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Abstract

Part-based visual tracking is advantageous due to its ro-
bustness against partial occlusion. However, how to effec-
tively exploit the confidence scores of individual parts to
construct a robust tracker is still a challenging problem.
In this paper, we address this problem by simultaneously
matching parts in each of multiple frames, which is realized
by a locality-constrained low-rank sparse learning method
that establishes multi-frame part correspondences through
optimization of partial permutation matrices. The proposed
part matching tracker (PMT) has a number of attractive
properties. (1) It exploits the spatial-temporal locality-
constrained property for robust part matching. (2) It match-
es local parts from multiple frames jointly by considering
their low-rank and sparse structure information, which can
effectively handle part appearance variations due to occlu-
sion or noise. (3) The proposed PMT model has the inbuilt
mechanism of leveraging multi-mode target templates, so
that the dilemma of template updating when encountering
occlusion in tracking can be better handled. This contrasts
with existing methods that only do part matching between a
pair of frames. We evaluate PMT and compare with 10 pop-
ular state-of-the-art methods on challenging benchmarks.
Experimental results show that PMT consistently outperfor-
m these existing trackers.

1. Introduction
Visual tracking is one of the fundamental problems in

computer vision. Its real-world applications range from
video surveillance, autonomous vehicles, intelligent traf-
fic control, human-computer interaction, etc. However, vi-
sual tracking is challenging due to significant object ap-
pearance variations caused by illumination change, occlu-
sion, sensory noise, fast/abrupt object motion, and also clut-
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(a) Frames from three different video sequences with partial occlusion.

(b) Qualitative results via robust part matching of multiple frames.

Figure 1. (a) Frames from three different video sequences with
partial occlusion. The ground truth track of each object is denoted
in green. Clearly, occlusion renders the tracking problem very
difficult. (b) The tracking results of our method are denoted with
red bounding boxes. The blue cross marks denote the positions of
parts, and the blue lines represent their correspondences. It is clear
that the part based matching is robust to partial occlusion.

tered background. Over the past years, tremendous efforts
in visual tracking has been made to overcome these chal-
lenges, yielding a steady performance improvement. How-
ever, most of existing methods [4, 14, 26, 24, 20, 32] focus
on modeling the holistic appearance of the target. As a re-
sult, the tracking is prone to fail especially in the presence
of partial occlusion, as shown in Figure 1(a).
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To design a robust tracking algorithm in spite of partial
occlusion, researchers have developed sophisticated appear-
ance models through statistical analysis [15], robust statis-
tics [1, 10], model analysis [12], learning occlusion with
likelihoods [21], and sparse representation [24, 35, 34, 5].
Among them, methods part-wisely modeling object appear-
ance [1, 13, 9, 27, 18, 29, 25] become more popular par-
tially because of their favorable property of robustness a-
gainst partial occlusion. Indeed, when there exists partial
occlusion, some parts of the object remain visible which
provide reliable cues for tracking. Most of these method-
s can be viewed as tracking by part-based object matching
over time in a video sequence. However, they have the fol-
lowing drawbacks. (1) Most of them track each part inde-
pendently and ignore the collaborations among parts. Parts
in one frame should be jointly matched to the corresponding
parts in the consecutive frame. (2) Most of them establish
part matchings between a pair of frames, while ignoring the
very same object target appearing in other adjacent or histo-
ry frames, which may provide additional constraints helpful
for part matching. In addition, these methods usually prop-
agate the part matching result in the present frame to subse-
quent frames, which may accumulate matching errors and
are consequently prone to losing track. As a result, these
existing part matching based tracking methods are still less
reliable when more complicated factors of appearance vari-
ations appear in the video.

It is thus desirable that a globally consistent part match-
ing among multiple frames can be established in visual
tracking. To achieve this goal, we propose in this paper a
new tracking algorithm based on the following observation-
s: (1) In a short duration, if appearance of individual parts of
object remains unchanged, their intensities in video frames
should be similar. Representing appearance of an objec-
t part as a vector, the matrix formed by the vectors of the
corresponding parts in multiple frames of the short duration
should be low-rank, ideally rank-one. We are thus moti-
vated to use the low-rank assumption as a criteria for part
matching. (2) If there exist object appearance variations in
images due to occlusion, object pose change, or illumina-
tion change, the low-rank assumption in (1) cannot be fully
satisfied. To alleviate their negative effects, we may decom-
pose out these appearance variations in images as sparse
errors so that the low-rank assumption still applies. (3)
Matching of individual parts from multiple adjacent frames
should satisfy the locality-constrained property. In spatial
domain, parts in one frame should be jointly matched to
the parts in other frames. In temporal domain, the matched
parts in adjacent frames should satisfy the constant-velocity
motion constraint. (4) A dictionary of multi-mode target
templates should be maintained and progressively updated
to model the target appearance variations, which is critical
to correct the track after occlusion. (5) Part matching across

multiple frames is more robust than that between a pair of
frames, as it can leverage additional constraints from other
frames that contain the very same target.

Motivated by these observations, we propose in this pa-
per a novel method, termed Part Matching Tracker (PMT),
for robust visual tracking. PMT realizes part matching a-
mong multiple frames by optimizing a partial permutation
matrix for each frame, using locality-constrained low-rank
and sparsity of matched parts as criteria. Compared with
existing part based visual tracking methods, our proposed
PMT has three major contributions. (1) PMT has the spatial
and temporal locality-constrained property, which enables
our tracking of local parts to satisfy the constant-velocity
motion constraint. (2) Part tracking using PMT is based
on rank and sparsity optimization, which is potentially ef-
fective to model part appearance variations due to occlu-
sion, illumination change, or target pose change over time.
(3) Our tracker operates in a batch mode, in which multi-
mode target templates and frames to be tracked are simulta-
neously taken into account to determine a global matching
of corresponding parts. Even if occlusion happens, the error
would not be propagated to the subsequent frames, and the
track can be inferred from the observations before and after.
Therefore, our tracker effectively cope with partial occlu-
sion as shown in Figure 1(b). We intensively compare with
10 popular state-of-the-art methods on challenging bench-
marks. Experimental results show that PMT consistently
outperform these existing trackers.

2. Related Work
In general, visual tracking methods can be categorized

as either generative or discriminative. Generative method-
s use appearance models to represent the target object and
search for the most similar image regions to the generative
model. Popular generative trackers include eigentracker [7],
incremental tracker [26, 23], sparse trackers [24, 34, 5], vi-
sual tracking decomposition [22], and so on. A drawback
of these methods is that they are not designed to distin-
guish between target and background patches, and are prone
to drift. Discriminative methods formulate object tracking
as a binary classification, which aims to find the target lo-
cation that can best distinguish the target from the back-
ground. Popular discriminative methods include on-line
boosting [14], ensemble tracking [3], online multiple in-
stance learning [4], tracking-learning-detection [20], struck
tracker [16], compressive tracker [31], etc. Most of these
methods, however, delineate the entire tracked target by a
single regular bounding box, which renders them sensitive
to partial occlusion and damages tracking performance.

Part based visual tracking draws more recent attention.
In [18, 27], multiple people tracking is achieved by part
based model motivated by its successful application in hu-
man detection [11]. In [17], each part is tracked inde-
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pendently, and the results are treated as multiple measure-
ments [28]. Tracking is then achieved by identifying in-
consistent measurements. The Frag tracker [1] models ob-
ject appearance with histogram of local parts and combines
votes of matching local patches. However, this template is
not updated and therefore it is not expected to handle ap-
pearance changes. Nejhum et al. [25] model object shape in
terms of a small number of rectangular blocks. The draw-
back is that it requires manual initialization of part locations
carefully. Godec et al. [13] extend the hough forest to the
online domain and integrate the voting method for tracking,
regardless of the parts’ spatial-temporal correlations.

Our formulation of leveraging low-rank sparse property
for optimization of partial permutation matrices is similar
to [19], which addresses feature matching across a set of
images. However, [19] cannot address the visual tracking
problem due to its ignorance of the fundamental spatial-
temporal locality-constrained property. Furthermore, we
formulate each corresponded part of the target object as a
low-rank matrix, while all features to be matched are for-
mulated into one low-rank matrix in [19]. Consequently,
when using techniques in [19], matching of different parts
may interfere with each other and may not be able to well
address the partial occlusion problem in tracking.

3. Our Proposed Part Matching Tracker
In this section, we give details of our proposed PMT that

is based on a locality-constrained low-rank sparse learning
method to optimize partial permutation matrixes for the part
correspondence problem among multiple frames.

3.1. Problem Setup

A typical setting of the tracking problem is that an ob-
ject identified, either manually or automatically, in the first
frame of a video sequence is tracked in the subsequen-
t frames by estimating its bounding boxes as it moves. As
discussed in previous sections, tracking methods that delin-
eate the tracked object by a single regular bounding box will
render them sensitive to partial occlusion and significantly
impact their tracking performance. To address this problem,
we attempt to adopt part based model to describe the target.
The advantage of this model comes from the observation
that under partial occlusion conditions, some parts of the
object remain visible and distinguishable and can provide
reliable cues for tracking. Therefore, if we can infer occlu-
sion information from the confidence scores of individual
parts, we can consequently utilize only the parts with high
confidence to estimate the position of target over time.

To obtain the confidence scores of individual parts, we
can adopt part matching methods. In the situation of visu-
al tracking, a moving object appears in multiple frames of
a video sequence. A straightforward approach is to locally
build part correspondences between pairs of frames. How-

ever, pair-wise matching cannot leverage additional con-
straints from other frames that also contain the very same
target. It may thus be less robust to noise and occlusion
of parts. In addition, multi-mode target templates should
be maintained to model the variations of target appearance
over the history frames, which makes it possible to infer
the tracker even after occlusion. Therefore, parts should be
matched with a more global and consistent property across
the sequence and in the target templates, in order to achieve
robustness against occlusion. As discussed in Section 1,
parts in a video volume have the spatial-temporal locality-
constrained property, and appearance of the same local
parts across frames have the low-rank sparse property. To
exploit these properties, we propose a locality-constrained
low-rank sparse learning method for robust part matching a-
mong multiple frames, which include both the multi-model
target templates and frames to be tracked.

3.2. Problem Formulation

We sample K1 target templates at and around the posi-
tion of object in the first frame, as did in [4, 24, 14]. These
target templates are of equal size. They will be progressive-
ly updated to incorporate variations of object appearance
due to changes in illumination, viewpoint, etc. Target ap-
pearance remains the same only for a certain period of time.
Eventually the templates are no longer accurate representa-
tions of the object appearance. A fixed target template is
prone to the tracking drift problem, since it is insufficient
to handle changes in appearance. Conversely, if the target
templates are updated too often, irrelevant variations will be
more possible to be introduced into the templates, causing
tracking drift. In this work, we use the target template up-
date scheme as in [24], where the tracking result is added to
the template set if none of the templates are similar to the
tracking result. For the template, their parts can be extract-
ed by dividing each template into regular grids. Tracking of
the object in the incoming frames is realized by matching its
candidate parts to those in the target templates. Candidate
parts in the incoming frames are simply sampled by particle
filtering [2] at and around the parts of the previous tracking
results by considering their recursive weights.

For the K1 target templates, we extract nk parts from
each of them, k = 1, . . . ,K1. These parts are all from the
object target. We denote K2 as the number of incoming
frames to be tracked, and K = K1 + K2. For each of the
incoming frames, we also sample nk parts, k = 1, . . . ,K2.
The sampled parts from incoming frames are possibly back-
ground patches. For simplicity of notation, we use the
same nk to index parts of target templates and those of
incoming frames, i.e., nk for k = 1, . . . ,K. We denote
the feature vectors associated with individual parts of any
k ∈ {1, . . . ,K} as Fk = [fk1 , . . . , f

k
nk
] ∈ Rd×nk , and as-

sume that these feature vectors in {Fk}Kk=1 are not corre-
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sponded with respect to each other. Our interest is to find
n ≤ nk, ∀k ∈ {1, . . . ,K}, intrinsic parts from each target
template or incoming frame, and establish their correspon-
dences. Because we model their correspondences based
on multiple frames and target templates (K), our tracker
has the globally consistent property. The correspondences
of parts can be modeled by a partial permutation matrix
Pk ∈ Pk for each target template or incoming frame, where
Pk is defined as follows:

Pk = {Pk
∣∣Pk ∈ {0, 1}nk×n,1>nkP

k = 1>n ,P
k1n ≤ 1nk},

(1)
where {0, 1}nk×n denotes a nk × n matrix whose elements
are either 0 or 1 and 1n denotes a column vector of all 1 of
length n. The term 1TnkP

k = 1Tn in Eq.(1) shows that the
ith part, i = 1, . . . , n, is corresponded to only one of all the
nk sampled parts. The term Pk1n ≤ 1nk constrains that
each sampled part is corresponded to at most one of the n
parts. Motion smoothness in visual tracking implies that the
sampled parts of the ith part in next frame must be associ-
ated to part i in current frame. So each of the rows of Pk

that correspond to samples for part i in frame k must have
exactly one element equal to 1. This constraint is written by
defining a n × nk matrix Ak whose ith row flags the sam-
ples for part i in frame k, and requiring that AkPk1n = 1n.
Here, Ak ∈ Rn×nk and its ith row Ak

i is defined as follows:
the elements from themk

1+m
k
i−1+1 tomk

1+m
k
i are 1, and

the others are zeros. Themk
i is the number of sampled parts

for the ith part of the kth image, and nk = mk
1+, . . . ,+m

k
n.

Pk = {Pk
∣∣Pk ∈ {0, 1}nk×n,1>nkP

k = 1>n ,

Pk1n ≤ 1nk ,A
kPk1n = 1n}, (2)

As a result, Eq (2) can satisfy the spatial-temporal locality-
constrained property of parts among multiple frames.

Features of the corresponding parts in different target
templates or incoming frames should be linearly correlated.
Let {Pk}Kk=1 in Eq (2) be the optimized partial permutation
matrices such that parts are re-ordered and well correspond-
ed, we thus have Di = [F1pi

1, . . . ,FKpi
K ] ∈ Rd×K , i =

1, . . . , n, which stacks the features of the ith part from tar-
get templates or incoming frames as a matrix, and Di is rank
deficient, ideally rank one. Here, pi

k is the ith column of
Pk and pi

k = Pkei, where ei denotes a unit column vector
with all entries set to 0 except the kth one, which is set to
1. Therefore, the problem of optimizing partial permutation
matrices {Pk}Kk=1 can be formulated as the following rank
minimization problem:

min
{Pk∈Pk}Kk=1,{Li}

n
i=1

∑
i

rank(Li)

s.t. Di = Li, i = 1, . . . , n. (3)

In many visual tracking scenarios, target objects are of-
ten contaminated by noise, illumination change, object pose

change, or partial occlusion. As a result, the parts charac-
terizing the same local appearance information of object in
different frames could vary. Thus the low-rank assumption
used in (3) is likely to be violated. To improve the robust-
ness, we introduce a sparse error term into (3) to model the
noise of the data matrix Di, where we assume these errors
are sparse and only appear in a small fraction of Di. There-
fore, in the presence of noise or occlusion, the problem (3)
can be refined as follows:

min
{Pk∈Pk}Kk=1,{Li,Ei}

n
i=1

∑
i

rank(Li) + λ‖Ei‖0

s.t. Di = Li + Ei, i = 1, . . . , n (4)

where ‖ · ‖0 is `0-norm counting the number of nonzero
entries, and λ > 0 is a parameter controlling the trade-off
between rank property of Li and sparsity of Ei. As a result,
the part matching problem in Eq (4) guarantees the low-rank
sparse property.

4. Optimization
It is not tractable to solve the problem (4) due to the fol-

lowing aspects: (1) The two terms rank(·) and ‖ · ‖0 are
non-convex, discrete-valued functions; (2) The entries of
{Pk}Kk=1 are constrained to be binary. To make it tractable,
we first make use of the convex surrogates ‖ · ‖∗ and ‖ · ‖1
to replace rank(·) and ‖ · ‖0, respectively. Here, ‖ · ‖∗ de-
notes nuclear norm (sum of the singular values) and ‖ · ‖1
is `1-norm. Applying the relaxation strategy to (4) yields

min
{Pk∈Pk}Kk=1,{Li,Ei}

n
i=1

∑
i

‖Li‖∗ + λ‖Ei‖1

s.t. Di = Li + Ei, i = 1, . . . , n. (5)

To simplify the subsequent notations, we change the vari-
ables and rewrite the formulation (5) as follows:

min
{θk}Kk=1,{Li,Ei}

n
i=1

∑
i

‖Li‖∗ + λ‖Ei‖1

s.t. D = L + E

θk ∈ {0, 1}nkn, k ∈ {1, . . . ,K},
Qkθk = 1n,H

kθk ≤ 1nk ,S
kθk = 1>n , (6)

where θk = vec(Pk), vec(Pk) is the vectorization of the
matrix Pk, Gk = In ⊗ Fk ∈ Rdn×nnk , D = [(L1 +
E1)
>, . . . , (Ln + En)

>]>, D = [G1θ1, . . . ,GKθK ],
Qk = In ⊗ 1>nk ∈ Rn×nnk , Hk = 1>n ⊗ Ink ∈ Rnk×nnk ,
Sk = 1>n ⊗ Ak ∈ Rdn×nnk , ⊗ is the Kronecker prod-
uct, and In (or Ink ) is the identity matrix of size n × n
(or nk × nk). Here, we have used the fact vec(XYZ) =
(Z>⊗X)vec(Y). The (6) involves jointly optimizing a set
of K partial permutation matrices, exact solution of which
is NP-hard. To get an approximate solution, we use the
fast first-order Alternative Direction Method of Multiplier
(ADMM) [8]. The general ADMM decomposes a global
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problem into local subproblems that can be readily solved.
For (6), ADMM decomposes optimization of Li, Ei, and
{Pk}Kk=1 into subproblems that update Li, Ei, and each of
{Pk}Kk=1, respectively. The augmented Lagrangian func-
tion of the optimization problem (6) can be written as:

L
(
{Li,Ei}ni=1 ,

{
θk
}K
k=1

,Y, u
)

=

n∑
i=1

(‖Li‖∗ + λ‖Ei‖1)

+ 〈Y,D− L−E〉+ u

2
‖D− L−E‖2F (7)

⇒ min
({Li,Ei}ni=1,{θk}

K
k=1,Y,u)

L
(
{Li,Ei}ni=1 ,

{
θk
}K
k=1

,Y, u
)

where Y ∈ Rdn×K is a matrix of Lagrange multipliers, u is
a positive scalar, 〈·, ·〉 denotes the matrix inner product, and
‖ · ‖F denotes the Frobenius norm. The ADMM algorith-
m iteratively updates one of the matrices Li, Ei, {Pk}Kk=1,
and the Lagrange multiplier Y by minimizing (7), while
keeping the others fixed to their most recent values. Conse-
quently, we obtain three update steps corresponding to the
three sets of variables. The details are the following:
Step 1: Update Li and Ei, ∀i ∈ {1, . . . , n} (with others
fixed): The minimization problem (7) w.r.t. {Li,Ei}ni=1

can be decomposed into n independent subproblems (each
of them is corresponding to one part.). The ith subproblem
to update Li and Ei can be equivalently rewritten:
{Li,Ei} = argmin

Li,Ei

‖Li‖∗ + λ‖Ei‖1 +

〈Yi,Di − Li −Ei〉+
u

2
‖Di − Li −Ei‖2F (8)

Then, the solution of (8) can be obtained by solving the
optimization problems in Eq (9) and Eq (10), respectively.
Here, X = UΣVT is the singular value decomposition of
X, Sλ (Xij) = sign(Xij)max (0, |Xij | − λ) is the soft-
thresholding operator, and Jλ (X) = USλ (Σ)VT is the
singular value thresholding operator.

Li = argmin
Li

1

u
‖Li‖∗ +

1

2

∥∥∥∥Li −Di + Ei −
Yi

u

∥∥∥∥2
F

= J 1
u

(
Di −Ei +

Yi

u

)
(9)

Ei = argmin
Ei

λ

u
‖Ei‖1 +

1

2

∥∥∥∥Ei −Di + Li −
Yi

u

∥∥∥∥2
F

= Sλ
u

(
Di − Li +

Yi

u

)
(10)

Step 2: Update θk, ∀k ∈ {1, . . . ,K} (with others fixed):
The minimization problem (7) with respect to {θ1, . . . , θK}
can be decoupled into K independent subproblems, each of
which corresponds to {θk} and can be equivalently formu-
lated as the following integer constrained convex quadratic
programming (QP) problem:

θk = argmin
θk

1

2
θk>Gk>Gkθk + e>k (

Y

u
−D)>Gkθk

s.t.θk ∈ {0, 1}nkn,Qkθk = 1n,H
kθk ≤ 1nk ,S

kθk = 1>n (11)

where D = L + E. This is a NP-hard problem. How-
ever, as proved for a very similar problem in [19],
θk>Gk>Gkθk =

∥∥Gkθk
∥∥2
2
=
∑n
i=1

∥∥Fkpki ∥∥22 is a con-
stant value if the features are normalized. Therefore, the
quadratic term of problem (11) can be removed to get the
linear programming problem (12). By relaxing the binary
constraint to a real value between 0 and 1, the problem (12)
can be exactly solved by a standard LP solver.

θk = argmin
θk

e>k (
Y

u
−D)>Gkθk (12)

s.t.0nnk ≤ θk ≤ 1nnk ,Q
kθk = 1n,H

kθk ≤ 1nk ,S
kθk = 1>n

Step 3: Update Multiplier Y : We update the Lagrange
multipliers in Eq (13), where ρ > 1.

Y = Y + u(D− L−E); u = ρu (13)

5. Experimental Results
Datasets: We evaluate tracking performance on 16 pub-

licly available video sequences, which are captured in dif-
ferent scenarios and contain challenging appearance varia-
tions due to occlusion, object pose and scale changes, illu-
mination change, and abrupt motion.

Implementation Details: In all experiments, the num-
ber of target templates is set to K1 = 5 as in most of ex-
isting trackers. We set K2 = 3, and λ = 1 (in Eq (4)).
We adopt Geometric Blur [6] as the feature to characterize
each part. As a trade-off between effectiveness and speed,
n and nk are set to 6, 100, respectively. Here, we employ a
simple heuristic to determine the number of parts (n) within
the tracking object as in [30] - we divide the object into six
parts of either 3× 2 or 2× 3 depending on its aspect ratio.

Baselines: Our PMT tracker is analyzed and com-
pared with 10 state-of-the-art tracking methods, FRAGT
(fragment-based tracker [1]), VTD (visual tracking decom-
position [22]), L1T (`1 minimization tracker [24]), IVT
(incremental subspace visual tracker [26]), MIL (multiple
instance learning tracker [4]), LRST (low-rank sparse track-
er [33]), TLD (tracking-learning-detection [20]), CT (com-
pressive tracking [31]), Struck (structured output track-
er [16]), and OAB (online AdaBoost [14]). We implement
these trackers using publicly available source codes or bina-
ries provided by the authors. The parameters of these track-
ers are adjusted to show the best tracking performance. For
fair comparisons, the same initializations are set to all meth-
ods. The supplementary material contains result videos.

Evaluation Metrics: For quantitative comparison, two
popular evaluation metrics are used. The first metric is the
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Table 1. The average center location errors of 11 trackers on 16
sequences. For each sequence, the smallest and second smallest
distances are denoted in red and blue, respectively.

Video PMT CT IVT MIL OAB Frag VTD Struck L1T LRST TLD
tud 8.5 55.1 25.9 51.2 26.2 10.8 43.1 17.8 10.3 30.2 16.7

trellis 14.1 42.4 54.0 37.3 41.5 55.7 47.8 28.3 31.1 26.5 50.9
sylv 4.6 13.5 39.4 15.3 10.4 6.8 7.4 4.7 14.5 4.5 5.9

soccer 15.4 79.6 97.8 46.3 65.3 41.4 10.5 41.0 58.5 16.3 29.8
skating 4.3 84.9 74.9 49.2 39.3 63.3 5.0 51.9 20.1 5.0 99.3
singer 3.7 5.9 9.8 11.1 63.0 26.9 4.4 4.5 5.3 5.6 44.1

girl 3.5 17.4 3.2 12.4 11.0 7.4 11.4 18.6 5.0 4.0 8.3
face1 6.2 19.0 9.1 34.3 17.2 7.9 8.7 8.4 7.0 9.6 14.8
face2 7.8 24.0 8.3 10.2 20.8 48.2 11.8 6.5 15.2 8.1 13.3
david 10.8 32.4 15.6 30.3 26.4 73.0 64.9 46.7 16.2 16.0 14.1

coke11 7.0 11.1 58.5 13.7 11.3 71.0 62.7 4.0 12.1 9.6 11.6
car4 3.4 86.3 6.4 53.8 88.1 127.3 27.0 4.3 8.5 5.8 6.9
biker 18.4 16.0 76.8 29.6 22.0 104.4 17.3 48.0 29.4 47.7 86.9
osow 1.8 15.2 3.0 11.6 4.6 5.6 3.3 4.7 2.0 6.8 11.1
olsr2 3.8 56.8 24.0 23.8 12.5 57.6 44.3 14.3 4.7 38.1 49.5
olsr1 2.7 8.3 2.9 9.8 68.3 4.0 3.4 5.0 3.6 5.0 10.9

center location error which is the Euclidean distance be-
tween the central locations of the tracked targets and the
manually labeled ground truth. The other is the Pascal VOC
overlap score. Given the tracked bounding box ROIT and
the ground truth bounding boxROIGT , the overlap score is
computed as score = area(ROIT∩ROIGT )

area(ROIT∪ROIGT ) .

5.1. Quantitative and Qualitative Evaluation

Table 1 and Table 2 report the average center location
error and Pascal VOC overlap score of the 11 trackers on
each of the 16 video sequences. Figure 2 plots the frame-
by-frame center location errors (highlighted in different col-
ors) obtained by the 11 trackers for the 4 of the 16 video
sequences. Figure 2, Table 1, and Table 2 tell that our pro-
posed PMT achieves the best tracking performance on most
video sequences. In particular, PMT obtains more robust
tracking results in the presence of complicated appearance
changes caused by occlusion, drastic pose variation, back-
ground clutter, illumination change, and abrupt motion, etc.

Figure 3 shows qualitative tracking results of the 11
trackers over several representative frames of the 16 video
sequences. For an example of occlusion in the “olsr2” se-
quence, tracking of the woman is lost by all other trackers
at frame 200 as she is partially occluded by a man. The
other trackers lock onto the man, so their errors increase
for the rest of the sequence, as shown in Figure 3. Another
example is the “tud” sequence, where the target vehicle is
occluded by crossing pedestrians. The MIL, VTD, OAB,
and CT methods drift away from the target object when oc-
clusion occurs. On the other hand, the L1T, TLD, and our
PMT methods perform well. In the other sequences with oc-
clusion, such as, “osow”, “faceocc”, “coke11”, “faceocc2”,
the proposed PMT performs at least the second best. The
“car4”, “car11”, and “sylv” video sequences contain illumi-
nation changes. Take “car4” as an example, the OAB, Frag,
and VTD methods start to drift from the target at frame
185 when the vehicle goes through the overpass. The MIL
and CT algorithms start drift away from the target objec-
t at frame 210. The L1 and TLD approaches are able to
track the target although with some errors. On the other
hand, the target object is successfully tracked by our PMT

Table 2. The average overlap scores of 11 trackers on 16 se-
quences. For each sequence, the best and the second best scores
are denoted in red and blue, respectively.

Video PMT CT IVT MIL OAB Frag VTD Struck L1T LRST TLD
tud 0.85 0.32 0.56 0.38 0.56 0.68 0.40 0.61 0.81 0.51 0.71

trellis 0.52 0.22 0.39 0.35 0.46 0.29 0.31 0.50 0.38 0.48 0.21
sylv 0.78 0.59 0.47 0.58 0.67 0.74 0.73 0.76 0.58 0.78 0.70

soccer 0.28 0.15 0.14 0.12 0.10 0.19 0.35 0.13 0.14 0.26 0.17
skating 0.63 0.01 0.07 0.23 0.37 0.19 0.61 0.29 0.47 0.59 0.07
singer 0.78 0.45 0.48 0.41 0.18 0.26 0.66 0.46 0.63 0.65 0.40

girl 0.67 0.32 0.68 0.45 0.53 0.60 0.55 0.41 0.64 0.65 0.59
face1 0.89 0.73 0.84 0.58 0.77 0.87 0.82 0.85 0.84 0.82 0.57
face2 0.75 0.54 0.79 0.72 0.59 0.38 0.70 0.77 0.67 0.74 0.57
david 0.73 0.41 0.36 0.42 0.43 0.23 0.26 0.38 0.50 0.50 0.60

coke11 0.71 0.47 0.10 0.43 0.41 0.06 0.06 0.74 0.46 0.72 0.45
car4 0.82 0.24 0.74 0.27 0.22 0.23 0.47 0.49 0.62 0.80 0.57
biker 0.45 0.45 0.31 0.43 0.44 0.27 0.47 0.38 0.39 0.42 0.30
osow 0.94 0.56 0.83 0.56 0.71 0.77 0.88 0.81 0.91 0.74 0.65
olsr2 0.82 0.29 0.44 0.35 0.47 0.27 0.34 0.50 0.75 0.31 0.28
olsr1 0.88 0.71 0.86 0.67 0.17 0.78 0.81 0.77 0.81 0.77 0.68

and Struck algorithms throughout the entire sequence de-
spite large illumination changes. The “david”, “singer”, and
“trellis” contains significant illumination changes and pose
variations. On the “trellis” sequence, Frag, and VTD be-
gin to drift away from the target after frame 172 because
of the changing lighting conditions. Due to the combina-
tion of lighting and head pose changes, IVT, Frag, and C-
T fail to track the target after the 367th frame. Both our
tracker and Struck successfully track the target across the
whole video sequence, although our tracker locates the head
more accurately. The sequences “girl” and “skating” con-
tain abrupt motion, pose change, and partial occlusion. On
the “girl” sequence, the proposed tracker are capable of
tracking the target for the entire sequence. Other trackers
experience drift at different time. The “soccer” sequence
contains abrupt motion and background clutter. Compared
with other trackers, PMT achieves the better results and can
track the target object despite scale and pose changes as well
as occlusion by confetti at most of the frames. In contrast,
other methods (IVT, L1 , OAB, MIL, and Frag) fail to track
the target reliably. The “biker” sequence contains scenes
with abrupt motion and large pose change. Nevertheless,
our PMT performs well throughout the entire sequence with
more stable tracking results.

5.2. Discussion and Analysis

We present more illustrative tracking examples in this
section to demonstrate the effectiveness of PMT for robust
visual tracking. In particular, Figure 4 demonstrates a pro-
cess of partial occlusion, where for each of the three sets
of incoming frames to be tracked (around frames 248, 266,
295), we only show one of the target templates on the left
and one of the tracked frames on the right, due to space lim-
it. When the partial occlusion starts at the incoming frame
248, PMT still matches its parts to those of the target tem-
plate shown on the top-left image. However, due to partial
occlusion, the three parts on the left of the face in the top-
right image rank higher in terms of matching confidence.
Appearance of the partially occluded face is very different
from that in the target templates, PMT thus updates the tar-
get template as shown in the middle-left image. After updat-
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Figure 3. Tracking results of 11 trackers (denoted in different colors) on 16 video sequences. Frame numbers are overlayed in yellow. See
text for details. Results best viewed on high-resolution displays.

Figure 2. Quantitative comparison of the 11 trackers with the cen-
ter location error on the 4 video sequences.

ing, most of the six parts at frame 266 match well with the
updated target template, as shown by the confidence scores
in the middle-right image. This update of target template is
important when partial occlusion remains for a longer du-
ration of time, otherwise matching may fail and tracking
drifts. When the face re-appears at frame 295, PMT match-
es its parts to those of earlier target templates that contain
no occlusion, as shown in the bottom image of Figure 4.
The tracking process continues successfully, which shows

Figure 4. Illustration of PMT’s robustness against partial occlu-
sion. The numbers of “1” to “6” index different parts of the face.
“1” ranks highest and “6” ranks lowest in terms of confidence s-
core of part matching. More explanations are in Section 5.2.

the effectiveness of our proposed PMT.
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Figure 5. Our PMT can track well even when there are errors of
part matching due to occlusion, illumination changes, etc.

Our PMT seems less prone to noise, part matching er-
ror, or partial occlusion. This is further demonstrated in
Figure 5, where when some of the parts cannot be matched
to those in the target templates, other parts of the object
are less influenced and their matchings still make tracking
successful. This is consistent with confidence scores of the
matching of different parts shown in the right of Figure 5.

6. Conclusion

In this paper, we proposed a locality-constrained low-rank
sparse learning method to effectively optimize optimal par-
tial permutation matrices for the part correspondence a-
mong multiple frames for visual tracking. By using the
three properties (locality-constrained property, low-rank s-
parse property, and globally consistent property), our track-
er is robust for partial occlusion. We extensively analyze the
performance of our tracker on challenging real-world video
sequences and show it outperforms 10 state-of-the-art track-
ing methods.
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