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Abstract

In this paper we focus on the 3D modeling of flower, in
particular the petals. The complex structure, severe occlu-
sions, and wide variations make the reconstruction of their
3D models a challenging task. Therefore, even though the
flower is the most distinctive part of a plant, there has been
little modeling study devoted to it. We overcome these chal-
lenges by combining data driven modeling techniques with
domain knowledge from botany. Taking a 3D point cloud
of an input flower scanned from a single view, our method
starts with a level-set based segmentation of each individ-
ual petal, using both appearance and 3D information. Each
segmented petal is then fitted with a scale-invariant mor-
phable petal shape model, which is constructed from indi-
vidually scanned exemplar petals. Novel constraints based
on botany studies, such as the number and spatial layout of
petals, are incorporated into the fitting process for realisti-
cally reconstructing occluded regions and maintaining cor-
rect 3D spatial relations. Finally, the reconstructed petal
shape is texture mapped using the registered color images,
with occluded regions filled in by content from visible ones.
Experiments show that our approach can obtain realistic
modeling of flowers even with severe occlusions and large
shape/size variations.

1. Introduction
Plants modeling is one of the most difficult tasks in com-

puter vision and graphics community because of their com-
plex geometry and appearance. Flower, as the most distinc-
tive part of a plant, has fine structures and wide variations,
which makes reconstructing their 3D models a challenging
task. Existing 3D modeling techniques for plants and veg-
etation are usually designed for large scale structures, such
as trees, foliage, or based on pure synthesis given some pre-
defined rules and templates.

The biggest challenge for flower modeling is occlusion.
The tight formation of flower petals make segmentation
and 3D reconstruction a very challenging task. In order to

make this modeling problem tractable, we develop a unique
pipeline that incorporate domain-specific knowledge. More
specifically, the shape space of petals (the most dominant
components of a flower) can be learned from individually
scanned petals and their relative spatial layout can be known
a priori from botany study.

Our approach focuses on the parametric modeling of
flower petals. It starts with the data capture process of a
single flower, for which we use a structured light scanning
system consisting of one camera and one projector to cap-
ture its shape in 3D. Once we capture the geometric details
of a flower as a point cloud, our proposed method segments
it into different components (petals) based on both 2D ap-
pearance and 3D depth information. Each segmented petal
is then fitted using a scale-invariant morphable petal shape
model built from individually scanned single petal samples.
In our setup, flowers are captured from a single view (top
view). The tightly overlaying flower petals make multi-
view capture less effective. To handle the occlusions as well
as to maintain the semantic layout of flowers, a set of novel
constraints derived from botany studies and segmentation
information are incorporated into the petal fitting process.
Finally, the reconstructed flower model is texture mapped
using the captured color images, and occluded regions are
filled in with texture from other complete components. An
overview of our approach is shown in Figure 1.

To our knowledge, our system is the first to focus on
flower modeling, petals in particular, from 3D point cloud.
The key contributions of our work can be summarized as: 1)
a novel petal fitting algorithm that is robust to significant oc-
clusions; 2) a robust scheme for flower petal segmentation,
by extending a two-region level-set formulation to multiple
regions; 3) a scale-invariant morphable petal shape model
which can handle wider shape variations within a species,
or even across species.

It should be emphasized that our reconstruction pipeline
generates a parametric model, which is particularly suited
for measurement, editing, and animation. For example, one
could easily apply a geometric morphing between two mod-
els, or make global changes to the shapes by varying shape
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Figure 1. From left to right: 1) Petal database for Lily species; (2) Input image; (3) Petal segmentation; (4) Scanned 3D data; (5) Recon-
structed 3D model.

parameters. While these are not explored in the context of
this paper, we believe our approach will enable more re-
search in the modeling and animation of an intrinsic class
of objects, flowers, with applications in botany, entertain-
ment, and visual simulations.

2. Related Work

Due to their importance in the real world, there are many
approaches for modeling plants. They can be roughly di-
vided into two categories: rule-based modeling and data-
driven modeling. Rule-based methods use compact rules
and grammars for building models of plants. As a prime
work, a series of approaches based on the idea of L-system
were developed [9, 16, 17, 18, 19]. The modeling of plant
organs, such as leaves and petals, is a much less studied
problem. Fowler and colleagues [4] developed a collision-
based model for the spiral phyllotaxis effect, where plant or-
gans are arranged in spiral patterns. Mundermann and col-
laborators [12] used leaf silhouettes to estimate leaf skele-
ton and further build leaf shape models. Fuhrer and col-
leagues [5] studied how to model and render small hairs on
plants. Reunions and collaborators [21] developed proce-
dural algorithms to model a number of leaf venation pat-
terns. A related work in flower modeling is an interactive
system by Ijiri and collaborators [6]. It has a graphical user
interface for users to sketch flower models based on botani-
cal constraints. However those work summarized above are
purely rule-based, for which the realism and accuracy de-
pend on the understanding of flower development and the
effort of the modelers.

Recently with the proliferation of digital cameras and 3D
scanning devices, there have been a number of data-driven
approaches developed specific for tree, small plants, or fo-
liage [20, 22, 14, 10, 11, 2]. Typically major tree branches
are detected or interactively traced from 3D point clouds or
images. Leaves are synthesized based on separate scanning,
some heuristics, or mesh-fitting, so that the final model is
visually similar to the input data. Approaches in this cat-
egory aim to faithfully reconstruct the 3D model of plants
based on the input. They usually focus on plants with a large
number of leaves and the general structure of the whole
plant. From algorithm perspective, the most related works

are from Quan [20] and Bradley [2]. Quan et al. use simi-
lar modeling procedures to ours, composed of an interactive
leaf segmentation and template based model fitting. Their
approach requires multi-view data in which the entire plant
is captured, while in our case we only use data from a sin-
gle view because multi-view data do not provide significant
more converges due to the tight formation of flower petals.
Both [20] and [2] use an exemplar leaf mesh to fit to the
dense point clouds non-rigidly. [2] further learns a statistical
model for continuing fitting other leaves, as well as for leaf
synthesis when occlusions are too big. We instead require
a shape database for flower petals to handle the significant
occlusions in flowers.

After a survey of existing plant modeling techniques, we
note that flowers, despite being the most significant focus
of study for identification, are the least frequently studied,
probably due to its complex structure and significant self-
occlusions. Our method uses both a data-driven approach
and knowledge in botany to handle these challenges.

3. Flower Petal Modeling

To capture the geometric details, we choose to use struc-
tured light scanner to acquire high quality 3D data of flow-
ers. Our method starts from scanning individual flower
petals with variations but from the same species, and build-
ing up a morphable model [1] for petal shape of a certain
species. A level-set based active contour model is used for
accurately segmenting the 2D image and 3D scanned points
of a whole flower into different components(petals). Both
2D appearance and 3D depth information are used to guide
the segmentation. Each segmented petal point clouds is sub-
sequently fitted using the morphable model. We propose a
joint multiple petal fitting algorithm using prior knowledge
from Botany about flower spatial layout. Finally, the regis-
tered color image is used to generate texture maps for the
3D model. We will illustrate each part in details in next
several sections.

3.1. Scale-invariant Morphable Model

We choose to use a learned morphable shape model to re-
construct flower petals because of the parametric nature of
the model representation. The benefit of using morphable



Figure 2. Petal database for Pansies(60 exemplars).

model is that the optimization affects the entire petal, as
opposed to per-vertex based deformation method, therefore
can robustly handle occlusions. The uniform parametric
form of reconstructed shapes will benefit many future work,
such as modeling the development of flowers.

To build the morphable model, we scan a collection of
exemplar petals from the same species, but with noticeable
variations. Figure 1 left shows one database of Lily with
108 exemplars while Figure 2 shows a Pansie database with
60 exemplars. The shape and size variations are not neg-
ligible even within the same species. To build the mor-
phable model, we firstly align each exemplar shape to a
reference shape via two principal axes. Then a non-rigid
alignment is performed using CPD [13] to deform each ex-
emplar shape to best fit the reference shape, in which way
we obtain the correspondences. The correspondences are
used to estimate a similarity transformation to transform
each shape to reference shape coordinate system. Then
we sample approximately 3500 vertices on the reference
shape, and represent the shape of a petal by a shape-vector
S = (v1,v2, ...,vn) ∈ R3n, where each vk is a three-
dimensional vector representing 3D coordinate. The cor-
respondences in transformed exemplar shapes are used to
build a morphable shape model using Principle Components
Analysis (PCA), defined as follows:

Smodel = S̄ +

m−1∑
j=1

αjsj = S̄ +Bα (1)

where S̄ is the average of m exemplar shapes and B =
(s1, , , sm−1) are the eigenvectors of the covariance matri-
ces defining petal shape space. α = (α1, ..., αm−1) are the
coefficients of basis shapes.

Different from traditional method for building the mor-
phable model, we compute a scale factor when transform-
ing exemplar shapes to reference shape. This scheme is
designed to eliminate the size variation among exemplar
shapes, but focus more on the statistics of shape variations
for reconstructing the details of a petal. The mean shape in
morphable model is always firstly scaled to match the size
of the source shape in our petal fitting process(Sec. 3.3). In
this way, we build up a scale-invariant morphable model
that can be applied to reconstruct petals of tremendously
different sizes.

3.2. Flower Petal Segmentation

There has been some work on segmenting whole flow-
ers from a scene [15], but few has been done on segment-
ing each individual component (petal) of a flower. The
main challenges are from the high appearance similarity and
noticeable self-occlusions, which makes the segmentation
very challenging. Therefore, we manually specify a cen-
tral position on each petal as an initialization to guide the
segmentation.

We apply distance regularized level set evolution [8] for-
mulation to an active contour model [7] to solve the petal
segmentation problem. Both 2D and 3D gradient informa-
tion are embedded in the active contour model as guidance
for segmentation boundary evolvements. We extend the
two-region level set method to multiple regions by defin-
ing p level set functions(LSF) φi, i ∈ (1, ..., p), where p is
the number of petals in a flower. Each LSF φi represents a
region Ωi, by setting Ωi(x) < 0 when x ∈ Ωi; Ωi(x) > 0
when x 6∈ Ωi; Ωi(x) = 0 when x is on the contour of Ωi.

Let I be the color image and D be the depth map pro-
jected from 3D scanned data. We define a 2D gradient indi-
cator function gc and a 3D gradient indictor function gd as

gc =
1

1 + |∇Gσ ∗ I|2
; gd =

1

1 + |∇Gσ ∗D|2
(2)

Our final gradient indicator g is computed as a linear com-
bination of gc and gd

g = βgc + (1− β)gd (3)

where Gσ is a Gaussian kernal for smoothing the color
and depth image to reduce noise. For each LSF φi, we de-
fine an energy function E(φi) by

E(φi) = λLg(φi) + αAg(φi) + µRp̂(φi) (4)

By finding the minimum of E(φi), we can obtain the seg-
mentation as the region Ωi that φi < 0 represents. λ, α are
the coefficients of the energy functions Lg(φi) andAg(φi).
µ is the coefficient of distance regularization term Rp̂(φi).
They are defined as:

Lg(φi) =

∫
Ωi

gδ(φi)|∇φi|dx (5)

Ag(φi) =

∫
Ωi

gH(−φi)dx (6)

Rp̂(φi) =

∫
Ωi

p̂(|∇φi|)dx (7)

where δ andH are Dirac delta function and Heaviside func-
tion, p̂ is a potential function for distance regularization.

The energy in Lg(φi) computes the line integral of the
function g along the zero level contour of φi, which is min-
imized when the zero level contour of φi is located at the
petal boundary indicated by g. The energy Ag(φi) com-
putes the weighted area of region where φi(x) < 0. It is



Figure 3. Left: Initial segmentation. Right: Final segmentation.

used to accelerate the movement of zero level contour in the
level set evolution process, while slowing down when it ar-
rives at petal boundaries where g takes smaller values. The
distance regularization termRp̂(φi) is defined for maintain-
ing the signed distance property of LSF.

The energy function in Eq. 4 can be minimized by solv-
ing the following gradient flow:

∂φi
∂ t

= δ(φi)

(
λdiv

(
g
∇φi
|∇φi|

)
+ αg

)
+µdiv(dp̂(∇φi)∇φi)

(8)
Minimization of Eq. 4 is under the constraint

⋃
i Ωi = Ω

and
⋂
i Ωi = Φ, namely, we want to prevent overlapped and

vacuum regions. Therefore we employ the idea from [3] to
enhance the evolution process of φi as:

ek := λdiv
(
g
∇φi
|∇φi|

)
+ αg (9)

∂φi
∂t

= δ(φi)

(
ei − min

δ(φj)>0;j 6=i
(ej , ei − 1)

)
+ µdiv(dp̂(∇φi)∇φi) (10)

We initialize each LSF with a binary step function φ0
i

defined by

φ0
i (x) =

{
−c if x ∈ R
c otherwise (11)

where c > 0 is a constant, andR is a square region centered
at the initial position manually clicked on each petal. As
shown in Figure 3, the initialized regions finally evolve to
accurately match the boundary of each petal, with no over-
lap or vacuum.

3.3. Flower Petal Fitting

To handle the occlusions and maintain correct 3D spa-
tial relations of multiple flower petals, we propose a joint
petal fitting scheme, incorporating prior constraints from
spatial layout information and segmentation results. It is
worth noting that the input petal shape and the morphable
shape model are in different coordinate systems. There-
fore, we estimate a similarity transformation (s,R, t) be-
tween the two coordinate systems that transforms recon-
structed shape from morphable model space to input space
for fitting. Specifically, suppose a flower has p petals and
L different layers. Let L(i) be the layer where ith petal
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Figure 4. Four cases of finding correspondences on input shape.
Red points stand for true correspondences, and green points are
false correspondences.

lies in. We minimize the following energy over the set
of model parameters ~α = (α1,α2, ...,αi, ...,αp), where
αi = (α1

i , α
2
i , ..., α

m−1
i ) is the shape coefficients of ith

petal. Suppose (si, Ri, ti) are the similarity transformation
from morphable model space to the ith petal.

E(~α) = λpEP (~α) + λcEC(~α) + λsES(~α) (12)

There are three terms in this energy function, which are de-
fined as:

EP (~α) =

p∑
i=1

‖Wi(siRi(S̄ +Bαi) + ti − Ci)‖2 (13)

EC(~α) =

p−1∑
i=1

‖(siRi(S̄ +Bαi) + ti)(k)

− (si+1Ri+1(S̄ +Bαi+1) + ti+1)(k)‖2 (14)

ES(~α) =
∑

L(r)=L(s)

‖αr −αs‖2 (15)

The first term EP (~α) measures the distance between re-
constructed model and the set of all correspondences Ci on
ith petal. Wi = diag(w1

i , ..., w
n
i ) ⊗ I3 is the weight ma-

trix for all vertices vi = (v1
i , ...,v

n
i ) in the shape Si. I3 is

3 × 3 identity matrix. When finding corresponsdences, we
enforce boundary-to-boundary, and inner-to-inner matching
between reconstructed shape and input. We also compute
an occlusion map (occluded region) and occluded boundary
(false boundary) for each input petal based on petal seg-
mentation and layer information from Botany. Therefore,
there are four cases that each vertex vki can be related to its
correspondence Ci(vki ) on input during reconstruction: 1)
vki is on boundary of shape model and Ci(vki ) is also on
real boundary in input; 2)vki is on boundary of shape model
but Ci(vki ) is on false boundary in input; 3) vki is inside the
petal model andCi(vki ) is not occluded in input; 4) vki is in-
side petal model but Ci(vki ) is occluded in input. For case
1, we set wki = wb; for case 3, we set wki = wnb; for case 2
and 4, we setwki = 0. For a vertex that ‖vki −Ci(vki )‖ > τ ,
we set wki = 0. Figure 4 shows the four cases when finding
correspondences on input shape.

The second termEC(~α) enforces the root of each recon-
structed petals to converge to the same point in 3D space.
The subscript (k) stands for a pre-defined root vertex index
in the morphable shape model. This is a reasonable seman-
tic prior for many types of flowers in real world. Captured



from top view, there is always missing data around the root
region of each petal, due to the occlusion caused by pistil.
Therefore, adding this prior can effectively assist the con-
vergence of petal roots in 3D space, which also contributes
to more realistic reconstructed flowers as a whole.

The last term ES(~α) encodes the similarity of differ-
ent petals on the same flower. It enforces petal r and s on
the same layer having similar shapes, modeled by the Eu-
clidean difference of coefficient vectors αr and αs. This
term can effectively add strong shape priors to petals with
severe occlusion, by assuming that it has similar shape with
less-occluded petal in the same layer.

The optimization of our cost function E(~α) is subject to
two further constraints. In a reconstructed model, multiple
petals in overlapped regions should maintain the same 3D
spatial relations as in input scans. We therefore induce a
constraint that the reconstructed depth of occluded regions
should be larger than the depth of the part in another petal
that occludes it. By projecting the reconstructed shape to
image, we identify the vertices that lie in the occluded re-
gion of that petal. From the segmentation result, we also
know which petals are occluding these vertices, as well as
their corresponding reconstructed depth values.

The other constraint restricts the reconstructed shape to
lie in our training sample spaces. These two constraints are
reasonably defined as:

(siRi(S̄ +Bαi) + ti)
z
(k) ≥ do ∀k ∈ Oi (16)

µ− bσ ≤ αi ≤ µ+ bσ (17)

where Oi represents the the set of vertex indices in oc-
cluded regions of the ith petal. The superscript z stands for
depth(z-coordinate) value of a vertex. do is the correspond-
ing depth value in the occluding petal. µ and σ are the
means and standard deviations of the coefficients of train-
ing samples, and b > 0 is a constant.

We optimize the cost function E(~α) iteratively in a
coarse-to-fine fashion. In the first stage, we set the weights
of inner vertices in EP (~α) to 0, namely, wnb = 0,
only align the boundary vertices of input and reconstructed
shape, and only subject to constraint in Eq. 17. After bound-
ary points converges, wnb is restored in the following opti-
mization process for better fitting inner regions. We find
correspondences Ci on input shape using the 2D projec-
tions, given the boundaries are well aligned. Finally we in-
corporate constraint in Eq. 16 to refine the relative depth re-
lations among different petals. Each stage is repeated until
convergence, or reaching a maximum number of iterations
N . Intermediate results of each stage showing progressively
improvement can be seen in Figure 5.

Simultaneous optimization of E(~α) over ~α and
(si, Ri, ti) is non-linear. For simplicity, we linearly opti-
mize over ~α and (si, Ri, ti) separately in each iteration. We

a b 
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Figure 5. Intermediate results of coarse-to-fine petal fitting. a) Af-
ter initial alignment; b) After boundary alignment; c) After fitting
with inner points; 4) After adding relative depth constraints.

initialize ~α = 0, namely, using the mean shape S̄ as starting
point for all petals. In order to estimate the initial similar-
ity transformation (s0

i , R
0
i , t

0
i ), we use petals with sufficient

visibility based on segmentation information to estimate an
average target size. Besides, a rough root position is es-
timated via the optimal convergence point of their princi-
pal axes. For each pedal, the mean shape is then attached
to the root, then aligned with the corresponding principal
axes, and finally scaled to the target size. In each iteration,
(si, Ri, ti) are firstly re-estimated before optimizing E(~α)
over ~α. Algorithm 1 shows the details of our fitting algo-
rithm.

Figure 6 shows a challenging case with severe occlusion.
Our joint multiple petal fitting algorithm can still success-
fully reconstruct the complete shape.

Initialization: k = 1; ~αk = 0;
(si, Ri, ti) = (s0

i , R
0
i , t

0
i ); ∀i ∈ 1, 2, ..., p

for l = 1 : 3 do
while k ≤ N do

Ski = S̄ +Bαki ; ∀i ∈ 1, 2, ..., p
Compute (si, Ri, ti) from
Ski to ith input petal; ∀i ∈ 1, 2, ..., p
Find closet points Ci;
Compute a least-square solution of ~αk+1 for
minimizing E(~α); s.t condition l
if ‖~αk − ~αk+1‖ ≤ ε then

break;
else

~αk = ~αk+1; k = k + 1;
end

end
end
~α = ~αk;
condition 1: wnb = 0 and Eq. 17;
condition 2: Eq. 17;
condition 3: Eq. 16 and Eq. 17;
Algorithm 1: Joint flower petal fitting algorithm

3.4. Texture Mapping

After reconstructing the shape of each petal, we use stan-
dard texture mapping to add texture to our parametric flower



Figure 6. Example of severely occluded petal reconstruction.
From left to right: 1) Scanned petal data with occlusion; 2) Recon-
structed petal without texture; 3)Reconstructed petal with texture.

model. Each petal is textured mapped individually, by pro-
jecting vertices in our parametric shape model on 2D im-
ages. For occluded regions, we fill in with content from
non-occluded petals for synthesizing a complete texture for
partially scanned input.

4. Experiments
We demonstrate our flower modeling algorithms on

two different flower species, Lily and Pansie. The first
species has large shape and size variations and the sec-
ond has severe occlusions. We also demonstrate the
scalability of our method for cross-species modeling, by
reconstructing a third species, Dasiy, using the mor-
phable model built from Lily. These two species share
similar petal shapes but in remarkably different sizes.
We use the following parameter settings to generate
all results: {β, λ, α, µ, c, λp, λc, λs, wb, wnb, τ, b,N, ε} =
{0.3, 5,−3, 0.2, 2, 1, 1000, 2, 80, 10, 15, 3, 20, 1e− 3}.

The prior knowledge about Lily obtained from Botany is
the two layer structure, each of which consists three petals.
Each top layer petal occludes the bottom layer petals on its
two sides. There are multiple variations in petal’s shape,
size and color across Lily species. Even petals on the same
flower have very different shapes across layers. To test the
effectiveness of our method, we use a single morphable
shape model from Lily species to reconstruct samples of
different variations.

Figure 7 shows the results of reconstructing four dif-
ferent variations of Lily. Despite noticeable occlusions
and shape variations, our method still achieves high qual-
ity modeling of flower petals. Especially, we realistically
recovers the shapes of occluded petals. It is worth mention-
ing that the orange Lily is about half the size of the other
three variations. Our scale-invariant morphable model can
robustly reconstruct the petal shapes by eliminating the size
ambiguity and focus on shape variations.

The second species is Pansie which contains five petals
on three layers, with top layer(one petal) occluding mid-
dle one(two petals), and middle layer occluding the bottom
one(two petals). This type of flower is more challenging
due to the severe occlusions in bottom layer. Only a tiny
part of that layer is visible during scan. In the same way,
we use one morphable shape model for this species to re-
construct samples of four different variations. As shown in
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Figure 9. Constraint importance evaluation. From left to right:
a) Scanned 3D data; b) Remove one constraint; c) With all con-
straints. From top to bottom: Comparisons with removing 1) root
convergence constraint(EC ); 2) relative depth constraint(Eq. 16);
3) similarity constraint(ES). Zoom-in for better visualization.

Figure 8, our algorithm reconstructs the flower models with
high quality. For the two petals in bottom layer with severe
occlusions, our method can fit the visible part very well,
while maintaining reasonable predictions on invisible parts.
In Pansie species, the depth differences between neighbor-
ing layers are very small. Such large occlusion regions al-
low a large degree of freedom when fitting invisible regions,
which is prone to violate 3D relative geometries among dif-
ferent parts. Our relative depth constraints for fitting can
efficiently avoid this and obtain more realistic reconstruc-
tions. The similarity constraints on petals in same layer
constrain each other within a reasonable shape range dur-
ing fitting and finally reach a common good solution.

Constraint evaluation To highlight the importance of our
proposed constraints, we conduct comparisons with remov-
ing one constraint each. Figure 9 shows corresponding re-
sults. We can see our joint petal fitting scheme with these
prior constraints are crucial in obtaining high quality mod-
eling. As marked out in red, without the root convergence
constraint EC , roots of individually fitted petals usually
cannot converge, making the reconstruction unnatural. This
constraint also assists in handling occlusions by preventing
petal from shrinking to only visible parts. The relative depth
constraint(Eq. 16) maintains correct 3D geometry relations
among different layers. The similarity constraint ES can
ensure a reasonable reconstructed shape when a petal is un-
der severe occlusion.

We also make a comparison with a leaf fitting method in
a state-of-the-art foliage reconstruction work [2], which use
the same morphable shape model for leaf. They use simi-
lar framework but without any prior constraints. Figure 10
shows a comparison with their leaf fitting method. We can
see that our method with the proposed constraints can better
reconstruct occluded regions, recover correct 3D geometry



a b c d e f g h

Figure 7. 3D modeling of Lily species. From left to right: (a) Petal segmentation; (b) Scanned 3D data; (c) Reconstructed model with-
out texture; (d) Reconstructed model with texture; (e)-(f): Model from different views. The orange example(last row) is scaled up for
visualization purpose. Zoom-in for better visualization.

a b c d e f g h 
Figure 8. 3D modeling of Pansie species. From left to right: (a) Petal segmentation; (b) Scanned 3D data; (c) Reconstructed model without
texture; (d) Reconstructed model with texture; (e)-(f): Model from different views. Zoom-in for better visualization.

relations of different components and more surface details.
The reason that the leaf fitting method in [2] cannot be ap-
plied to our flower petal is that petals in our database have
significantly larger variations in shape and size, compared
to leaves they work on. Without additional constraints, the
individually fitted shape has more freedom and is prone to
grow or shrink to non-realistic shapes.

Cross species test Last but not the least, to demonstrate
the scalability of our method, we conduct a cross species
test, using morphable shape model of Lily species to re-
construct flowers from a different species(Daisy). The two

species share similar shape, but the size of Lily petal is ap-
proximately 20 times larger than Dasiy’s. Reconstructing
Dasiy is even more challenging since there are a large num-
ber of occlusion regions and relative 3D geometry relations
to handle (approximate 20 petals). The cross species recon-
struction result is shown in Figure 1. Despite substantial
variations, our algorithm can still robustly obtain high qual-
ity reconstructions as long as the training and testing species
share similar petal shapes.



a b c 
Figure 10. Comparison with leaf fitting method in [2]. From left
to right: a) Scanned 3D data; b) Results from [2]; c) Our results.
Zoom-in for better visualization.

5. Conclusions

In this paper we present a framework for 3D modeling
of flower petals. Our approach builds a scale-invariant mor-
phable model of flower petal shape from different variations
within a species. In our data-driven modeling approach, the
key idea is to use domain knowledge from botany study in
petal fitting to handle occluded shape and maintain correct
3D spatial relations. We demonstrate our modeling algo-
rithm with high quality reconstructions for various flower
species.

A limitation of our current approach is that there are
still inaccuracies in finding correspondence among varia-
tions of a flower species, which can downgrade the quality
of morphable shape model. And the performance of our fit-
ting algorithm is dependent on the segmented boundary of
petals. More constraints might need to be incorporated for
robust fitting under inaccurate petal boundaries. In addition,
an alternative scanning method is to use volumetric imag-
ing techniques (e.g. micro-CT scanners) which can lead to
more complete data acquisition and 3D modeling.

A future extension of the work is to model the devel-
opment process of flowers. By capturing real-world data
for multiple flowers in different life stages, a reconstruc-
tion framework taking the temporal domain into considera-
tion can be developed to build a 4D spatio-temporal flower
development model, which can be used for estimation of
flower growth and visualization of flower development pro-
cess.
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