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Abstract

This work proposes a novel framework for optimization
in the constrained diffeomorphism space for deformable
surface registration. First the diffeomorphism space is mod-
eled as a special complex functional space on the source
surface, the Beltrami coefficient space. The physically plau-
sible constraints, in terms of feature landmarks and defor-
mation types, define subspaces in the Beltrami coefficient
space. Then the harmonic energy of the registration is min-
imized in the constrained subspaces. The minimization is
achieved by alternating two steps: 1)optimization- diffuse
the Beltrami coefficient, and 2)projection- first deform the
conformal structure by the current Beltrami coefficient and
then compose with a harmonic map from the deformed con-
formal structure to the target. The registration result is d-
iffeomorphic, satisfies the physical landmark and deforma-
tion constraints, and minimizes the conformality distortion.
Experiments on human facial surfaces demonstrate the effi-
ciency and efficacy of the proposed registration framework.

1. Introduction

Surface registration plays a fundamental role in comput-
er vision and engineering fields. Given the source and target
surfaces with Riemannian metrics,(Sk,gk),k= 1,2, the reg-
istration problem is to find a mappingf : S1→ S2. In prin-
ciple, the diffeomorphisms between the two surfaces form
an infinite dimensional space. It is intrinsically challenging
to find an optimal one in this mapping space. In general, the
desirablef should satisfy many criteria as follows:

1. It should be a diffeomorphism, namely smooth and bi-
jective, for surfaces with any topologies.

2. It should minimize distortions. For example, confor-
mal registration minimizes the angle distortion, opti-
mal mass transport map minimizes the area distortion,

harmonic map minimizes the elastic membrane energy,
and biharmonic map minimizes the thin plate energy.

3. It should satisfy physical feature landmark constraints.
Suppose{pi} and{qi}, i = 1..mare given,f (pi) = qi .

4. It should respect and reflect the physical deformation
reality, determined by physical characteristics of mate-
rials and governed by physical laws.

5. The computation should be efficient and accurate.

Although there are many existing methods for de-
formable surface registration, few of them satisfy the above
criteria. The iterative closest point (ICP) method [2] can
handle surfaces which differ by a rigid motion, but cannot
handle nonrigid isometric deformation. Conformal param-
eterization based registration methods [18] can handle non-
rigid isometric deformation, but have difficulties for non-
conformal deformation, such as large human expression
changes. Optimal mass transportation maps cannot handle
landmarks or surfaces with complicated topologies. Har-
monic maps may not be diffeomorphic if the target domain
has complicated topologies or with landmark constraints.
Biharmonic maps cannot handle surfaces with landmarks.

This work addresses the deformable surface registra-
tion problem and formulates it as an optimization prob-
lem in diffeomorphism space. Basically, any diffeomor-
phism f : S1→ S2 induces a complex differentialµ( f ) on
the source,‖µ( f )‖∞ < 1, the so-called Beltrami coefficien-
t. Reversely, the diffeormorphism can be fully recovered
by its Beltrami coefficient. Therefore, the diffeomorphis-
m space is converted to a complex functional space on the
source, denoted asB(S1). We perform the optimization in
this Beltrami coefficient space.

Furthermore, depending on the physical nature of the
mappings, we only consider those diffeomorphisms that are
physically plausible, whose Beltrami coefficients form sub-
spaces inC (S1). In this work, we add two types of phys-
ical constraints to the diffeomorphism between human fa-
cial surfaces: 1)landmark constraints. Assume the map-
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ping corresponding to a givenµ is f µ , then we require
f µ(pi) = qi , i = 1..m; 2) constraints related to the facial
skin deformation. The skin in forehead and nose regions,
denoted asΩ, has much less deformations during expres-
sion change, so we can require the deformation inΩ to be
close to an isometry and its Beltrami coefficient to be zero.
Therefore our optimization is performed in the subspace

C (S1) := B(S1)
⋂

{µ | µ |Ω ≡ 0}
⋂

{µ | f µ(pi) = qi ,∀i}.
(1)

The energy we try to optimize is the conformality distortion
of the mapping, which is achieved by minimizing the har-
monic energy of the Beltrami coefficient in the subspace.
The computation process has mainly two steps:

1. Optimization: diffuse current Beltrami coefficientµ to
reduce its harmonic energy in the whole spaceB(S1);

2. Projection: project µ ∈ B(S1) to the constraint sub-
spaceC (S1).

1.1. Previous Works

Surface registration and tracking has a broad range of ap-
plications, such as shape matching and recognition for de-
formable objects in computer vision, shape modeling in ge-
ometric modeling, morphological study in medical imaging,
and animation in game industry [6, 8, 16, 17, 20]. In recent
years, 3D surface registration methods have been intensive-
ly explored. Most existing methods directly deal with non-
rigid deformations inR3, but always stop at a local optima
and hardly get a global solution.

Surface conformal mapping based methods have been
developed for surface matching [5, 15, 10], registration
[3, 22], and tracking [23]. The key idea is to map surfaces
to 2D canonical domains and then solve the surface regis-
tration problem as an image registration problem. These
methods can handle nonrigid deformations. Surface quasi-
conformal mapping has great potential to deal with large-
scale nonrigid deformations. The Beltrami holomorphic
flow method [12] and the auxiliary metric method [21] were
introduced for computing surface quasiconformal maps and
further applications of surface registration, compression and
inpainting. Extremal quasiconformal maps between two
planar disks with Dirichlet boundary conditions were re-
cently explored in [19] for surface parameterization. Te-
ichmüller map between surfaces with landmark point con-
straints was recently introduced in [9].

In real applications, landmark constraints are usually in-
troduced to guide surface registration, however, hard con-
straints sometimes will cause flipping in the mapping (i.e.,
not a diffeomorphism). The proposed method in this work
can guarantee both diffeomorphism and hard landmark con-
straints. Besides that, we introducephysical deformation
constraintsfor those regions without specific conformality
distortions during surface deformation, which are denoted
by Beltrami coefficientµ .

1.2. Contribution

The major contribution of the current work is to propose
a novel registration framework for deformable surfaces with
general and large deformations and landmark point con-
straints. The registration is formulated as an optimization
problem in a constrained diffeomorphism space. To our best
knowledge, this is the first work which 1) satisfies landmark
and physical deformation constraints, 2) guarantees diffeo-
morphism and 3) has minimal conformality distortion.

The diffeomorphism space is first modeled as a special
complex functional space on the source surface, the so-
called the Beltrami coefficient space. The landmark con-
straints and the physically meaningful constraints define the
subspaces in the Beltrami coefficient space. Then the har-
monic energy of the registration is minimized in the con-
strained subspaces by alternating two main steps: 1)op-
timization and 2)projection. The optimization step is to
diffuse the Beltrami coefficient; the projection step first de-
forms the conformal structure by the current Beltrami coef-
ficient, and then composes with a harmonic map from the
deformed conformal structure to the target.

2. Theoretic Background

This section briefly introduces the theoretic background.
We refer readers to [13] for detailed explanations in dif-
ferential geometry, [14] for harmonic mappings and [1] for
quasiconformal mapping.

2.1. Conformal Mapping

Given two metric surfaces(S1,g1) and(S2,g2), a map-
ping φ : S1→ S2 is called aconformal mappingor angle-
preservingmapping, if the pullback metric induced byφ on
S1, φ∗g2 = e2λ g1, whereλ is called the conformal factor.
Conformal mappings must be diffeomorphisms.

According to surface uniformization theorem, any met-
ric surface can be conformally mapped to 2D canonical do-
main. The mapping between two metric surfaces(Sk,gk)
can be converted to the mapping between their conformal
(isothermal) domains, as shown in the following diagram:

(S1,g1) (S2,g2)

(D,dzd̄z) (D,dwdw̄)

-
f̃

?

φ1

?

φ2

-

f

(2)

Supposez,w are conformal parameters ofS1 andS2, respec-
tively, andφk : Sk→ D are the corresponding parameteriza-
tions. The mapping between parameter domainsf : D→ D

induces a mapping̃f : S1→ S2 between two surfaces.f is a
diffeomorphism if and only iff̃ is a diffeomorphism.



2.2. Surface Ricci Flow

An efficient way to compute conformal mapping is
Hamilton’s surface Ricci flow [7]. Let the metric tensor of
the surface isg= (gi j ). Assume the user prescribes a target
curvatureK̄(p). Then the Ricci flow is defined as

∂gi j (p, t)

∂ t
= 2(K̄(p)−K(p, t))gi j (p, t).

Hamilton and Chow [4, 7] proved that whent → ∞, K(∞)
converges to the target curvaturēK exponentially fast.

Suppose(S,g) is a topological disk with four bound-
ary points as markers{v0,v1,v2,v3}. We can set the target
Gaussian curvaturēK(p) to be zero at every interior point,
the target geodesic curvature to be zero at every boundary
point except the markers, and the target exterior angles at
markers to beπ

2 . Then Ricci flow conformally deforms the
surface to be a planar rectangle. The mapping is denoted
asφ : (S,g)→ (R,dzd̄z). Furthermore, the four markers are
mapped to the four corners, respectively.

2.3. Quasiconformal Mapping

Given two surfaces with same topology, in general, there
doesn’t exist a conformal mapping between them, but there
must be quasiconformal (q.c.) mappings between them.

Let complex differential operators be∂z = 1
2(∂x −

i∂y),∂z̄ =
1
2(∂x + i∂y). A complex function f : C → C is

holomorphic, if ∂z̄ f = 0. TheBeltrami coefficientµ f of
the mappingf : z→w(z) is defined as

wz̄ = µ f (z)wz, (3)

called theBeltrami equation. The mappings between the
unit disks and their Beltrami coefficients have one-to-one
correspondences. Namely,{φ : D→D|Jφ > 0}/Mob(D)∼=
B(D), whereB(D) := {µ : D→ C|‖µ‖∞ < 1}. The left
hand side is the space of all diffeomorphisms from the disk
to itself, whereJφ is the Jacobian; the right hand side is the
functional space of all Beltrami coefficients with norm less
than one everywhere.Mob(D) is Möbius transformation
group, each Möbius map has the formz→ eiθ z−z0

1−z̄0z.

Define the maximal dilation off asK f =
1+‖µ‖∞
1−‖µ‖∞

. Intu-
itively, a q.c. mapf maps infinitesimal circles to infinites-
imal ellipses, and the ratio between the major axis and the
minor axis is given byK f (z). A homeomorphism with dila-
tion less thanK is called aK-quasiconformal mapping.f is
conformal if and only ifµ f = 0 everywhere andK f = 1.

2.4. Auxiliary Metric for Solving Beltrami Equation

Supposef : z→ w is a quasiconformal mapping with
Beltrami coefficientµ . The Beltrami equationwz̄ = µ(z)wz

can be solved using Ricci flow method as well. Suppose
the mappingf maps a topological quadrilateralS⊂ C to a
rectangle, and the original Riemannian metric isg= dzd̄z.

We construct an auxiliary metric̃g= |dz+ µdz̄|2. Then we
use Ricci flow to map(S, g̃) to a planar rectangle, and the
mapping is the quasiconformal mapf .

2.5. Harmonic Map

Let f : (D, |dz|2)→ (D, |dw|2) be a Lipschitz map be-
tween two disks,z= x+ iy andw= u+ iv are complex pa-
rameters. Theharmonic energyof the map is defined as

E( f ) =
∫

D

(|wz|
2+ |wz̄|

2)dxdy. (4)

Definition 2.1 (Harmonic Map) A critical point of the
harmonic energy is called a harmonic map.

TheHopf differentialof a mappingf φ( f ) is defined as

Φ( f ) = wzwz̄dz2. (5)

If the mapping is harmonic, then it satisfies the Laplace e-
quationwzz̄ = 0. This is equivalent toΦ( f ) being holo-
morphic. Furthermore,Φ( f ) is zero if and only if f is a
conformal mapping. In general, harmonic mapping is un-
necessarily diffeomorphic.

Suppose one change the parameterization of the source
from z to ζ , such thatζz̄ = (µ + εν)ζz, then compute the
harmonic map with respect toζ , denoted ashµ+εν , then the
variation of the harmonic energy is given by

d
dε

E(hµ+εν) =−4Re

∫

D

Φ(hµ)νdζxdζy. (6)

3. Optimization in Constrained Diffeomor-
phism Space

In our current work, two metric surfaces(Sk,gk),k= 1,2
are given with landmarks{pi}⊂S1, {qi}⊂S2, i = 1..mand
subregionsΩ⊂S1. We aims at finding a map̃f : (S1,g1)→
(S2,g2), such thatf̃ is a smooth diffeomorphism and satis-
fies the landmark constraints,f̃ (pi) = qi , furthermore,f̃ on
Ω is conformal, i.e.,µ( f̃ )|Ω ≡ 0. Namely,µ( f ) ∈ C (S1),
which is the subspace ofB(S1) defined in (1).

Let φk : (Sk,gk)→Rk be the conformal parameterization,
whereRk’s are planar rectangle domains. Letf : R1→ R2

be the corresponding mapping between parameter domains.
According to (2), the desired map is̃f = φ−2

2 ◦ f ◦φ1. Then
the problem is converted to find the optimal diffeomorphism
f . For convenience, we define two subspaces ofB(R1),

S0 := {µ |µ |φ1(Ω) ≡ 0},
S1 := {µ | f µ(φ1(pi)) = φ2(qi),∀i},

and formulate our optimization problem as follows:

Problem 3.1 (Constrained Optimal Diffeomorphism)

µ∗ = argmin
µ

∫

R1

(|µz|
2+ |µz̄|

2)dxdy,

subject to:



Algorithm 1 Optimal Quasiconformal Mapping

Input: Two triangular meshesM1, M2 of disk topology; land-
marks{pi} and{qi}, i = 1..m, the first four are on boundary

Output: Optimal q.c. mapf : M1→M2, s.t., f (pi) = qi ,∀i.
1: Compute conformal mapsφk : Mk→ Rk, k= 1,2
2: Initialize µ0 ≡ 0
3: repeat
4: Optimization: Diffuseµn+1← µn+δ∆µn

5: Projection:
6: a. Compute q.c. mapf µn : (R1,z)→ (Rµn ,ζ )
7: b. Compute harmonic maphµn : (Rµn)→ (R2,w)
8: c. Updateµn+1← µ(hµ

n ◦ f µn)
9: d. Setµn+1|Ω ≡ 0

10: until ‖µn+1−µn‖∞ < ε
11: The desired mappingf = φ−1

2 ◦hµn ◦ f µn ◦φ1

1. diffeomorphism‖µ‖∞ < 1,

2. landmark constraints, fµ(φ1(pi)) = φ2(qi),∀i,

3. conformality constraints,µ |φ1(Ω) ≡ 0,

namely,µ∗ ∈B(R1)∩S0∩S1.

The optimization is performed by alternating two main
steps,OptimizationandProjection.

Optimization The optimization ofµ is straightforward.
We apply the traditional heat flow method,

∂ µ
∂ t

=−µzz̄,

which will reduce the harmonic energy ofµ .

Projection First, we projectµ to the subspaceB(R1)∩
S0. This can be easily achieved by directly settingµ to be
zero in the regionφ1(Ω).

Then, we project the currentµ to the subspaceB(R1)∩
S1. We propose to solve the problem by two stages:

(R1,z) (Rµ ,ζ ) (R2,w)-
f µ

-
hµ

Stage 1: For a givenµ onR1, by solving Beltrami equation,
we mapR1 to an intermediate parameter domainRµ with
complex parameterζ , f µ : (R1,z)→ (Rµ ,ζ ), µ |Ω ≡ 0.

Stage 2: We compute a harmonic map from the interme-
diate domain to the target domain satisfying the landmark
constraints,hµ : (Rµ ,ζ )→ (R2,w). The composition map
is hµ ◦ f µ , whose Beltrami coefficient is in the subspace
B(R1)∩S1. We replace the currentµ by µ(hµ ◦ f µ).

The computational pipeline is shown in Algorithm1.
Note that, after the second step of the projection toS1, the
Beltrami coefficient may be outsideS0. We can alternate
the two projection steps several times to ensure the finalµ is
insideS0∩S1. The algorithm is guaranteed to converge to
the unique extremal quasiconformal map; the proof is using
the method in [11].

4. Computational Algorithms

This section explains the computational algorithms in
detail. The facial surfaces are genus zero and with a single
boundary. They are represented as triangle meshes, denoted
asM = (V,E,F), whereV,E,F represent vertex, edge and
face sets, respectively. Suppose four boundary vertices are
labeled as the markers,{v0,v1,v2,v3} ⊂ ∂M.

4.1. Harmonic Mapping

The discrete harmonic mapping can be computed by
solving the Dirichlet problem. Thecotangent edge weight
is defined as follows:

wi j =

{

cotθ k
i j + cotθ l

ji [vi ,v j ] 6∈ ∂M
cotθ k

i j [vi ,v j ] ∈ ∂M
,

whereθ k
i j is the corner angle in[vi ,v j ,vk] at vk. Suppose

f : V→ R is a piecewise linear function, then its harmonic
energy is

E(u) =
1
2 ∑
[vi ,vj ]∈E

wi j ( f (vi)− f (v j))
2.

Then the discrete Laplace-Beltrami operator is defined as

∆ f (vi) = ∑
[vi ,vj ]∈E

wi j ( f (v j )− f (vi)). (7)

The discrete harmonic maph : M1−{pi} → M2−{qi}
can be computed by solving the linear system







∆h(vi) = 0 vi ∈M1− ∂M1−{pi}
∆h(p j) = q j pi ∈ {pi}
h(vk) = g(vk) vk ∈ ∂M1

,

whereg : ∂M1→ ∂M2 is a given mapping.
In order to compute the harmonic map withhµ :

(Rµ ,ζ )→ (R2,w), what we need is to modify the cotangent
edge weight. Suppose the Beltrami coefficientµ : V → C

is defined on vertices, and[vi ,v j ,vk] is isometrically embed-
ded onto the complex plane, with coordinateszi ,zj ,zk. Then
we define a linear mapping

τ(z) = z+
1
3
(µ(vi)+ µ(v j)+ µ(vk))z̄,

then τ distorts the triangle. We compute the corner an-
glesθ jk

i (µ),θ ki
j (µ),θ

i j
k (µ) on the image ofτ, compute the

cotangent edge weightwi j (µ) using the distorted angles.

4.2. Discrete Yamabe Flow

Discrete Yamabe flow is one scheme for discrete surface
Ricci flow. Let[vi ,v j ] ∈E be an edge with Euclidean length
βi j . Define discrete conformal factor functionu : V → R,
then the discrete conformal deformation of edge length is



given byl i j ← eui βi j eu j . The discrete vertex curvatureK(vi)
is defined as angle deficit

K(vi) =

{

2π−∑[vi ,vj ,vk]∈F θ jk
i vi 6∈ ∂M

π−∑[vi ,vj ,vk]∈F θ jk
i vi ∈ ∂M

.

Thediscrete surface Yamabe flowis defined as

du(vi)

dt
= K̄(vi)−K(vi),

which is the gradient flow of thediscrete Yamabe energy,

E(u) =
∫ u

0

|V|

∑
i=1

(K̄(vi)−K(vi))dui ,

whereu = (u1,u2, · · · ,u|V|). Discrete Yamabe energy is
convex, the unique global optimum is the desired discrete
metric. We can use the Newton’s method to optimize it
directly, which requires the Hessian matrix. The Hessian
matrix is just the conventional cotangent weight Laplace-
Beltrami operator in Eqn. (7).

4.3. Solving Beltrami Equation

Suppose we want to compute the quasiconformal map-
ping f µ : (R1,z)→ (Rµ ,ζ ) by solving the Beltrami equa-
tion ζz̄ = µζz. By theauxiliary metricstrategy in Section
2.4, the quasiconformal map is converted to a conformal
mapping. Supposeµ is defined on each vertex. We define
the initial length of an edge[vi ,v j ] as

β µ
i j ← |(zj − zi)+

1
2(µ(vi)+ µ(v j))(z̄j − z̄i)|.

We then compute the conformal map under the new metric
using the traditional surface Yamabe flow algorithm [21].

4.4. Diffusion of Beltrami Coefficient

First, we compute the cotangent edge weightwi j , then
form the discrete Laplace-Beltrami operator. The diffusion
of Beltrami coefficient is similar to the heat diffusion,

µ(vi)← µ(vi)+ δ∆µ(vi),

whereδ > 0 is a small positive constant. The whole algo-
rithm pipeline can be found in Algorithm1. In practice, the
algorithm stably converges for all the experiments.

5. Experimental Results

The primary goal of this work is to solve a globally op-
timal registration problem for surfaces with same topology
and general deformations, which is required to be a diffeo-
morphism and handle physically meaningful constraints, in
order to enlarge the scope in practice. The constraints in-
clude two forms: 1) feature landmarks and 2) conformality

distortion, denoted by Beltrami coefficientµ . Meaningful
landmarks can be extracted from texture and/or geometry.
Different materials may have different intrinsic elastic prop-
erties and different conformality distortions in physicalde-
formations. In this work, we restrict theµ to be zero on the
regions whose deformation is close to isometry, such as the
forehead and nose areas during facial expression change.

In the following, we arrange our experiments with three
categories of constraints to evaluate the proposed algorithm-
s: 1) Only landmark constraints, 2) Onlyµ constraints,
and 3) Landmark-µ constraints. The experimental result-
s demonstrate that our method is efficient and effective to
register surfaces with large deformations.

5.1. Optimization with Landmark Constraints

In this case, we take two surfaces with 16 landmark con-
straints as input (see Fig.1 (a)). The deformation of the
source surface to the target surface is mainly defined by the
landmark correspondence constraints. We first conformally
map them to the planar rectangle domain. By a harmonic
mapping on the rectangle domain, we get the initial Beltra-
mi coefficientsµ (b). We then apply the iterative optimiza-
tion process in Algorithm1 to updateµ and compute the
harmonic mapping using the auxiliary metric. The magni-
tude of Beltrami coefficients|µ | becomes evener and even-
er from the initial distribution, and eventually it reachesa
steady point that corresponds to the optimal Beltrami dif-
ferential (c). The algorithm converges for all the experi-
ments. The distribution of|µ | is evaluated by both the nu-
merical histogram and the visual color-encoded mapping on
3D surface. The resulting mapping is a diffeomorphism and
globally unique and optimal in diffeomorphism space.

5.2. Optimization with µ Constraints

Suppose the Beltrami coefficientµ of the mapping from
the source surface to the target has been given already. We
can generate the registration directly by the quasiconformal
mapping based on the auxiliary metric method [21]. The
mapping gives a guidance in diffeomorphism space to reach
the optimal one. We then apply the optimization process in
Algorithm 1 with µ constraints to generate a unique quasi-
conformal mapping with the minimal maximal|µ |.

5.3. Optimization with Landmark- µ Constraints

In practice, not like the explicit feature landmarks, the
Beltrami coefficientsµ of encoding quasiconformal defor-
mation is not accessible; usually, it is estimated by first con-
structing a mapping between two surfaces. If the deforma-
tion is conformal (rigid or isometric), then theµ is zero.
Based on this fact, we design our registration strategy by
considering physics of specific object deformation and fix-
ing theµ for specific areas in the registration.



sourceS1 targetS2 φ1 : S1→ R1 φ2 : S2→ R2 texture map byφ1 texture map byφ2
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Figure 1. Optimization in diffeomorphism space with landmark and/or Beltrami coefficient (µ) constraints.

We perform testing on human facial surfaces from the
same subject, deforming slowly from neutral expression
to smile expression (see Fig.1), where the forehead and
nose areas almost have no deformation during expression
change. Then we have the following experiments. We setµ
to be zeros for the forehead and nose areas. Then we run the
optimization process along with the landmark constraints.

During the update process, we keepmu to be zeros for the
constrained areas. Finally we get the optimal registration
which respects the realistic physical deformation.

Figure1 (d) shows the registration with a combination of
landmark andµ constraints. We use circle-packing texture
map result on 3D surface to visualize the quasiconformal-
ity. It is obvious that on the forehead and nose areas, the



circles are mapped to circles in the landmark-µ constrained
result (d), while the circles are mapped to ellipses in the on-
ly landmark constrained result (c). The distribution of|µ |
is shown by both the histogram and the color-encoded maps
on 3D surface and 2D domain, where the blue color denotes
zero local stretch, i.e., conformal deformation.

In this registration strategy, the landmark constraints and
the µ together guide the deformation. Note that the land-
marks won’t stay inµ-constrained areas, since landmark
correspondence constraints generally generate quasiconfor-
mal deformation. This registration is highly desirable for
simulating and recovering the real physical mapping be-
tween two frames of one deforming object.

Diffeomorphism Guarantee Figure1 (e) shows the evo-
lution of meshing structure during the optimization. By har-
monic mapping, we can get the initial registration. It is ob-
vious that there is flipping (|µ |> 1) around landmark con-
strained area (e.g., two mouth corners); the resulting map-
ping is not a diffeomorphism, which can also be observed
in the histogram of|µ | in (b) (|µ |max > 1). By the relax-
ation process during optimization, the flips are smoothen
out gradually and reach a diffeomorphism eventually (c-d).

Registration Accuracy Improvement We evaluate reg-
istration accuracy in two ways.Visually, we check the
consistency of the circle-packing texture mappings on both
source and target surfaces, through the registration map-
ping. The more consistent the textures on the source and
target are, the more accurate the registration is. Observing
texture mappings on source in (b-d) and comparing them
with the texture mapping on target in (a) (for example, the
right inner eye corner area), we can conclude that the opti-
mization improves the registration accuracy.Numerically,
with the diffeomorphic mapping, we compute both the tex-
ture and geometry distances [22] to evaluate the registration
accuracy,(dg,dt) = (0.003,0.041) (b), (0.002,0.034) (c),
and (0.001,0.018) (d). Thus the registration considering
physical deformation constraints is the most accurate one.

Geometric Registration of General Surfaces Besides
the physical registration of different expression surfaces
from the same subject, the proposed method is also prac-
tical to register general surfaces, such as the facial surfaces
from different subjects. Figure2 shows one example of the
registration to another targetS2 from the same sourceS1 in
Fig. 1. The geometric distance of the registration is 0.003,
with about 60% improvement from the initial registration.
Note that for this registration case, it is unnecessary to pre-
scribe theµ constraints, since there is no real physical rela-
tion between human faces from different subjects.

5.4. Discussion

1) Efficiency- The algorithm has two parts: 1) conformal
maps using Yamabe flow, which is a convex optimization by

Newton’s method and has time complexityO(nlogε) (ver-
tex numbern, error toleranceε); and 2) harmonic map also
using conjugate gradient method, which isO(n). Both of
them are robust to geometric noises.

We have tested our algorithms thoroughly on 1500 in-
dividual facial surfaces from multiple people’s expression
sequences. For a surface with 30k triangles, it costs about
10 seconds. The optimization is efficient and practical, and
stably converges for all the experiments.

2) Generality- Ricci flow can unify any surface to one
of three canonical spaces; any diffeomorphism can be rep-
resented by a uniqueµ , and vice versa. Therefore, the
proposed registration framework can be generalized to any
types of topology and handle any types of deformations.

3) Rigor - The framework of optimization in diffeomor-
phism space has solid theoretical background and guaran-
tees the optimal diffeomorphism which exists and is unique.

4) Robustness- The proposed framework can handle a
large amount of hard landmark constraints and multipleµ-
constrained areas. The algorithm fails when the input fea-
ture constraints or surface geometries are inconsistent, such
as one surface occluded with a large portion missing.

5) Practicality - In most vision and medical imaging
problems, landmarks are associated naturally, such as faces,
brains, and other organs with natural deformations. The
proposed method guaranteesoptimal diffeomorphism, and
is easy to carry out and compute. It has great potential
for real applications surrounding shape matching, track-
ing, comparison, recognition, and analysis. This proposed
method can register surfaces without any constraint as well;
with physical constraints, our method can perform better.

6) Comparison- Most existing conformal map based
methods cannot guarantee diffeomorphism under hard land-
mark constraints [18, 23] and reach the optimal conformal-
ity distortion. The work in [23] only gives correspondence
between sparse nets and the correspondence between areas
not on the net are completely ignored. Our method gives
dense registration over the whole surface. Furthermore, to
our best knowledge, this is the first work to introduce phys-
ical constraintsµ in registration.

6. Conclusion

In this work, we present a novel surface registration
framework by optimization in the constrained diffeomor-
phism space. The landmark and deformation constraints
(denoted by Beltrami coefficientµ) define the subspaces
in the diffeomorphism space. This registration framework
guarantees diffeomorphism, satisfies physically meaningful
constraints, and minimizes the conformality distortion (the
optimal µ). It has solid theoretical background and can be
generalized to surfaces of any topological types. It is prac-
tical and has great potential in solving realistic surface reg-
istration problems in engineering and medical fields.
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Figure 2. Geometric registration of human facial surfaces from different subjects.
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