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Abstract—Kaurtosis of 1D projections provides important
statistical characteristics of natural images. In this work, we
first provide a theoretical underpinning to a recently observed
phenomenon known as projection kurtosis concentration that
the kurtosis of natural images over different band-pass chan-
nels tend to concentrate around a typical value. Based on
this analysis, we further describe a new method to estimate
the covariance matrix of correlated Gaussian noise from a
noise corrupted image using random band-pass filters. We
demonstrate the effectiveness of our blind noise covariance
matrix estimation method on natural images.
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I. INTRODUCTION

One effective approach to probing high dimensional signal
(e.g., images) is to study their low dimensional projections.
Theoretically, this is justified by the Crdmer-Wold theorem
[3] - a high dimensional probability distribution can be
uniquely determined by the totality of its 1D projections. In
practice, seeking “interesting” low dimensional projections
of high dimensional data, a methodology generally known as
projection pursuit, has proven a highly useful data analysis
technique that can overcome the curse of dimensionality
[12], [15]. Many practical projection pursuit algorithms rely
on higher order statistics of low dimensional data projec-
tions, among which the kurtosis is the mostly used and has
led to important algorithms in blind source separation [5]
and independent component analysis [16].

Several recent studies [2], [18], [29] have shown a specific
property of the kurtosis of natural images over different
band-pass channels, known as projection kurtosis concentra-
tion, that they tend to concentrate around a constant value.
Because the kurtosis in band-pass channels are perturbed in
a particular manner when an image is contaminated with
Gaussian noise, this phenomenon has been used as the
basis for the blind estimation of variance of homogeneous
[29] or spatially varying uncorrelated noises [22] from a
noisy image. However, three important questions remain
unanswered: (1) is there a formal justification of projection
kurtosis concentration based on natural image statistics?
(2) what type of band-pass transform is most effective in

revealing the projection kurtosis concentration? and (3) can
projection kurtosis concentration be exploited to recover the
covariance matrix of correlated noise from a noisy image?

It is the purpose of this work to seek answers to these
questions. Our first contribution is an interpretation of the
projection kurtosis concentration phenomenon based on the
Gaussian scale mixture (GSM) model of natural images in
band-pass channels [28]. Second, we show results supporting
that random band-pass filters are more effective to elicit
concentrated projection kurtosis for natural images than
other deterministic band-pass linear transforms such as DCT,
Haar wavelet or those obtained from data through PCA
or ICA. Third, we develop an estimation method of noise
covariance matrix using multiple random band-pass channels
of a noisy image based on pronection kurtosis concentration.
We formulate the estimation of noise covariance matrix as
minimizing the discrepancies between the actual projection
kurtosis of the noisy image and the predictions based on
a constant projection kurtosis of the noise-free image. The
resulting optimization problem affords a simple coordinate-
descent solution, and its effectiveness is demonstrated on
natural image data.

II. RELATED WORKS

One-dimensional marginal distributions of arbitrary high
dimensional probability distributions formed with indepen-
dent components was shown approximately Gaussian in [7].
Subsequent work [6] further shows that the random pro-
jections of general high dimensional distributions converge
with probability to a Gaussian scale mixture, though the
convergence speed can be arbitrarily slow for correlated
models. The concentration of projected 1D marginal distri-
butions may imply certain invariance of their statistics over
random projections, for example, skewness and kurtosis. The
concentration of kurtosis over different band-pass channels
has been empirically observed in natural images [2], [18],
[29], [22]. However, there exists no theoretical justification
of this phenomenon.

Blind noise estimation is the task of estimating parameters
in the noise model from noise corrupted signals alone.
The majority of blind noise estimation methods for images



assume a zero-mean additive white Gaussian noise model,
for which it suffices to estimate the variance. Most ap-
proaches try to separate the noise and the noise-free image
by identifying regions in the noisy image corresponding to
portions of the original image with constant values [21],
or on the highest-frequency portions of the noisy image
spectrum [20], [8], [23]. The noise variance is then estimated
from the separated noise components using their deviations
from a smooth signal model, one of the most widely used
such robust estimators is known as mean absolute deviation
(MAD) [8]. One significant drawback of these estimation
methods is that it can lead to overestimation under low
noise levels [23]. The method [19] estimated noise variance
using relationship between noise variance and kurtosis of
the noisy image assuming known kurtosis of the noise-
free image. Recent works [29], [22] use projection kurtosis
concentration to obviate the need of kurtosis of noise-
free image, and achieve state-of-the-art performances. These
methods are further extended to the estimation of variances
of locally varying noises in [22].

Actual noise in images is also likely to be correlated
due to the color filter array, which is used in most existing
camera design to records colors with only one sensor. Specif-
ically, each color channel goes through a color filter and
sub-sampled by one sensor cell. In forming the color image,
the missing color values are recovered by interpolation.
This interpolation process mixes sensor noises and makes
them correlated. To the best of our knowledge, there has
no previous works directly addressing the blind estimation
of correlated Gaussian noise for images. The most relevant
works are [24] and [13], which use the Gaussian scale mix-
ture model to estimate the covariance matrix of noise in the
wavelet domain as an intermediate step for automatic image
denoising. The correlation of noise in the wavelet domain
is a mixture of the correlation intrinsic to the noise in the
pixel domain and that introduced by the wavelet transform
(more precisely, the convolution operation implementing the
transform). As there is no simple method separating the
two types of correlations, these methods cannot be directly
used for the blind estimation of covariance matrix of the
correlated noise in the pixel domain.

III. UNDERSTANDING PROJECTION KURTOSIS

For a 1D random variable x, its kurtosis is defined as
k(x) = Cy(x)/C2(z) [10] (also known as the excessive
kurtosis), whereCa(z) = &, {(z — &, {z})?} = o?(x)
is the second order cumulant (variance) and Cy(z) =
& {(z — & {a})*} — 30 (x) is the fourth order cumulant.
C4(x) and k(z) is zero if x is a Gaussian variable [10]. Also,
it is easy to show that the kurtosis is invariant to scaling,
ie., k(sz) = k(x) for any s > 0.

For a random vector x, we define the kurtosis of the
1D projection of x onto a unit vector w (the projection
direction), k(w™x), as its projection kurtosis with regards

to w. The projection kurtosis provides an effective means to
probe the statistical properties of high dimensional variables.
For instance, if x is a Gaussian vector, its projection over any
w has a 1D Gaussian distribution, so its projection kurtosis
is always zero. Indeed, several effective algorithms for blind
source separation [5] and independent component analysis
(ICA) [16] are based on finding projection directions that
maximize the projection kurtosis.

We will subsequently discuss projection kurtosis com-
puted from a collection of pixel patches, but the results can
be easily carried over to the kurtosis of filter responses for
individual images, as convolution of an image with an m xm
filter can be regarded as computing the projections of all
overlapping m xm pixel patches in the image with projection
direction w generated by vectorizing the filter!. Also, we
will use interchangeably projection directions and filters, or
projections and channels (i.e., the filter responses), with the
understanding that they are functionally equivalent when an
individual image is treated as a collection of overlapping
pixel patches.

Several recent studies [2], [18], [29] have observed that
the majority of the projection kurtosis of natural images over
different band-pass channels tends to be close to a constant,
which is demonstrated with the following experiment based
on 10, 000 8 x 8 pixel patches from 200 images from the Van
Hateren database [14]. These images are chosen for their low
intrinsic camera noise levels and balanced dynamic ranges”.
Show in the Fig.1 are the projection kurtosis, sorted in a
descending order, over 8 x 8 projection directions obtained
from the AC filters of 2D discrete cosine transform (DCT)
and 2D Haar wavelet (HAAR), the principal component
analysis (PCA), the independent component analysis (ICA)?,
and random symmetric orthogonalization (RAND), respec-
tively. The random projection directions from symmetric
orthogonalization were first used in a similar study in [2]:
from a random matrix V whose elements are independent
Gaussian samples of zero-mean and unit variance, random
projection directions corresponding to symmetric band-pass
filters are obtained as columns of the orthonormal matrix
V = V(VTV)~/2, The orthogonality of the filters is not
essential, and similar results can be obtained by mixing or
incorporating more random projection directions generated
from different V.

As shown in the Fig.1, the projection kurtosis of natural
images from various types of projection directions are all
positive (in contrast, Gaussian noise will have projection
kurtosis zero as projection of Gaussian variables are still
Gaussian), reflecting the leptokurtic statistics of natural
images in the band-pass channels [4], [11]. Furthermore,

ITechnically speaking, this requires that the filter is reflected around its
center and proper boundary handling.

2We have also run the experiment on the UCID data set [26], and the
results are similar but were not included due to space limit.

3ICA algorithm was implemented with FastICA [16].



the projection kurtosis obtained with PCA, ICA, DCT and
HAAR exhibit relatively large ranges of values. These
extreme values are the results of that these representations
are designed to reveal atypical characteristics of natural
images. For instance, the top projection directions from
PCA and ICA maximize variance and kurtosis, respectively,
and those in DCT and HAAR have preference over regular
spatial frequencies, orientations and scales. Yet, extreme
projection kurtosis are relatively rare, with the majority of
the projection kurtosis concentrated near to a constant value,
indicated by the consistent large stretches of relatively flat
regions. This phenomenon, which is termed as projection
kurtosis concentration in [22], is particularly prominent for
random projections. We also found that the value to which
the projection kurtosis are close is related with the scale or
frequency spread of the corresponding band-pass filters of
the projection directions (results not shown here due to space
limit). This explains the observation that the kurtosis of
deterministic projection directions have higher concentrated
values than those of the random projection directions, as
their corresponding filters typically have broader pass-bands.

A theoretical justification of the projection kurtosis con-
centration phenomenon can be obtained from the Gaussian
scale mixture (GSM) model of natural images in band-pass
channels [28]. Formally, a GSM vector x € R? with zero
mean has the following probability density function:

p(x) = / N0, 255)p, (2)dz, M)
0

where N (x;0,2Xx) denotes a Gaussian distribution with
zero mean and covariance matrix zXx, with z a positive
random variable (known as the latent scaling variable) with
density p,(z) [1].

Our main result is that if x is a GSM vector, its projection
kurtosis is a positive constant independent of the projection

direction.
Claim 1: Consider a GSM random vector x, it has

a projection kurtosis that is constant with regard to the
projection direction w, i.e.,

(W) — 3var, {z}
(Ww'x) Faes

The proof can be found in the longer version of this work
[17]. The projection kurtosis concentration of natural images
in the band-pass filter domains can be partially explained
with the constant projection kurtosis of their GSM model.
On the other hand, the fact that there exist projection direc-
tions for which natural images patches have varying kurtosis
(Fig.1) also indicate that the correspondence between natural
image statistics and their GSM model is approximate [27].

IV. PROJECTION KURTOSIS CONCENTRATION
OF IMAGES WITH ADDITIVE NOISE

In general, for a random variable y = = + n as the sum
of two mutually independent random variables, x and n, the
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Figure 1.  Projection kurtosis sorted descendingly with different
band-pass filter transforms. This figure is better viewed in color.

additivity of cumulants of independent variables [10] implies
that 02(y) = o2(x) + 0?(n) and Cy(y) = Cy(z) + Ca(n).
Now further assume that n is Gaussian, we have Cy(n) =
0, or equivalently x(y)(02(y))? = k(z)(o?(z))?. Further
rearranging terms, we have

In other words, adding Gaussian noise always reduces the
kurtosis of a non-Gaussian variable.

Similar relation between kurtosis and noise statistics holds
for the multi-dimensional case. Consider a GSM vector
x € R% and denote y = x+n as the result of contaminating
x with Gaussian noise n with zero mean and covariance
matrix ¥, where x and n are mutually independent of each
other. We also assume hereafter & {x} = 0, since the mean
can be easily removed from data. Then we have o%(w”n) =
wiE {nnT}w = wTEw, 0?(wix) = W&, {xxT}w =
wi¥,w, and o?(wTy) = o?(wTx) + o%(w'n). With
Eq.(2) and Claim 1, this leads to

K(w'y) = kr(w'x) (702(‘”%))2

o?(wly)

K(y) =

\ y 3)
_ 3-varg{z} . W Yew
- &4z} (WT(EX+E)W)
The last term in Eq.(3) is independent of w only under the
special case when X is a multiple of ¥ — one case in
point is when both x and w are whitened therefore both
Y« and X are multiples of the identity matrix. In the more
general cases when > and X are not related by scaling, we
have k(w"y) < k(w”x), and k(wTy) varies with w. The
constant projection kurtosis of an anisotropic GSM vector
and the violation of this property when Gaussian noise is
added are illustrated for the 2D case in the left panel of
Fig.2. As the results show, for both the theoretical value
as calculated in Claim 1 and the estimates from random
samples, the projection kurtosis of the 2D GSM variable
over 100 projection directions corresponding to uniformly
spaced angles between [0, 27) resemble a circle, indicating
their invariance to projection directions, while those for the
noise corruption change with projection directions.

Adding noise also reduces the projection kurtosis of nat-
ural images and makes them more dependent on projection
direction, as in the case of GSM, which also provide a
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Figure 2. Left: Plot of projection kurtosis as a function of 2D
projection directions (angles) for a GSM vector x (theoretical value
as solid curve and sample estimates as open circles) and y = x+n,
where n is a white Gaussian noise (theoretical value as dashed
curve and sample estimates as filled circles). Right: Linear relation
between the projection kurtosis of noisy patches (vertical axis) and
the squared ratio between variances of projected original patches
and the noisy patches (horizontal axis). See texts for more details.

further evidence of projection kurtosis concentration. Specif-
ically, if the noise free signal x has projection kurtosis
that can be approximated with a constant, there should be
an approximate linear relation between (%) and
k(wTy), as suggested by Eq.(3).

The results shown in the right panel of Fig.2 are con-
sistent with this prediction. The blue dots correspond to

o?(wl'x)
o2 (wTy)

2
paired values of (( ) ,m(wTy)> collected from

the projections of 10,000 8 x 8 patches corrupted with
additive white Gaussian noise with ¢ = 5 onto 300 random
projection directions. The red dash line is the linear model
obtained with a least squares fitting, which has a.correlation
coefficient 0.87, suggesting a strong linear dependency
among the data. Furthermore, the slope of the fitted linear
model is very close to the mean projection kurtosis of the
original noise free image across the random band-pass bases.

V. ESTIMATION NOISE COVARIANCE MATRIX

From noise corrupted pixel patches, our task is to recover
the noise covariance matrix using the projection kurtosis*.
The algorithm for the special case of white noise has been
studied in [29], [22]. Here we focus on the general case of
non-diagonal covariance matrix.

As the first step, we compute the projections of all noisy
patches with regards to K different projection directions (we
use i, and 67 as shorthands for x(w7y) and o%(w]y) sub-
sequently). The type and number of the projection directions
are the two important aspects in our algorithm. Based on the
empirical study shown in Fig.1, we use random projection
directions that correspond to random band-pass filters, as
they tend to induce higher concentration of the projection
kurtosis. As the noise covariance matrix has m?(m? +1)/2
free parameters, it requires at least the same number of

4The results can be used for the estimation of the autocorrelation
function of stationary correlated Gaussian noise in a whole image, since
the covariance matrix of m X m noisy patches can be used to reconstruct
the autocorrelation function across an m X m region.

projection directions or band-pass filters of size m xm for its
estimation, which excludes the use of orthonormal vectors
as there are at most m? of them. In subsequent experiment,
we use K > m* random projection directions, with the
redundant number to make the estimation more robust.
According to the observation on projection kurtosis con-
centration, we expect kK(Wix) ~k >0, for k=1,--- K.
Combining this approximation with Eq.(3), we have

~2 T ~2 gy
0, — WL LWy 0; — WicC
PP k k _ k k
/@k~f£< 5 )—H( = ) 4)
Ok Tk

The last step is obtained using relation: wiXw, =
tr(Swywl) = wic, where ¢ = vec(X7) and Wy =
vec(w,w},) are the vectorization of the corresponding ma-
trices. Further note that both sides of Eq.(4) positive, we can
take their square roots to have
~2 T ~2 =T
e v (N e (R
o, o

However, as natural image statistics only approximately
follow the GSM model and the projection kurtosis is not
exact a constant, we allow for errors between the two sides
of Eq.(5).

We formulate the search for the unknown variables, ¢ and
\/k, with the minimization of the total squared difference of
the two sides Eq.(5) across all projection directions,

LR ) = S, (VA - v ()’
= 15, (VAR - R+ L)

as min ;5 L (v/k, X3) with the constraints that \/k > 0 a(r?(%
) is a symmetric positive definite matrix. For white Gaussian
noise, this optimization problem has a closed form solution
[22]. However, this is not the case when X is a general non-
diagonal covariance matrix. Instead, we minimize L (\/k, )
using coordinate descent, by iteratively minimizing one of
the two unknown variables with the other fixed.

Note that L (1/k,3) is the square of a bilinear function
of v/x and ¢ (and Y), fixing one variable it becomes a linear
least squares regression problem (with the corresponding
constraint) for the other, the solution of which is in closed
form and given by a linear equation. Specifically, the deriva-
tive with regards to /k and c are

X (Vi - () (e
s (VA= VA ) S
(7

Setting the two derivatives to zero and rearranging the
resulting terms, we have

52 —wlSwy 2\ 73 ~
vi= (S, GEEl) e (- wisw)
—1 _
c= (Zk 1 ~4Wkwk> ( szl (\/E_ngf)w) )
(3

We run these two steps iteratively as a fix-point algorithm.
After each update with Eq.(8), we restore the matrix form of



3 from its vectorization’. In some rare cases, the resulting X
may not be symmetric or positive definite due to numerical
imprecisions, for which we replace with the closest sym-
metric or positive definite matrix by forcing symmetry and
replacing any nonpositive eigenvalue with a small positive
constant. We can also take several measures to acceler-
ate the convergence of the algorithm, which include pre-

computing the matrix (Zszl ;TWkVVZ) and initializing
the algorithm using the closed-form solution for a diagonal
covariance matrix obtained in [22]. In practice, the algorithm
usually converges after 5 - 10 iterations.

A. Experimental Evaluations

We perform experimental evaluations of the blind noise
covariance matrix estimation method based on two metrics:
the mean squared distance and the cosine distance, which
are defined for two n X n matrlices A and B as:

MSE(4, B) = z[|A - Bl|r
_ > Aij Bij
COS(A,B) = 1— TafTaT,
where [|Allp = />, A7, is the matrix Frobinus norm. The

former corresponds to the absolute difference between the
two matrices, while the latter, whose value range is [0, 2],
emphasizes the differences relative to the magnitudes of the
two matrices.

We first test our algorithm on synthetic data sets generated
from a GSM model. Three data sets, each consisting of
10,000 random vectors of dimensions d = 4,16,64, are
sampled from multivariate Student’s-t models of correspond-
ing dimensions, which are GSM models specified with an
inverse Gamma prior over the latent scaling variable [1].

To each set of the multivariate Student’s-t vectors, noises
sampled from correlated Gaussian distributions of the same
dimensionality are added to form the noise-corrupted data.
To test the effect of different noise strength on the estimation
performance, for each correlated Gaussian noise model,
we scale the samples to create noise corrupted data with
different signal-to-noise-ratios (SNRs), corresponding to low
noise level (SNR = 40dB), medium noise level (SNR =
20dB), and high noise level (SNR = 10dB). The scaling
factor of a particular set of noise is determined from the
desired SNR and the overall strength (computed as the vari-
ance of all elements in the noise-free vectors) by inverting

the SNR definition, SNR = 10log (M

var(noise) /*

We implement our algorithm of blind estimation of
noise covariance matrix using random projection directions
obtained from symmetric orthogonalization [2]. For each
data set of d = 4,16,64 dimensional vectors, we use
d*> = 16,256,4096 random projections, respectively. As
we cannot find a previous work for this purpose, we

SNote that the simple vectorization is redundant as it does not consider
the symmetry or structure of the matrices. We adopt it here for notation
simplicity and use more efficient (but less intuitive) parameterization in
implementation.

adapt the estimation algorithm of [24] based on the GSM
model for the noise-free vectors and the correlated Gaussian
noise model for comparison. Specifically, we fit the noise-
corrupted GSM models to each data set using maximum
likelihood, with the noise covariance matrix being part of
the model parameters (the other model parameters are the
priors on the latent scaling variables).

The overall performances of the two blind noise co-
variance estimators for different data dimensions and noise
strengths, measured by the average mean squared distances
and cosine distances of the true noise covariance matrices
and their estimations over 100 different noise instantiations,
are shown in Table I. As these results show, the estimations
with both methods are considerably accurate and for low
data dimensions and the dimensionality has little effect
on the overall estimation. This is because the modeling
assumptions of the two methods are both satisfied: the noise-
free vectors are samples from GSM models that have con-
stant projection kurtosis (Claim 1) except for the sampling
fluctuations. The performances of both algorithms decrease
for low noise levels, where the weak noise is more difficult to
discern. On the other hand, the performances of our method
are consistently better (albeit sometimes only slightly) than
the method of [24]°.

However, our method show much significant advantages
over the method of [24] when evaluated on data sets from
natural images. Specifically, as in the case of synthetic
data, the noise-free data are generated from 10,000 pixel
patches of size 2 x 2, 4 x 4 and 8 x 8 (which become
vectors of dimension 4, 16 and 64 after vectorization),
randomly selected from the Van Hateren image set [14]. As
a pre-processing step, we remove the mean of each patch.
Correlated Gaussian noises are generated in the similar
fashion as for the synthetic data set and added to the noise-
free pixel patches.

We apply our blind noise covariance matrix estimation
method and the method of [24] to these data sets, and
summarize the results in Table II. As these results show,
the performances of the method of [24] become much
worse compared with their counterparts on the synthetic
GSM data, even in the case of high noise levels. Another
distinct difference is that its performances also decrease
drastically with increased dimensionality. Both of these
effects may be attributed to the fact that pixel patches of
natural images are not samples from GSM models [27],
and their deviations from the GSM models increases with
large patches. On the other hand, our estimation method
does require the assumption of GSM source model, and its
formulation as an optimization problem makes it more robust

%The method of [24] uses the EM algorithm to estimate the noise
covariance matrix as part of the blind denoising procedure. However, the M
step of the EM algorithm in this case involves an intractable integration, and
an approximation is used instead, which causes the performance degradation
in the estimation.



our method

method of [24]

Quantitative evaluations of blind noise covariance matrix estimation methods on synthetic data sets based on GSM samples. The results
correspond to the average mean squared distances (top) and cosine distances (bottom) of the true noise covariance matrices and their

estimations over 100 different noise instantiations. See texts for more details.

MSE(E, X) ~sNR'=40dB T SNR = 20dB | SNR = T0dB | SNR = 40dB | SNR = 20dB | SNR = T0dB
=1 0.468 0213 0.034 0.488 0352 0.052
d=16 0.580 0.243 0.096 0.912 0.454 0.166
d=04 0.676 0279 0.151 1122 0.495 0.181

- our method method of [24]

COS(%,%) [~SNR=40dB [ SNR = 20dB | SNR = T0dB | SNR = 40dB | SNR = 20dB | SNR = T0dB
=1 0.199 0.094 0.043 0.261 0.184 0.103
=16 0213 0.108 0.065 0273 0.199 0.132
d=064 0.252 0.132 0.079 0.294 0.201 0.141

Table 1

our method method of [24]

MSE(%, %) ~SNR=40dB [ SNR = 20dB | SNR = T0dB | SNR = 40dB | SNR = 20dB | SNR = 10dB
d=1 2296 1279 0.613 12.984 9775 I204
d=16 2.502 T.043 0.49 18.763 1322 6.742
d=04 0.758 0.454 0.174 22302 4515 §.549

- our method method of [24]

COS(%,%) [~SNR=40dB [ SNR = 20dB | SNR = T0dB | SNR = 40dB | SNR = 20dB | SNR = T0dB
=1 0335 0214 0.089 1.032 0.659 0484
=16 0.287 0.263 0.068 1253 0.880 0.505
d=064 0.302 0.119 0.030 1374 0.998 0.776

Table 11

Quantitative evaluations of blind noise covariance matrix estimation methods on data sets of pixel patches from natural images. The
results correspond to the average mean squared distances (top) and cosine distances (bottom) of the true noise covariance matrices and
their estimations over 100 different noise instantiations. See texts for more details.

to fluctuations and outliers of projection kurtosis. Because
of these, it achieves significantly better performances on
the pixel patches in comparison to the method of [24]. For
patches of size 8 x 8, the estimation accuracies are even
comparable to those on synthetic data, as the projection
kurtosis concentration is more prominent on larger patchers.
We further test the effect of the estimation accuracy
of covariance matrix on image denoising. Specifically, we
contaminate a natural image with correlated Gaussian noise
with a block Toeplitz covariance matrix constructed from
4 x 4 kernel and corresponding to ¢ = 25 — the high noise
level is for better visibility of the correlation structures in the
noise, Fig.3 (a). The kernel of the noise covariance matrix is
then estimated with both the method in [24] and our method,
which is then input, along with the noisy image, to the
BLS-GSM denoising algorithm [25] for restoration. The two
restored images are shown in Fig.3 (b) and (c), respectively.
The significantly better visual quality and PSNR of the
image restored based on our estimation method suggest
that accurate estimation of the noise covariance matrix is
important for the performance of denoising algorithms.

VI. DISCUSSION

In this work, we provide a theoretical underpinning to
the phenomenon known as projection kurtosis concentration,
that the kurtosis of band-pass filtered natural images tend to
concentrate around a “typical” value. We further describe a
new effective methodology to blindly estimate the covari-
ance matrix of correlated Gaussian noise from noisy images

o
s

(a) noisy (20.17)

(b) denoised (26.84) (c) denoised (27.44)
33 w/ method in [24]
The noisy image in (b) is generated with correlated
Gaussian noise corresponding to o = 25, and the two denoised
images in (c¢) and (d) are generated using the BLS-GSM algorithm
[25] with covariance matrix estimated using the method in [24]
and our method, respectively.

3> w/ our method
Figure 3.

using random projections. We demonstrate the effectiveness
of our algorithm on both synthetic and real image data sets.

There are several directions in which the current work
can be further extended. First, in the current work we only
consider the effect of noise on the concentration of the
projection kurtosis. We are interested in effects of other types
of image degradations such as blurring. Second, we will
also develop denoising algorithms that can take advantage
of the estimated noise covariance matrices as a practical
application of this work. Last, one significant drawback
of our current algorithm is that it requires projections in
the number of the order of squared data dimension, which
is computationally inefficient for large pixel patches. One
solution to this problem is to exploit structures of the noise
covariance matrix. For instance, if it is Toeplitz or block
Toeplitz, the number of free parameters can be reduced to



be the linear order of the data dimension, and therefore
require much fewer projection directions in estimation. A
more interesting approach, however, is to take advantage of
certain “sparsity” characteristics of noise covariance matrix
to reduce the number of required random projections, in a
similar manner of compressed sensing [9] that uses fewer
random projections to reconstruct a sparse signal.
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