-words feature, such that each im-
age is represented as a 1000-dimensional vector. On the
other hand, for the high dimensional features, we get a vi-
sual vocabulary of 8192 visual words. Using the learned
vocabulary, we employ Locality-constrained Linear Cod-
ing (LLC) [17] for feature coding. Finally, a single feature
vector is computed for each image using max pooling on a
spatial pyramid, with each image represented as a 170016-
dimensional vector. For HESHING and FlatHash, we fix
the hash size m = 211 for low dimensional feature repre-
sentation, and m = 218 for the high dimensional feature
representation. It should be noted that m = 211 still ef-
fectively reduces dimensionality of parameter space, as all
non-hash based methods will encounter at least kd parame-
ters, where d is original feature dimension and k is the num-
ber of classes. For PCA, we fix the reduced dimensionality
to 500 for the low dimensional feature representation, and to
1000 for the high dimensional one. The reason for picking
such dimensionality for PCA is to ensure highest possible
accuracy without running into out-of-memory problem, as
PCA needs to store a d× d′ projection matrix, with d being
the original feature dimension and d′ the reduced one.

As shown in Table 2, HESHING achieves compara-
ble classification results with the best competing algorithm
across all data sets, and in many cases even better classifica-
tion accuracy than all other approaches. The fact that HES-
HING provides equally good or better classification results
than classifiers trained in the original feature space, with
or without knowledge of the class taxonomy, demonstrates
that HESHING does not lose critical discriminative infor-
mation after aggressive dimensionality reduction. More-
over, HESHING not only outperforms FlatHash in hierar-
chical error, but also generates better flat error. Therefore,
exploiting class taxonomy in feature hashing not only ben-
efits in achieving lower hierarchical errors, but also intro-
duces redundancy in the hashed representation, effectively
reducing information loss due to hash collision, as shown in
Theorem 2, and thus enables lower flat errors.

Moreover, Figure 3 shows the memory footprint of var-
ious algorithms on the furniture data set. Clearly, HESH-
ING requires much less memory than other non-hash based
methods, rendering it especially attractive in large-scale vi-
sual recognition problems, where hashing is necessary to
make training multi-class classifier computationally feasi-
ble at all, as competing methods would run out of memory.
Finally, the memory footprints for HESHING and FlatHash
are close, while HESHING outperforms FlatHash on clas-
sification accuracy according to Table 2.

Furthermore, we investigate the influence of hash size
m on the classification errors. Specifically, we run HES-
HING on the high dimensional feature representation, with

OVR MSVM HieSVMTreeSVMFlatHash PCA HESHING
10

0

10
1

10
2

10
3

10
4

M
e
m

o
ry

 F
o
o
tp

ri
n
t
(M

B
:
lo

g
)

OVR MSVM HieSVMTreeSVMFlatHash PCA HESHING
10

0

10
1

10
2

10
3

10
4

M
e
m

o
ry

 F
o
o
tp

ri
n
t
(M

B
:
lo

g
)

Figure 3. Memory footprint comparison on data set furniture (left)
and SUN (right). Please note that the vertical axis is in log scale.

various values of m. As shown in Figure 4, when the hash
size m decreases, both flat error and hierarchical error in-
crease. Moreover, take the furniture data set as an example,
according to Theorem 2, a 21 bit hash table causes almost
no collisions. Nonetheless, an 18 bit hash which has almost
20% collisions performs equally well on the problem. This
leads to rather memory efficient implementations.

15 16 17 18 19 20 21
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

F
la

t
E

rr
o

r

amphibian

fish

furniture

geo

music

reptile

tool

15 16 17 18 19 20 21
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

H
ie

ra
rc

h
ic

a
l
E

rr
o
r

amphibian

fish

furniture

geo

music

reptile

tool

Figure 4. Impact of code length on flat error (left) and hierarchical
error (right). Horizontal axis is the number of bits in hash table,
i.e., number 18 on the axis means m = 218.

4.3. Scene Recognition on SUN

Next we experiment on the scene classification task on
the SUN data set [28], by far the largest scene recognition
data set. It captures a full variety of 899 scene categories.
We used 397 well-sampled categories to run the experiment
as in [28]. For each class, 50 images are used for training
and the other 50 for test. For image features, we adopt the
same setting as the high dimensional feature representation
used in ImageNet experiment, and represent each image as a
170016-dimensional vector. For HESHING and FlatHash,
we fix the hash size m = 219. For PCA, we set the reduced
dimensionality to 1000. Classification errors and memory
footprint are summarized in Table 2 and Figure 3, with sim-
ilar observations as in the study on ImageNet.

5. Conclusions and Discussions
Hierarchical feature hashing aggressively reduces di-

mensionality of parameter space, and exploits class taxon-
omy to reduce information loss and avoids high cost errors
of labeling an image to a class far away from its true cat-
egory. Besides the empirical study discussed in this paper,
another promising application of HESHING is on mobile
visual search systems like Google Goggles. Since a mobile
device faces more strict constraint on memory usage, the
fact that HESHING requires no projection matrix makes it

Algorithm amphibian fish furniture geo music reptile tool SUN

OVR
flat 0.61|0.50 0.60|0.51 0.52|0.47 0.47|0.40 0.76|0.74 0.85|0.76 0.73|0.68 0.83

hie 1.89|1.57 3.57|3.12 2.27|2.11 2.09|1.72 4.44|4.31 4.59|4.18 3.87|3.44 1.62

MSVM
flat 0.62|0.58 0.66|0.62 0.58|0.53 0.50|0.41 0.75|0.72 0.83|0.78 0.80|0.74 0.86

hie 1.94|1.76 3.98|3.81 2.68|2.35 2.25|1.88 4.36|4.20 4.38|4.22 4.93|3.92 1.78

HieSVM
flat 0.62|0.59 0.63|0.61 0.53|0.52 0.50|0.43 0.75|0.75 0.88|0.80 0.74|0.69 0.89

hie 1.86|1.72 3.28|3.24 2.14|2.10 2.12|1.87 4.33|4.31 4.52|4.49 3.76|3.47 1.74

TreeSVM
flat 0.69|0.65 0.75|0.69 0.64|0.58 0.52|0.44 0.79|0.74 0.87|0.83 0.85|0.77 0.88

hie 2.42|2.23 4.69|4.08 3.16|2.77 2.36|1.96 4.61|4.26 4.79|4.61 5.51|4.20 1.78

FlatHash
flat 0.66|0.51 0.68|0.57 0.61|0.49 0.51|0.41 0.74|0.73 0.86|0.74 0.82|0.71 0.86

hie 2.10|1.78 4.10|3.62 2.87|2.23 2.30|1.83 4.29|4.24 4.75|4.16 5.18|3.55 1.75

PCA
flat 0.60|0.49 0.62|0.53 0.53|0.46 0.50|0.44 0.78|0.74 0.86|0.75 0.76|0.66 0.84

hie 1.83|1.56 3.71|3.37 2.33|2.10 2.28|1.98 4.59|4.33 4.74|4.25 4.09|3.39 1.68

HESHING
flat 0.60|0.49 0.56|0.49 0.53|0.47 0.48|0.42 0.69|0.65 0.81|0.74 0.74|0.65 0.82
hie 1.82|1.50 3.22|3.01 2.35|2.08 2.16|1.80 3.78|3.49 4.26|4.07 3.95|3.26 1.51

Table 2. Misclassification for various algorithms, where flat means flat error, hie stands for hierarchical error. For ImageNet data sets, the
number before ‘|’ corresponds to the low dimensional feature representation, and the number after is for high dimensional features.

very attractive in such applications.

Acknowledgements
This research is supported by Google, NSF IIS-0713379, ONR

N000140910758, and AFOSR FA9550010247.

References
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms

for near neighbor problem in high dimensions. In FOCS,
2006. 2

[2] S. Bengio, J. Weston, and D. Grangier. Label embedding
trees for large multi-class tasks. In NIPS, 2010. 1, 2

[3] A. Beygelzimer, J. Langford, Y. Lifshits, G. Sorkin, and
A. Strehl. Conditional probability tree estimation analysis
and algorithms. In UAI, 2009. 2

[4] A. Beygelzimer, J. Langford, and P. Ravikumar. Error-
correcting tournaments. In ALT, 2009. 2

[5] L. Bottou. Large-scale machine learning with stochastic gra-
dient descent. In COMPSTAT, 2010. 3

[6] L. Cai and T. Hofmann. Hierarchical document categoriza-
tion with support vector machines. In CIKM, 2004. 2

[7] K. Crammer and Y. Singer. On the algorithmic implemen-
tation of multiclass kernel-based vector machines. JMLR,
2:265–292, 2001. 3, 6

[8] O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical
classification. In ICML, 2004. 1, 2, 5, 6

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR, 2009. 1, 6

[10] R. Fergus, H. Bernal, Y. Weiss, and A. Torralba. Semantic
label sharing for learning with many categories. In ECCV,
2010. 1

[11] G. Griffin and P. Perona. Learning and using taxonomies for
fast visual categorization. In CVPR, 2008. 1

[12] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. JMLR, 3:1157–1182, 2003. 2

[13] A. Jain, R. Duin, and J. Mao. Statistical pattern recognition:
A review. TPAMI, 22(1), 2000. 2

[14] S. Kim and E. Xing. Tree-guided group lasso for multi-task
regression with structured sparsity. In ICML, 2010. 2

[15] D. Koller and M. Sahami. Hierarchically classifying
docuemnts using very few words. In ICML, 1997. 2, 6

[16] E. Liberty, N. Ailon, and A. Singer. Dense fast random pro-
jections and lean walsh transforms. In APPROX/ RANDOM,
2008. 3

[17] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and
T. Huang. Large-scale image classification: fast feature ex-
traction and svm training. In CVPR, 2011. 1, 6, 7

[18] W. Liu, J. Wang, S. Kumar, and S. Chang. Hashing with
graphs. In ICML, 2011. 2

[19] M. Marszalek and C. Schmid. Semantic hierarchies for vi-
sual object recognition. In CVPR, 2007. 1

[20] F. Perronnin, Z. Akata, Z. Harchaoui, and C. Schmid. To-
wards good practice in large-scale learning for image classi-
fication. In CVPR, 2012. 1, 5

[21] A. Rahimi and B. Recht. Random features for large-scale
kernel machines. In NIPS, 2008. 2, 3

[22] R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning
to share visual appearance for multiclass object detection. In
CVPR, 2011. 1, 5

[23] Q. Shi, J. Petterson, J. Langford, A. Smola, and A. Strehl.
Hash kernels. In AISTATS, 2009. 2

[24] R. Tibshirani. Regression shrinkage and selection via the
lasso. J. Royal. Statist. Soc B, 58:267–288, 1996. 2

[25] A. Torralba, R. Fergus, and W. Freeman. 80 million tiny
images: A large data set for nonparametric object and scene
recognition. PAMI, 30:1958–1970, 2008. 1

[26] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent out-
put variables. JMLR, 6:1453–1484, 2005. 1

[27] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and
J. Attenberg. Feature hashing for large scale multitask learn-
ing. In ICML, 2009. 2, 3

[28] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun
database: Large-scale scene recognition from abbey to zoo.
In CVPR, 2010. 1, 7

[29] B. Zhao, L. Fei-Fei, and E. Xing. Large-scale category struc-
ture aware image categorization. In NIPS, 2011. 1

[30] D. Zhou, L. Xiao, and M. Wu. Hierarchical classification via
orthogonal transfer. In ICML, 2011. 2

