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Abstract

In large scale image classification, features such as
Fisher vector or VLAD have achieved state-of-the-art re-
sults. However, the combination of large number of exam-
ples and high dimensional vectors necessitates dimension-
ality reduction, in order to reduce its storage and CPU costs
to a reasonable range. In spite of the popularity of var-
ious feature compression methods, this paper argues that
feature selection is a better choice than feature compres-
sion. We show that strong multicollinearity among feature
dimensions may not exist, which undermines feature com-
pression’s effectiveness and renders feature selection a nat-
ural choice. We also show that many dimensions are noise
and throwing them away is helpful for classification. We
propose a supervised mutual information (MI) based im-
portance sorting algorithm to choose features. Combining
with 1-bit quantization, MI feature selection has achieved
both higher accuracy and less computational cost than fea-
ture compression methods such as product quantization and
BPBC.

1. Introduction
Image classification now regularly deals with large-scale

datasets. For example, ImageNet [5] contains tens of thou-
sands of object types and millions of images. In the past
few years, many powerful, yet very high dimensional fea-
tures like the Fisher Vector (FV) [20, 23], VLAD [14, 1],
and super vector [30] have been proposed. They are often
combined with the linear SVM classifier, and have achieved
state-of-the-art performance on many image classification
and image retrieval tasks [21, 22]. However, when these
features are applied to large scale datasets, the rendezvous
of very high dimensionality and huge number of examples
poses serious challenges for both feature vector storage and
subsequent classifier learning. For example, 310 gigabytes
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are required to store the Fisher Vectors for a subset of Ima-
geNet images [23].

Feature compression has been proposed as a remedy for
this problem, which compresses high dimensional feature
vectors into manageable length. While “compression can-
not significantly reduce classification accuracy” is an ob-
vious goal for all these methods, some also aim at reducing
the computational cost (i.e., reducing classifier training time
and increasing testing speed.)

We divide these methods into three categories. The first
is Product Quantization (PQ) [12, 26], which is a state-of-
the-art feature compression method. In PQ, a long fea-
ture vector is divided into short segments. Each segment
is vector quantized into an index using a codebook. The
codebooks can be simply acquired by k-means clustering,
or learned in whole as the Cartesian product of codebooks
from all segments [17, 9]. Then, these indices and code-
books are stored, which require much fewer bytes than the
original features. The second category of methods are hash-
ing based, which transform a real-valued feature vector into
a shorter binary string. In [22], the authors tested hashing
kernel on ImageNet, where sparse random projections are
generated to reduce feature dimensionality. In [11], an iter-
ative method, ITQ, is used to find linear projections which
map original feature vectors to binary strings through ro-
tation. In [10], a set of bilinear projections (BPBC) are
learned to transform a tensor representation of the long vec-
tors into binary codes, which further reduces the storage
requirement. The third and final category uses dimension
reduction techniques to transform long vectors into (real-
valued) shorter ones. In [24], a computationally expensive
Partial Least Squares (PLS) analysis is used to reduce the
feature length for human detection. In [4], rotated sparse
regression is proposed to compress the 100K dimensional
vector for face verification.

A common theme of all these compression methods is
that linear projection (i.e., dot-product between the long
feature vector or part of it with a learned vector) is the key;
and, the effectiveness of these methods is determined by the
quality of the learned linear projections.
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Our goal is to reduce the feature dimensionality, and
hence the storage cost and computational load. In this pa-
per, we argue that to choose is better than to compress, i.e.,
to select a small subset of dimensions from the original vec-
tor rather than compressing it using sophisticated feature
compression methods.

Linear (or bilinear) projections generate new features
(either real-valued or binary) from the original high dimen-
sional one. One implicit but obvious assumption for all
compression methods is that different dimensions in the
original vector are not independent and strong linear rela-
tions exist among multiple dimensions. Otherwise, linear
projections cannot extract informative new features.

We first show that surprisingly, strong linear correla-
tions may not hold in high dimensional vectors. Correla-
tion coefficients between randomly chosen FV dimension
pairs almost always reside in a small region around 0, i.e.,
collinearity (linear dependency between two dimensions)
almost does not exist in FV in practice. Thus, it is reason-
able to conjecture that multicollinearity (linear dependency
among more dimensions) does not exist either.

Second, since the probable missing of multicollinearity
undermines existing feature compression methods, we pro-
pose a simple alternative which chooses a subset of feature
dimensions instead of compress them. We use a mutual in-
formation (MI) based importance sorting criterion to choose
the subset, which has achieved higher or comparable image
classification accuracy than feature compression methods
in our experiments. Unlike feature compression which is
mostly unsupervised, the proposed feature selection method
is supervised (using the image labels to guide feature selec-
tion), which may partially explain feature selection’s effec-
tiveness. Another advantage of the proposed MI method is
that even if we require several subsets with different sizes
(or different dimensionality compression ratios), the impor-
tance values for every dimension just need to be computed
and sorted once. We use a 1-BIT quantization to further
reduce a selected dimension into one bit.

Because the number of chosen features is much fewer
than that of original features, classifier training and testing
are now scalable and greatly accelerated, meanwhile still
achieve competitive classification accuracy to state-of-the-
art compression methods, e.g., PQ. Empirical evaluations
in Sec. 4 confirm that MI feature selection has a clear edge
over PQ and other compression methods in large scale im-
age classification.

2. Brief introduction of feature compression
We first briefly introduce details of some feature com-

pression methods for high dimensional vectors.
For a set of high dimensional feature vectors with D di-

mensions, PQ [12] divides each feature vector into G = D
d

segments, where d is the segment length. For each segment,

PQ learns a codebook with K words using the k-means
clustering method. K is usually a power of 2, and one seg-
ment is then represented by the index to its nearest code
word. PQ needs to store both the indices (i.e., compressed
features) and the G codebooks. Assuming single precision
floating numbers (4 bytes) are used, the codebooks in to-
tal require 4GKd = 4KD bytes to store, and the D di-
mensional feature vector are compressed from 4D bytes to
G log2 K

8 bytes, with a compression ratio 32D
G log2 K = 32d

log2 K .
In learning and applying a classifier, the compressed fea-

tures must be decoded using the real-valued code word as-
sociated with the stored indices. Thus, PQ compressed fea-
ture has the same training and prediction complexity as the
original uncompressed feature. [26] proposes an acceler-
ation technique for SVM training on PQ compressed fea-
tures. This technique (without special optimization) was
shown slower than a plain SVM with optimized BLAS li-
brary [26]. Thus, we do not use it in our PQ experiments.

[13] recommends randomly rotating the original vector
before applying PQ. Hashing based techniques usually have
this rotation step, e.g., in spectral hashing [27], ITQ [11],
BPBC [10], etc. Among these methods, BPBC is more
suitable for large scale problems. It uses bilinear instead
of linear projections to reduce the memory requirement for
the codebooks. In BPBC, each high dimensional vector
x ∈ RD is reshaped into a matrix (or 2nd order tensor)
x′ ∈ Rd1 × Rd2 , D = d1d2. Then, two orthogonal projec-
tion matrices R1 ∈ Rd1 × Rc1 and R2 ∈ Rd2 × Rc2 can be
learned or randomly generated. Finally, a vectorized form
of sgn(RT

1 x
′R2) is the compressed binary features, which

requires c1c2
8 bytes.

3. Feature selection by mutual information
based importance sorting

In this section, we first study properties of high dimen-
sional features and show that selection may be a better
choice than compression. We then propose a mutual infor-
mation based importance sorting feature selection method.

3.1. Feature selection vs. (bi-)linear projection

We start by studying the correlation between any two di-
mensions in FV vectors. Pearson’s correlation coefficient
measures correlation between dimensions i and j:

r =
xT
:ix:j

‖x:i‖‖x:j‖
, (1)

where x:i is the vector formed by the i-th dimension of FV
of all images in a dataset, and r ∈ [−1 1] measures the
linear dependency between the two dimensions (±1 for total
correlation and 0 for no correlation).

We show the histograms of r values in Fig. 1 computed
from Fisher vectors of the Scene 15 dataset [15]. There are
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Figure 1. Distribution of Pearson’s correlation coefficients be-
tween dimensions in Fisher vectors.

128 Gaussian components and 64 dimensional SIFT (after
PCA) in FV and 8 spatial regions, leading to 131072 dimen-
sions. Three types of r values are computed for all pairs of
dimensions in differently sampled subsets:

• Random: randomly sample 1000 dimensions;
• Same region: randomly choose a spatial region, then

randomly sample 10% dimensions from this region;
• Same Gaussian: randomly choose a Gaussian compo-

nent in FV, then use all dimensions corresponding to it.

Fig. 1 shows that in all subsets, almost all r values are
very close to zero—more than 99.9% satisfy that |r| < 0.2.
The RANDOM and SAME REGION curves are almost iden-
tical except in the zero point, meaning that feature correla-
tion is not affected by spatial pyramid. Dimensions sam-
pled from the same Gaussian component (i.e., supposedly
visually similar) exhibits slightly higher correlations, but
the correlation level is still low.

We observed similar results using the VLAD represen-
tation [14] and in all datasets we evaluated in Sec. 4.
Thus, linear dependency between two dimensions (that is,
collinearity) almost does not exist in high dimension vi-
sual representations. Although statistical tests for multi-
collinearity (strong linear relationship among more than 2
features) are too expensive to perform for FV or VLAD,
given the missing of collinearity, we have reasons to con-
jecture that the chance of multicollinearity is also small.

An argument now naturally follows: if we have belief in
the missing of multicollinearity, feature compression does
not seem to be the best choice for reducing feature dimen-
sionality, because linear and bilinear projections both hinge
on strong multicollinearity among dimensions, especially
among those features that are contiguous in FV or VLAD.

Note that the SAME REGION and SAME GAUSSIAN subset
in Fig. 1 both contain such contiguous dimensions.

We will also show in the next section that most dimen-
sions are noise and are not useful (if not harmful) for clas-
sification. Feature compression use linear projections to
include all these noisy features into the new compressed
features, which is also sub-optimal. Thus, we propose to
choose a subset of “good” features (i.e., feature selection)
for dimension reduction.

3.2. MI based importance sorting

There is a vast literature on feature selection. For exam-
ple, given a decision function wTx, if w is learned with
the `1 norm regularizer, the nonzero elements in w cor-
respond to the selected features. [25] proposes a Feature
Generating Machine, which learns a binary indicator vector
to show which dimension is useful or not. [18] considers
the dependency between a dimension and labels, and the
redundancy between features to select useful features based
on mutual information. [7] iteratively selects a new fea-
ture based on its mutual information with labels and already
selected features. However, these methods are all too ex-
pensive to be applied in our large scale image classification
problems. Thus, we will use a classic mutual information
based importance sorting approach. It is similar to [18] in
that mutual information (MI) between a dimension and the
labels is used to compute the importance of it, but depen-
dencies among different dimensions are ignored such that
we can afford the computational cost.

This is a supervised method—we use the image labels1

to estimate how useful a single dimension is. Specifically,
we denote image labels as y, the i-th dimension FV values
as x:i, and the mutual information as I(x:i,y). In gen-
eral, the larger the mutual information, the more useful this
dimension is for classification. The MI value is our impor-
tance score for each dimension, and is computed as:

I(x:i,y) = H(y) +H(x:i)−H(x:i,y) , (2)

where H is the entropy of a random variable. Since y re-
mains unchanged for different i, we just need to compute
H(x:i)−H(x:i,y).

We then sort the dimensions according to a decreasing
order of their importance values. Then, if we want to re-
duce to D′ dimensions, the top D′ in the sorted list can be
directly selected. When the compression ratio changes in
feature compression methods, they must update codebooks,
and update compressed features too. Both steps are very
time consuming. In feature selection, we enjoy the sim-
plicity when D′ changes: just choose an updated subset of
dimensions and no additional computations are needed at
all.

1A set of values in the set {1, . . . , C} in a problem with C categories.
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Figure 2. Comparison of dimensions’ usefulness / importance val-
ues of different quantization methods on the Scene 15 dataset. This
figure is best viewed in color.

3.3. Entropy calculation and further quantization

In Eq. 2 we need to compute the entropy values. A typ-
ical method to compute the differential entropy of a real-
valued random variable (x:i) is to estimate its probability
distribution function by kernel density estimation, which is
again computationally too heavy in large scale problems.
Rather, we use quantized discrete variables to compute en-
tropy and further reduce storage costs.

We use two kinds of quantization:

• 1-bit: quantize a real number x into 2 discrete bins.
x← 1 if x ≥ 0; and x← −1 if x < 0.

• N-bins: find the minimum and maximum value in a di-
mension, and uniformly quantize all values in this di-
mension into N bins.

The discrete entropy isH(x) = −
∑

j pj log2(pj) where pj
is the probability that x falls in the j-th bin.

A good quantization should maximize the mutual in-
formation between dimensions and the label vector. We
show the histogram of mutual information values of dif-
ferent quantization setups in Fig. 2. We use the quantized
empirical distributions to compute importance / usefulness
scores. Note that this density estimation method just se-
quentially scan the training vectors once without additional
computation, which makes it suitable for large scale dataset.

An observation common to all quantization methods is
that most dimensions have small importance values. Ex-
cept in 32-BINS, more than 90% dimensions have their MI
values smaller than 0.1. This observation shows that most
dimensions may not be useful for image classification. Fea-
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Figure 3. Histogram of values (after power normalization) in one
FV dimension in the Scene 15 dataset.

ture selection, beyond having the virtue in reducing storage
and CPU costs, also has the potential to improve classifica-
tion accuracy by removing noisy or irrelevant dimensions.

Another important observation is that the 1-BIT quanti-
zation is better than 4-BINS and 8-BINS. Two points are
worth noting. First, 1-BIT has 2 quantization bins. It is dif-
ferent from 2-BINS: in 1-BIT the quantization threshold is
fixed to 0 a priori, rather than determined empirically as in
2-BINS. Second, in general for the same x, a bigger N in
N-BINS will lead to higher entropy value. For example, if x
is uniform in [0 1], 2-, 4- and 8-BINS quantization will have
discrete entropy values 1, 2 and 3, respectively. Thus, this
fact (1-BIT is better than 8-BINS) proves that proper quan-
tization is essential. In particular, in FV and VLAD, 0 must
be a quantization threshold.

Many feature compression methods use the 1-BIT quan-
tization to store features compactly, e.g., BPBC [10] and
FV compression [21]. An explanation of its effectiveness is
missing, though. From our quantization perspective, Fig. 2
quantitatively shows that 1-BIT is good at preserving useful
information. Furthermore, Fig. 3 qualitatively explains why
0 must be the threshold. After power normalization, 9 our
of 10 randomly chosen dimensions follow bimodal distribu-
tions, where the two modes are separated exactly at the zero
point. Thus, in order to keep the discriminative power of a
feature, we must use 0 as a quantization threshold.

Based on the above results, we use 1-BIT to compute im-
portance scores and choose a subset of dimensions. Finally,
we further quantize the chosen dimensions using the 1-BIT
quantization to further reduce storage cost. If D′ dimen-
sions are chosen, we just need D′

8 bytes to store an image.
The first bin (x ≥ 0) is stored as a value 1 in the bit, while
the second bin (x < 0) is stored as a value 0.

3.4. Classification using quantized features

We then learn linear SVM classifiers on top of the quan-
tized features. A simple table lookup trick can accelerate
linear SVM training and testing.



Efficient linear SVM learners, such as stochastic gradient
descent (SGD) [19] or dual coordinate descent (DCD) [29],
spend most of their training and almost all testing time in
the following two types of computations:
• Update: w ← λ1w + λ2x.
• Dot-product: wTx.

where w and x are the classifier boundary and one example,
respectively.

When we use a selected and quantized feature vector x̂ ∈
RD′/8, both steps can be made efficient by using a lookup
table. Note that each byte within x̂ corresponds to 8 chosen
dimensions, and we define a table Z ∈ R256 × R8:

Z =


−1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 1
−1 −1 −1 −1 −1 −1 1 −1

...
...

...
...

...
...

...
...

1 1 1 1 1 1 1 1

 . (3)

A byte i (0 ≤ i ≤ 255) corresponds to the i-th row in Z,
which expands the byte into its 8 quantized dimensions.

We assume the length of w can be divided by 8, which is
easy to satisfy. Then, when we perform either the update or
the dot-product computation, we process 8 dimensions in a
batch processing style: read one byte from x̂, then find its
corresponding row in Z, finally compute the summation or
dot-product of two small (length is 8) vectors.

4. Experiment
We evaluate the proposed mutual information based im-

portance sorting feature selection method on several large
scale benchmarks. It is compared with PQ (product quan-
tization) and BPBC. Since the datasets are large scale and
time consuming to evaluate, we use PQ results from the lit-
erature when they are available for a dataset, otherwise we
report PQ results from our own implementation.

We use the Fisher Vector to represent all images, follow-
ing the setup in [22]. Only the mean and variance part in FV
are used. The base visual descriptor is SIFT, which is re-
duced from 128 to 64 dimensional using PCA. The number
of Gaussian components is 256. We use the spatial pyramid
matching structure in [3] which extracts 8 spatial regions
from an image. Its structure is: the whole image, three hori-
zontal regions, and two by two split regions. The total num-
ber of dimensions in FV isD = 64×2×256×8 = 262144.
We revise the dual coordinate descent algorithm to learn a
linear SVM classifier from our selected and quantized fea-
tures or BPBC; and use the LIBLINEAR software package
in our PQ experiments.

The following benchmark datasets are used:
• VOC 2007 [6]. It has 20 object classes. Each image

may contain more than one object. We use all the train-

ing and validation images (5K) for training and the test-
ing images (5K) for testing.

• ILSVRC 2010 [2]. It has 1000 classes and 1.2M train-
ing images. We use all provided training and testing
images for training and testing, respectively.

• SUN 397 [28]. It has 397 classes. In each class, we use
50 training images and 50 testing images.

• Scene 15 [15]. It has 15 classes. In each class, 100
images are used for training, and the rest images are
used for testing.

In PQ, we use the segment length d = 8, which has the
overall best performance in [22] under different compres-
sion ratios and also used in BPBC [10]. We use k-means to
generate codebooks. Then, we change the codebook size K
to achieve different compression ratios in PQ.

In BPBC, we reshaped FV into a 128×2048 matrix, and
learn bilinear projections to achieve different compression
ratios. BPBC parameters need iterative updates, for which
a maximum of 10 iterations is used in our experiments.

The results are averaged on 5 random train/test splits in
Scene 15 and SUN 397. In VOC 2007, we use the prede-
fined split, but run 5 times to get different GMM models
and report the average mAP. For ILSVRC 2010, we run one
time using the given split. All experiments are tested on
a computer with Intel i7-3930K CPU and 32G main mem-
ory. All CPU cores are used during feature compression. In
classifier learning and testing, only one core is used.

We first report the absolute classification performance
(top 1 accuracy, top 5 accuracy, or mAP). Where space
permits, we also report the loss of performance (delta be-
tween the performance obtained from uncompressed and
compressed data) for easier comparisons. Finally, we com-
pare the efficiency of feature selection or feature compres-
sion, classifier learning and testing for these three methods.

4.1. VOC 2007

Mean average precisions (mAP) of various methods are
shown in Table 1. We use the code from [3]2 to generate FV
with the same length as [22], thus it is fair to compare MI’s
performance with the PQ result from [22].

Under the same compression ratio, MI’s mAP is higher
than that of PQ on VOC 2007. The uncompressed result in
our experiment and two cited PQ methods are close, but the
accuracy loss of MI is less than that of PQ. For example,
when the ratio is 256, MI only loses 1.75% mAP, while PQ
in [26] lost 8.5%.

In MI, a compression ratio 32 means that all dimen-
sions are kept but quantized. Similarly, ratio 128 means
that a quarter dimensions are selected and quantized. Ratio
32 provides the best discriminative ability in classification,

2The FV code is available at http://www.robots.ox.ac.uk/
˜vgg/software/enceval_toolkit/, version 1.1.



Table 1. Mean average precision (mAP) on VOC 2007. The loss of
mAP relative to original dense feature (ratio 1) is also computed.

Method Compression ratio mAP (%) Loss (%)

MI

1 58.57± 0.19 0
32 60.09± 0.09 -1.52
64 60.05± 0.16 -1.48

128 58.97± 0.23 -0.40
256 56.82± 0.49 1.75
512 52.70± 0.44 5.87

1024 46.52± 0.40 12.05

PQ [26]

1 58.8 0
32(d = 6) 58.2 0.6
64(d = 8) 56.6 2.2

128(d = 8) 54.0 4.8
256(d = 8) 50.3 8.5

PQ [22]

1 58.3 0
32(d = 8) 57.3 1.0
64(d = 8) 55.9 2.4
64(d = 16) 56.2 2.1

which confirms yet another time that the 1-BIT quantization
is effective in keeping useful information in features.

Another important fact is that when compression ratio
is smaller than 128, MI’s mAP is higher than the uncom-
pressed one. For example, ratio 64 (half dimensions used)
has almost the same mAP as ratio 32 (all dimensions used).
This observation corroborates that removing (a large por-
tion of) noisy features will not hurt classification.

In contrast, PQ’s accuracy decreases quickly and mono-
tonically when the compression ratio increases. The clas-
sification results of MI with more compression ratios are
shown from 32 to 1024. When the compression ratio is 256,
MI is comparable to that of PQ with compression ratio 32.
Even with compression ratio 1024, MI’s mAP (46.52%) is
still acceptable—remember that only 1024 bytes are needed
to store the FV for an image at this compression level!

MI’s classifier training time on VOC 2007 is shown in
Fig. 4. When the compression ratio changes from 32 to
1024 (doubling each time), the training time approximately
halves each time. In other words, training time is roughly
linearly proportional to storage size.

4.2. ILSVRC 2010

We report top-5 accuracy on the ILSVRC 2010 dataset in
Table 2. Limited by our computer’s memory capacity, we
need to start from compression ratio 64 in MI. As shown in
Table 2, MI’s result is better than PQ’s [22] with the same
FV setup and the same compression ratio. MI with com-
pression ratio 128 has similar result as PQ at ratio 32.

If absolute accuracy rates are concerned, [19] reported
that PQ with a well-tailored SGD classifier achieves 66.5%
top-5 accuracy. When combining more visual descriptors
like color descriptors [22, 23] and LBP [16], higher accu-
racy can be achieved on this dataset. We conjecture that
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Figure 4. Classifier learning time using the proposed (MI) com-
pressed features on VOC 2007 under different compression ratios.

Table 2. Top-5 accuracy on the ILSVRC 2010 dataset.
Method Compression ratio Accuracy (%)

MI
64 61.06
128 56.64
256 50.15

PQ [22]
32(d = 8) 56.2
64(d = 8) 54.2
64(d = 16) 54.9

Table 3. Top-1 accuracy on the SUN 397 dataset.
Method Compression ratio Accuracy (%)

dense FV [23] 1 43.3
multiple features [28] 1 38.0

spatial HOG [8] 1 26.8

MI

32 41.88±0.31
64 42.05±0.36
128 40.42±0.40
256 37.36±0.34

PQ

32 42.72±0.45
64 41.74±0.38
128 40.13±0.33
256 37.84±0.33

the proposed feature selection framework can also achieve
better results than PQ in these richer representations.

4.3. SUN 397

We show accuracy of MI and PQ on the SUN 397 dataset
in Table 3. Limited by our main memory size, we do not
evaluate accuracy of the uncompressed dataset. Comparing
with uncompressed FV [23], MI is inferior yet close to its
accuracy when the compression is small, e.g., 32 and 64.
Note that when color descriptors are combined with SIFT,
higher absolute accuracy is achieved [23] on this dataset.

Because we did not find any PQ compression results on
this dataset, we implemented and evaluated our own PQ
feature compression, and learned classifiers using a DCD
linear SVM classifier. Comparing with PQ, MI is 0.8% in-
ferior to PQ when compression ratio is 32, but better than
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Figure 5. Classification accuracy of FV on Scene 15 using three
methods: MI (proposed), PQ, and BPBC.

or comparable with it when compression ratio gets larger.
However, as we will show in Sec. 4.4, the required time in
feature compression/selection, classifier learning and test-
ing of MI is much less than that of PQ. Thus, overall MI is
more efficient and effective than PQ.

One final note for Table 3 is that MI exhibits non-
monotone accuracy again: ratio 64 accuracy is slightly
higher than ratio 32.

4.4. Scene 15

On the Scene 15 dataset, we not only compare the ac-
curacy of different methods. Because this dataset is small
scale, we also perform additional experiments to compare
the efficiency of the proposed MI method with PQ and
BPBC, including feature compression/selection time, the
classifier learning time, and the testing time.

The minimum compression ratio that MI and BPBC can
reach is 32, and the maximum compression ratio of PQ can
reach is 256 when group size d = 8. So, we restrict the
compression ratio to the set {32, 64, 128, 256}. The class
average accuracy is reported in Fig. 5. Overall all three
methods have similar accuracies. PQ has an edge at ratio
32, while MI wins at all other ratios.

We further evaluate the feature generation time of these
three methods, including extraction of visual descriptors
(SIFT), FV generation, and feature compression/selection.
Note that the first two parts of time is the same for all meth-
ods. The feature selection time in MI is negligible because it
only involves keeping a small subset of values from the FV
vector, while mutual information based selection of the sub-
set is also very efficient. In PQ, when the compression ratio
is small, e.g., 32, feature compression (including the code-
book generation time) takes about 30% of the total feature
generation time in our experiments. When the compression
ratio gets larger, PQ’s feature compression time decreases
significantly till less than 5% of the whole feature genera-
tion time. BPBC costs most time in the feature compression
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Figure 6. Classifier training time of FV on Scene 15 using three
methods: MI (proposed), PQ, and BPBC.
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Figure 7. Classifier testing time of FV on Scene 15 using three
methods: MI (proposed), PQ, and BPBC.

step. At least 50% of the entire feature generation time is
spent on feature compression, which includes feature vec-
tor reshaping, learning of projection matrices, and feature
quantization. Another issue is that BPBC is not suitable
for learning two high dimensional matrices. In our experi-
ments, the second dimension of the reshaped matrix is 2048,
which makes the learning process very lengthy. Our eval-
uations find that the most efficient dimension range of the
reshaped matrix is on the order of hundreds. That is, BPBC
highly relies on the intrinsic structure of a feature vector,
which is not as flexible as MI or PQ in dimensionality re-
duction for high dimensional vectors.

Finally, the classifier training and testing time of these
three methods are shown in Fig. 6 and Fig. 7, respectively.
The training and testing times of MI and BPBC are similar
to each other at all compression levels, and both are much
less than that of PQ. This is because MI and BPBC only
uses the compressed/selected dimensions, while PQ has to
decode the short compressed vector into a vector as long
as the original features on-the-fly. A similar pattern is ob-
served in Fig. 7 for testing time.

5. Conclusion
In this paper, we propose that in order to reduce the di-

mensionality of powerful yet very high dimensional fea-
tures (such as Fisher vector or VLAD), feature selection
(i.e., choosing a subset of dimensions from the original fea-



ture vector) is a better approach than existing feature com-
pression methods (which perform linear projections on the
original feature to extract new lower dimensional ones).

We first empirically show that collinearity almost does
not exist in FV or VLAD, a fact that also hints on the
missing of multicollinearity (i.e., strong linear relationships
among more than 2 dimensions). This observation under-
mines the effectiveness of compression methods. We pro-
pose to use mutual information to choose a subset of dimen-
sions for dimensionality reduction, which is a natural choice
if we assume both collinearity and multicollinearity do not
exist. Feature selection also removes noisy dimensions.

We use 1-BIT quantization to compute mutual informa-
tion. We show that when quantizing dimensions, the zero
value must be a threshold because it leads to bimodal distri-
butions. Later, we also quantize the chosen dimensions into
1-BIT and design a linear SVM classifier to learn directly
on the quantized values. Experiments show that the pro-
posed feature selection and quantization method achieves
better accuracy than feature compression methods, and is
more efficient.

Our future works include the following. First, we will
evaluate our method on more high dimensional feature
vectors, which can be extracted from multiple descriptors
like [22, 23, 16]. Second, more effective feature selec-
tion will be studied for higher accuracy. Finally, more ef-
ficient classifier learning techniques can be investigated for
the compressed or quantized features.
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