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Abstract

We propose a simple yet effective detector for pedestrian
detection. The basic idea is to incorporate common sense
and everyday knowledge into the design of simple and com-
putationally efficient features. As pedestrians usually ap-
pear up-right in image or video data, the problem of pedes-
trian detection is considerably simpler than general pur-
pose people detection. We therefore employ a statistical
model of the up-right human body where the head, the up-
per body, and the lower body are treated as three distinct
components. Our main contribution is to systematically de-
sign a pool of rectangular templates that are tailored to this
shape model. As we incorporate different kinds of low-level
measurements, the resulting multi-modal & multi-channel
Haar-like features represent characteristic differences be-
tween parts of the human body yet are robust against vari-
ations in clothing or environmental settings. Our approach
avoids exhaustive searches over all possible configurations
of rectangle features and neither relies on random sam-
pling. It thus marks a middle ground among recently pub-
lished techniques and yields efficient low-dimensional yet
highly discriminative features. Experimental results on the
INRIA and Caltech pedestrian datasets show that our de-
tector reaches state-of-the-art performance at low compu-
tational costs and that our features are robust against oc-
clusions.

1. Introduction
Over the last decade, the question of how to detect pedes-

trians in images has been thoroughly investigated [10]. Yet,

primarily because of random influences such as scene struc-

ture, lighting or people’s choice of clothing, the problem

remains challenging and continues to attract research.

A noticeable trend in this domain is that researchers in-

creasingly rely on huge feature pools and high dimensional

feature vectors [27] since it is commonly believed that more

features integrate more information and thus lead to better

performances. As a consequence, many recent approaches

Figure 1: Illustration of our template pool. Templates are

generated by sliding rectangular windows of pre-defined

sizes over a pre-defined pedestrian shape model. Note that

some templates are ternary (shown as white, black, and red

areas) which are given the weights of +1, −1, and 0, re-

spectively.

rely on the availability of powerful computers and GPU

computation in order to be capable of real-time detection.

Also, aspects due to the peculiar geometry of high dimen-

sional spaces, e.g. concentration of measure and neighbor-

liness, appear to be disregarded. This raises the question,

if there are alternative approaches which require less mem-

ory and less computational resources but still perform ro-

bust and reliable?

In this paper, we propose more compact features which

simultaneously ensure effectiveness and efficiency. In par-

ticular, we argue that by incorporating prior information as



to the appearance of the up-right human body, one can de-

sign reasonable features for pedestrian detection. In fact,

from the point of view of visual perception, pedestrians

form a class of high intra-class similarity. This is because

strong regularities of up-right body shapes limit how pedes-

trians may appear in image data. In particular the head-

shoulder area of the human body shows a geometry seldom

found among other natural objects. Based on a careful ex-

ploration of these characteristics, we design new features

that enable efficient, state-of-the-art pedestrian detection.

Our approach is motivated by prior work on detecting

objects of rather low intra-class variability. In particular,

HOGs [5] and cascaded Haar-like features [24] have be-

come the de-facto methods of choice in this area. Yet,

we note that corresponding features are either determined

by means of exhaustive searches over all possible varia-

tions [24] or by means of less exhaustive random sampling

[13]. In this paper, we propose a method that marks a mid-

dle ground; we design compact, discriminative Haar-like

features selected from a particular template pool that re-

flects prior information about the pedestrian up-right body

shape. Extensive experiments indicate that these features

are highly characteristic and therefore enable very robust

detection.

1.1. Related work

Because of its practical impact, research on pedestrian

detection has noticeably intensified over the past decade

and the literature on possible solutions is vast. Since an

exhaustive survey is beyond the scope of this paper, our fol-

lowing review therefore focuses on features that have been

proposed in this context.

As of this writing, the arguably most popular features for

visual pedestrian detection are based on Histograms of Ori-
ented Gradients (HOGs) as introduced in [5]. HOG features

brought about significant improvements and therefore es-

tablish an important baseline. Felzenszwalb et al. [LatSvm]

[12, 11] successfully employed HOG features in a part-

based model for object detection; Wang et al. [HogLbp]

[26] combined HOG features with a particular Local Binary
Pattern (LBP) feature in order to cope with partial occlu-

sions. Walk et al. [25] combined HOG features with self-

similarity features related to color channels [MultiFtr+CSS]

as well as motion features [MultiFtr+Motion] in order to

better integrate spatial and temporal information.

Deviating from the popular framework of “HOG+SVM”

computations, Dollár et al. [8] applied integral channel fea-

tures which efficiently integrate multiple cues due to col-

ors and gradients by means of employing integral images.

For classification, they used boosting methods and thus

obtained a real-time detector [ChnFtrs]. An extension of

this approach has been called the “Fastest Pedestrian De-

tection in the West” [FPDW] [7] and was shown to en-

able particularly fast multiscale detection. Due to its ef-

ficiency and reasonable performance, many new detectors

[3, 6] therefore consider [ChnFtrs] as a baseline and sev-

eral authors obtained even better performance by extending

the feature pool in various ways. Benenson et al. [Roerei]

[4] used irregular rectangles resulting in a 718, 080 dimen-

sional feature pool; Lim et al. [SketchTokens] [15] added

self-similarity features, yielding a 21, 350 dimensional fea-

ture vector for image patches of a size of 35 × 35 pixels.

Due to the extreme sizes of these feature pools, both cor-

responding detectors require powerful computing hardware

and large amounts of memory at training time. Addressing

issues like these, our work aims at building new detectors

based on small but intelligently designed feature pools that

enable state-of-the-art detection accuracy.

Pioneering attempts of using Haar wavelets for pedes-

trian detection are found in [17] where it was demonstrated

that wavelet templates can be used to define the shape of

an object. Later, Papageorgiou et al. [20] proposed a sim-

ilar yet more general system for object detection and, sub-

sequently, Haar-like features became popular in the object

detection community. The epitome of such approaches is

found in the work by Viola and Jones [24] who used Haar-

like features in combination with boosting algorithms to

build a successful face detector. Dollár et al. [9] proposed

to use feature mining strategies to select informative fea-

tures from a large amount of Haar wavelets. In this con-

text, we note that, in the recent literature, Haar-like fea-

tures are also referred to as second-order channel features

[ChnFtrs]. However, Haar-like features are often discarded

in pedestrian detection as they seem not to improve perfor-

mance when combined with first-order channel features. In

a closer analysis as to possible reasons for this behavior, we

found that Haar-like templates that perform well for face

detection are not necessarily suited for pedestrian detection

as they may fail to capture visual characteristics of human

body. As a remedy, we propose to design particularly tai-

lored templates for up-right body shapes.

1.2. Contributions

Our main contribution in this paper is to model pedes-

trian shapes in terms of three rectangles that are geared to-

wards different body parts. Based on this shape model, we

design compact Haar-like features to describe local differ-

ences. Accordingly, we design a compact feature pool that

is better tailored to pedestrian shapes than the ones covered

in the above survey.

Template pool for pedestrian shape model: we find

that up-right walking pedestrians share a common visual

appearance especially w.r.t. the geometry of the head and

shoulder region of the body. Based on this shape model, we

design a pool of rectangle features (rectangular templates)

that is adapted to these local structures. Our templates are



specific for pedestrians and therefore lead to a very good

performance; on the other hand, they constitute only a small

subset of the set of all possible rectangular templates so they

significantly reduce training times.

Multi-modal & multi-channel Haar-like features: we

use two template modalities –binary and ternary– for Haar-

like features. The ternary modal is specifically proposed

to represent corner regions found along the pedestrian sil-

houette so as to enable rectangle features to represent more

complex geometric configurations. In terms of channel fea-

tures, we consider rectangle descriptors not only w.r.t. col-

ors but also w.r.t. gradients. This addresses challenges due

to variations in the choice of clothes.

We evaluate our approach in extensive experiments on

several benchmark datasets and demonstrate that by em-

ploying compact features, our new pedestrian detector

achieves state-of-the-art performance while enjoying three

advantages: it is easy to implement, easy to train, and fast
to apply on real world data.

2. Template pool

In this section, we describe how to generate a template

pool that is tailored towards visual pedestrian detection. For

this purpose, we first define a pedestrian body shape model

and then generate templates by sliding bounding boxes of

different sizes over this shape model. Fig. 1 illustrates the

whole template pool and shows examples of templates of

different sizes.

2.1. A pedestrian body shape model

We define a pedestrian body shape based on statistical

information. The INRIA dataset is arguably the most com-

monly used benchmark for image-based pedestrian detec-

tion. It contains annotated image patches showing pedestri-

ans scaled to a height of 96 pixels; all patches are padded

by 12 pixels in four directions in order to provide contex-

tual information. We therefore perform a statistical analysis

with pedestrian images of size 60 × 120 pixels. On these

data, we compute an average edge map based on gradient

magnitudes extracted from each sample. The resulting av-

erage edge map is shown in Fig. 2 and clearly resembles a

human body.

Features derived from rectangular image regions typi-

cally allow for computational efficiency. We therefore de-

cide to base our pedestrian detector on rectangular features

and hence divide the edge map into square cells whose sizes

may vary. Fig. 2 shows examples of cells of sizes 4× 4 and

6 × 6 pixels. Given these grids of cells, the whole body is

approximately divided into three parts: the head, the upper

body, and the lower body. This is intended to increase ro-

bustness as these three parts generally appear in different

colors or textures in real world images.

Figure 2: Illustration of a statistical pedestrian shape model

in terms of an average edge map as shown in the middle. In

this example, cell sizes are chosen to be 4 × 4 and 6 × 6
pixels, respectively. Three bounding boxes approximately

indicate the head, the upper body, and the lower body parts.

2.2. Generating templates

We constrain our templates to be of rectangular form

as these allow for convenient implementation and efficient

computation. Statistical variations are coped with by con-

sidering different modalities as described in Sec. 3. First,

however, we define a set of sizes

S = {(w, h) | w ≤ wm, h ≤ hm, w, h ∈ N
+}, (1)

where w and h indicate the width and height (in terms of

covered cells) of a rectangular template; wm and hm are

used to constrain the overall size of templates since we fo-

cus on local image information.

As shown in Fig. 2, images of pedestrians available in

the INRIA data consist of four logical components: back-

ground, head, upper body, and lower body. We assign each

cell c(i, j) to a set of labels L(i, j) that indicate which com-

ponents are found in the cell.

Next, for each pair of sizes in S, we slide a correspond-

ing rectangular window over the whole shape model to gen-

erate different templates at different positions and of differ-

ent weights. At a certain position (x, y), the template to be

created depends on how many different parts are contained

in the rectangle. A binary template is generated if there

are only two parts; ternary templates of different kinds are

generated if there are three parts. Algorithm 1 provides de-

tails as to this procedure. The resulting full template pool is

given as a set:

T = {(x, y, s,W ) | x, y ∈ N, s ∈ S,W ∈ R
2}, (2)

where x and y indicate the location of a template w.r.t. the

human shape model and W is a weight matrix that is deter-

mined according to the matrix L of labels for all cells.

3. Multi-modal, multi-channel Haar features
In the following, traditional Haar-like features will be re-

ferred to as binary modalities as they only carry two possi-



Algorithm 1 Generating templates for pedestrian shapes

1: initialize template pool: T ← ∅;

2: for i = 1 to nSize do
3: for x1 ∈ [1, width− wi] do
4: for y1 ∈ [1, height− hi] do
5: label = L(x1 : x1 + wi, y1 : y1 + hi);
6: if unique(label)==2 then
7: W (label == l1) ← 0;

8: W (label == l2) ← 1;

9: append (x1, y1, (wi, hi),W ) to T ;

10: else if unique(label)==3 then
11: for iCase ∈ [1, 3] do
12: W (label == liCase) ← 0;

13: W (label == l(iCase+1)%3) ← −1;

14: W (label == l(iCase+2)%3) ← 1;

15: append (x1, y1, (wi, hi),W ) to T ;

16: end for
17: end if
18: end for
19: end for
20: end for
21: return T

ble weights (+1 and −1) for different rectangles. However,

this binary modality is ill suited to represent cusps or corner-

like structures of the human silhouette. That is to say, that

it hardly adapts to the description of the content of bound-

ing boxes that contain three different logical components

such as, say, head, upper body, and background. Yet, for

efficient subsequent classification we are interested in com-

puting the difference between parts w.r.t. two of them at a

time. We therefore propose to consider ternary templates.

An example is given in Fig. 1 where ternary 2×2 templates

capture the local geometry of the image region where head,

shoulders, and background meet in joint corners.

To integrate color and gradient information, we build a

multi-channel descriptor for each cell. We consider a total

of 10 different channels as it is done in the detector [Chn-

Ftrs]: 3 channels for LUV colors, 1 channel for gradient

magnitude information, and 6 channels for histograms of

oriented gradients.

Assume we are given a template t = (x, y, (w, h),W ).
We first count how often the weights +1 and −1 appear

and denote these counts as nadd and nsub. There are thus

nadd additive cells and nsub subtractive cells and we nor-

malize each cell’s weight by the total number of correspond-

ing cells covered by a rectangle. This results in an average

weight matrix:

Wavg =
sgn(W )

nadd
+

sgn(−W )

nsub
. (3)

The feature value of any template t for any channel k,

e.g. color or gradient information, can then be computed as

a weighted sum:

f(t, k) =
h∑

i=1

w∑

j=1

σ(x+ i, y + j, k)Wavg(i, j), (4)

(a) (b)

Figure 3: Illustration of representative features. (a) Cell

weight map: different colors are used to indicate the accu-

mulative weight of each cell after boosting. (b) Most in-

formative templates: these binary and ternary rectangle fea-

tures obtained high accumulative weights after boosting.

where, σ(i, j, k) denotes the sum of values in cell(i, j)
along channel k.

4. Selecting features for pedestrian detection

Our detector employs the multi-modal and multi-channel

Haar-like features proposed in Sec 3. Note that these fea-

tures are built on channel features as in [ChnFtrs], but inter-

pret local differences between rectangular regions over mul-

tiple channels rather than over channel values themselves.

We apply a fast version of AdaBoost [1] for learning

since it offers a convenient and fast approach to select from

a large number of candidate features. We apply 2048 deci-

sion trees of depth 2 to build our final strong classifier. Ini-

tial negative training samples are randomly generated and,

afterwards, hard negative samples are searched for three

rounds over all negative example images so as to collect

20,000 negative samples in total. This multi-round training

strategy is pivotal as it leads to a better performance than a

simple one round training procedure with the same number

of negative samples. From our experiments, three rounds

of retraining were observed to yield optimal performance;

additional rounds did not show significant improvements.

In order to look into which features are more informa-

tive, we plot a weight image of the top 100 features as

shown in Fig. 3a. To generate this figure, we add the weight

of each feature to the cells it covers and use different col-

ors to indicate the accumulative weight of each cell after

boosting. As expected, the head-shoulder area of the hu-

man body shows to be more discriminative for pedestrian

detection than other body parts.



The most discriminative binary and ternary templates de-

termined by the boosting algorithm are then used for pedes-

trian detection in still images. To this end, we slide a win-

dow over the whole image and consider multiple scales.

The spatial step size is set identical to the cell size for speed

and the scale step is set to be 1.09 so that there are 8 scales

in each octave. We use a simplified non-maximal suppres-

sion (NMS) procedure [8] to suppress nearby detections.

5. Experiments
Experiments are conducted on two public benchmark

datasets: the INRIA pedestrian dataset [5] and the Caltech

pedestrian dataset [10]. The INRIA data is arguably the

most popular dataset for people detection and comes along

with pre-defined subsets for training and testing. The Cal-

tech data is the largest and most challenging dataset for

pedestrian detection and we consider subsets set00 - set05

for training and subsets set06 - set10 for testing.

5.1. Implementation details

To optimize our detector, we analyze the influences of

different parameter settings. Next, we present various ex-

perimental results on the INRIA dataset.

Cell size: the pedestrian body shape can be covered by

arrays of different cell sizes as shown in Fig. 2. We present

experimental results for cell sizes of 4× 4, 6× 6 and 8× 8.

From Fig. 4a, we find that a cell size of 6×6 pixels produces

the best results so we choose it as our default setting.

Channels: we plot the performance of various channel

combinations. As gradient histograms have been shown

as the most informative channels in [8], we only try alter-

natives for color and gradient magnitude channels. From

Fig. 4b it appears that LUV color channels are more dis-

criminative than HSV channels, both are commonly used in

this area; using three gradient magnitude channels (one for

each color channel) or two gradient components (along the

x and y directions respectively) lead to slight decrease in

performance rather than improvements.

Image normalization: we analyze the influence of in-

tensity normalization on our features as previous works on

rectangular features typically employ various ways of nor-

malization. [VJ] [24] used local normalization inside each

detection window; [Roerei] [4] reported performance im-

provements by applying global normalization on the input

images. However, according to the results in Fig. 4c, our

features obtain best results without normalization.

Smoothing: while pre-smoothing input images with bi-

nomial filters of radius 1 improves the performance by more

than 3%, larger radii produce worse results; post-smoothing

of channel features significantly decreases the performance

and seems to inhibit characteristic local variations.

Number of weak classifiers: intuitively one would ex-

pect more weak classifiers to lead to better performance

since decision boundaries become more accurate; on the

other hand, too large number of weak classifiers may lead

to overfitting of the training data. Accordingly, we find that

detection performance starts to decrease slightly when the

number of weak classifiers exceeds 2000.

For the results reported next, we therefore consider the

following settings of our detector: cell size of 6×6;channels

of LUV+GM+GH; image smoothing with binomial filters

of radius 1; no channel smoothing; no image normalization;

2000 weak classifiers.

5.2. Comparisons with state-of-the-art detectors

In this section, we compare our detector to other state-of-

the-art detectors whose results are publicly available1. We

use the same experimental protocol as in [10] and evaluate

performances in terms of ROC curves. Measurements of

average miss rates are used to summarize the overall perfor-

mances of different detectors. The overall results are pro-

duced on the reasonable [10] subset of each test set which

show pedestrians at a resolution of over 50 pixels in height

and a visibility of at least 65%.

The results in Fig. 5a show that our detector outperforms

the baseline detector [ChnFtrs] by about 8% and reaches the

state-of-the-art performance. The two detectors with better

results than ours consider feature pools that are more than

20 times larger and are about 100 times slower in training.

On the Caltech pedestrian dataset, our detector outper-

forms not only the baseline detector [ChnFtrs] by about

20% but also yields the overall best performance as shown

in Fig. 5b. In particular, we note that it even outperforms

detectors which consider additional motion information.

Fig. 6 shows evaluation results under different occlusion

conditions for the Caltech pedestrian test data. As in [10],

we use three occlusion levels: no occlusion (0% occluded),

partial occlusion (1-35% occluded), and heavy occlusion

(35%-80% occluded). The performance of all the detec-

tors drops significantly as occlusion increases. Yet, our de-

tector seems least affected by occlusion in the sense that

it consistently ranks high for all occlusion levels. In fact,

it achieves the best performance among all tested detec-

tors for the cases of no and heavy occlusion and we con-

clude that the informed design of our features yields robust-

ness against occlusions. Notably, our detector even outper-

forms those detectors that employ explicit occlusion han-

dling strategies, e.g. [DBN-Isol] and [DBN-Mut], for all

levels of occlusion.

5.3. Feature size and runtimes

We present our feature size with the optimal settings con-

cluded from Sec. 5.1. Given 6 × 6 cells and templates size

ranging from 1× 2 to 4× 3 cells, we obtain 266 templates

1http://www.vision.caltech.edu/Image_Datasets/
CaltechPedestrians/



(a) Cell size (b) Channels (c) Image normalization

(d) Pre-smooth on colors (e) Post-smooth on channels (f) # Weak classifiers

Figure 4: Evaluation of different parameters on the INRIA pedestrian dataset. (a) Cell sizes of the pedestrian shape model.

(b) Channel combinations with color channels + gradient magnitude channels (GM) + gradient histogram channels (GH). (c)

Image normalization methods. Local intensity normalization is done inside each detection window; global normalization is

done for the whole input image. (d) Pre-smoothing of colors with binomial filters of different radii. (e) Post-smoothing of

channels with binomial filters of different radii. (f) Number of weak classifiers.

Detector Features Classifier Training data Average miss rate

INRIA Caltech

VJ[24] Haar AdaBoost INRIA 72.48% 94.73%

HOG[5] HOG linear SVM INRIA 45.98% 68.46%

Shapelet[23] gradients AdaBoost INRIA 81.70% 91.37%

MultiFtr+CSS [25] HOG + CSS AdaBoost INRIA 24.74% 60.89%

MultiFtr+Motion [25] HOG + CSS + motion linear SVM TUD-Motion / 50.88%

HikSvm [16] HOG HIK SVM INRIA 42.82% 73.39%

HogLbp [26] HOG + LBP linear SVM INRIA 39.10% 67.77%

LatSvm-V1 [12] HOG latent SVM PASCAL 43.83% 79.78%

LatSvm-V2 [11] HOG latent SVM INRIA 19.96% 63.26%

ChnFtrs [8] channels AdaBoost INRIA 22.18% 56.34%

FeatSynth [2] HOG + texture linear SVM INRIA 30.88% 60.16%

MultiResC [21] HOG latent SVM Caltech / 48.45%

CrossTalk [6] channels AdaBoost INRIA 18.98% 53.88%

VeryFast [3] channels AdaBoost INRIA 15.96% /

SketchTokens [15] channels AdaBoost INRIA 13.32% /

Roerei [4] channels AdaBoost INRIA 13.53% 48.35%

AFS+Geo [14] HOG + texture linear SVM INRIA / 66.76%

MT-DPM+Context [28] HOG latent SVM Caltech / 37.64%

DBN-Isol [18] HOG DeepNet INRIA / 53.14%

DBN-Mut [19] HOG DeepNet INRIA / 48.22%

ACF+SDt [22] channels + motion AdaBoost Caltech / 37.34%

ours-INRIA Informed Haar AdaBoost INRIA 14.43% /

ours-Caltech Informed Haar AdaBoost Caltech / 34.60%

Table 1: Performance comparisons for state-of-the-art pedestrian detectors. Each row in this table summarizes information

as to features and classifiers used in a particular approach, and displays the corresponding average performance in terms of

miss rates. The approach proposed in this paper yields state-of-the-art performance on the INRIA dataset and consistently

better results than previously reported on the Caltech dataset.



(a) INRIA

(b) Caltech test

Figure 5: Results of different detectors on different datasets

under standard evaluation settings.

at different positions. Shifting templates along 4 directions

with a step of one cell yields a template pool of 1276 (some

shifts are not possible at image borders); considering 10

channels, the final feature size is 12,760.

Our detector is implemented in Matlab, on an Intel Core-

i7 CPU (3.5GHz). On the Caltech dataset, it takes 1 hour for

training with 4 rounds and 1.6 seconds ( [ChnFtrs] 2s) for

testing a 640 × 480 image using the optimal parameters as

illustrated in Sec. 5.1. In addition to channel computation,

our feature computation includes local sums and differenc-

ing, both of which can be parallelized for further speed-up.

Our detector is expected to reach real-time efficiency run-

ning on a powerful machine and with GPU computation en-

abled.

6. Conclusion

We considered the problem of efficient yet robust pedes-

trian detection from image data. The particular approach

we presented in this paper was motivated by the observation

that a current trend in work on pedestrian detection consists

in analyzing feature vectors of ever increasing dimensions

which necessitate the use of powerful hardware in order to

guarantee real time capability.

Also, because of the peculiar geometry of high dimen-

sional spaces (concentration of measure and neighborliness)

it is not necessarily guaranteed that additional efforts spent

on computing high dimensions pay off in terms of recogni-

tion accuracies. We therefore explored more compact fea-

tures could yield state-of-the-art performance in pedestrian

detection if they were designed based on prior information

as to the appearance of the up-right human body.

Given a large dataset of pedestrian images, we computed

a statistical shape model which proved to consist of four

clearly recognizable logical components. We covered this

shape model with grids of cells and slid rectangular win-

dows over these cell arrays to produce a set of location spe-

cific weighted binary or ternary Haar-like templates that in-

corporate information as to which of the four components

of the shape are covered by a rectangle.

The weighting scheme provided us with a simple mecha-

nism of generating multi-modal & multi-channel Haar-like

features and we applied boosting to determine the most in-

formative ones. As our approach does not require comput-

ing any possible configuration of rectangles within a sliding

window nor is based on random sampling of rectangle fea-

tures, it marks a middle ground among recently published

similar approaches. Moreover, our detector is inherently

simple to implement, easy to train, and fast during runtime.

In extensive experiments with standard benchmark

datasets, we found our detector to achieve state-of-the-art

performance on the INRIA pedestrian dataset and, for the

Caltech pedestrian dataset, we found it to outperform all

other recent approaches considered in our tests. In addition,

our model-based rectangular features proved to be highly

robust under occlusion and even outperformed methods that

contain explicit mechanisms for occlusion handling.

Given these results, it appears promising to further ex-

plore model driven design of efficient rectangular features.

Immediate extensions of the approach presented in this pa-

per could be to incorporate additional channels such as mo-

tion information. More challenging extensions consist in

adapting our scheme to scenarios where the objects to be

detected show higher intra-class variations.



(a) No occlusion (b) Partial occlusion(1-35% occluded) (c) Heavy occlusion(35%-80% occluded)

Figure 6: Evaluation results under different occlusion conditions on the Caltech pedestrian test dataset.
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