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Abstract—In this work we reconsider labeling problems with
(virtually) continuous state spaces, which are of relevance
in low level computer vision. In order to cope with such
huge state spaces multi-scale methods have been proposed to
approximately solve such labeling tasks. Although performing
well in many cases, these methods do usually not come with any
guarantees on the returned solution. A general and principled
approach to solve labeling problems is based on the well-known
linear programming relaxation, which appears to be prohibitive
for large state spaces at the first glance. We demonstrate
that a coarse-to-fine exploration strategy in the label space
is able to optimize the LP relaxation for non-trivial problem
instances with reasonable run-times and moderate memory
requirements.

I. INTRODUCTION

In many applications, that use the well-established loopy
belief propagation framework (or one of its convergent vari-
ants) for maximum a-posterior (MAP) inference, the number
of states is relatively small, typically in the order of tens or at
most hundreds labels. In this work we address the case when
the state space underlying a label assignment problem is a
very densely sampled representation of a continuous state
space. MAP inference in continuous state spaces is often
approximately solved by non-linear optimization, or using
some instance of “non-parametric” belief propagation (BP)
(which is actually quite parametric), or by maintaining a
discrete but relatively small set of particles that are believed
to be representative. In most cases there are no guarantees
on the obtained solution, and one failure mode for such
methods is the presence of very peaked (i.e. non-smooth)
potentials. We believe that the linear programming relaxation
for discrete MAP inference (and its natural continuous label
extension) is a strong and tractable framework to solve
labeling problems. Exact inference is possible e.g. using
branch and bound, but our intuition is, that exact inference
is generally futile in large state spaces.1

One disadvantage of the LP relaxation is the high memory
cost, that scales with the state space size. We use a natural
and simple multi-scale approach to explore the large state
space where necessary but without dropping some guar-
antees (under mild assumptions). The core of our method
is already described in the literature [1] (termed “interval

1One exception seem to be protein folding instances, but the success of
dead end elimination means, that the unary and pairwise potentials are at
least partially very informative in these cases.

convex BP”), but it was discarded quickly as intractable.
We reconsider this negative assessment and demonstrate
that a principled approach to explore large state spaces
is feasible in many cases. Our main observations utilized
to allow tractable inference in huge state spaces are (i)
that the inner loop in the nested “interval convex BP” is
not required to converge, and (ii) that efficient message
updates in the original state space imply efficient message
passing for “interval states.” As byproducts we present a
simple derivation for a particular convex BP algorithm, and a
novel “dead-end elimination” condition that allows to prune
interval states.

We use two classical examples of naturally continuous
state spaces for our numerical results: (i) image intensities
(represented by 256 states) used in a classical denoising and
segmentation energy, and (ii) motion vectors in optical flow
computation (with a state space containing 1282 = 16384
elements).

II. RELATED WORK

MAP inference is one of the fundamental techniques in
machine learning and computer vision. Since MAP infer-
ence is generally intractable, a lot of research focuses on
approximate inference via suitable convex relaxations. The
linear programming (LP) relaxation for MAP inference (see
e.g. [2] for the statistical background and [3] for a more
“algebraic” review) has received particular attention. The
LP relaxation is particularly attractive, since fast algorithms
exploiting the particular problem structure are available.
These methods are usually convergent variants of the loopy
belief propagation/message passing algorithm (e.g. [4], [5],
[6]). All these methods become more expensive with in-
creasingly large state spaces, and are not applicable to
proper continuous ones. MAP inference over continuous
state spaces is often reduced to discrete labels by sampling
and filtering particles [7], [8], [9]. In [1] the LP relaxation for
discrete inference is naturally extended to the continuous-
label setting, leading to an LP with infinite (uncountable)
number of constraints. Finitely sized convex relaxations for
continuous state spaces are recently proposed in [10], [11]
(allowing piecewise convex potentials) and [12] (with poten-
tials that are polynomials in the continuous unknowns). It is
straightfordward to show that these finitely sized relaxations
are weaker relaxations than the (infinitely sized) continuous
one proposed in [1].



The run-time performance of message passing algorithms
depends heavily on whether the crucial message filtering step
(essentially a min-convolution) can be performed efficiently.
A generic approach has quadratic complexity in terms of
the state space size. For certain pairwise potentials, that
are important in computer vision applications, this min-
convolution step can be done very quickly [13], [14], [15].
Recent approaches for efficient message passing in large
state spaces are stochastic belief propagation [16], which
only considers a random subset of states for message com-
putation, and the use of a trained classifier to prune the state
space [17].

There exists a large literature using a coarse-to-fine frame-
work for state space refinement to make approximate MAP
inference more efficient for continuous or huge discrete state
spaces, and we mention only a few recent ones: [18] embed
a label refinement strategy into a sequence of approximate
MAP inference steps for image registration, [19] prunes
unpromising disparity values for dense stereo estimation,
and [20] aggressively prunes labels (disparities) in a spatial
multi-scale framework to achieve an overall constant time
and space complexity (again for dense stereo). As local
search methods they do not come with any guarantees on
the quality of the returned solution.

III. BACKGROUND

In this work we focus on MAP inference for labeling
problems with at most pairwise potentials (although the main
results transfer also to higher-order potentials). We assume
an underlying graph structure G = (V, E) with a node set
V and edges E . We denote the set of neighboring nodes of
s by N(s), and deg(s) is the degree of s. The task is to
assign optimal labels from a label set L to nodes and edges,

x∗
def
= argmin

x

∑
s∈V

θ̂s(xs) +
∑

(s,t)∈E

θ̂st(xs, xt), (1)

where xs ∈ L. The unary potentials θ̂s : L → R, s ∈ V ,
and pairwise potentials θ̂st : L × L → R are given and
task- and instance-specific. Note that finding an optimal x∗

is generally not tractable for arbitrary pairwise potentials θ̂st,
and therefore a lot of research is devoted to find approximate,
but efficiently computable solutions of the labeling problem.

In the following we will usually absorb the unary poten-
tials into the pairwise ones by introducing

θst(xs, xt)
def
=

1

deg(s)
θ̂s(xs) +

1

deg(t)
θ̂t(xt) + θ̂st(xs, xt),

(2)

hence Eq. 1 becomes x∗
def
= argminx

∑
(s,t)∈E θst(xs, xt).

Many algorithms aiming to approximately solve Eq. 1 for
discrete state space L are based on the linear programming

relaxation (see e.g. [3]):

ELP-MAP(µ)
def
=

∑
(s,t)∈E

∑
xs,xt

θst(xs, xt)µst(xs, xt) (3)

s.t. µs(xs) =
∑
xt

µst(xs, xt) µt(xt) =
∑
xs

µst(xs, xt)∑
xs

µs(xs) = 1 µst(xs, xt) ≥ 0.

The unknowns {µs}s and {µst}s,t encode the assigned
labels, e.g. in the optimal solution µs(xs) is ideally 1 iff
state xs is the optimal label at node s, and 0 otherwise.
The first set of constraints are usually called marginalization
constraints, and the unit sum constraint is typically referred
as normalization constraint. If the labeling problem is de-
fined over bounded but continuous state spaces L (w.l.o.g.
L = [0, 1]), then the sums over states appearing in ELP-MAP
are replaced by respective integrals over L. [1]

There is some freedom in which constraints are part of
Eq. 3. In the literature the normalization and non-negativity
constraints are often enforced on both µs and µst. Different
choices of constraints in the primal program ELP-MAP lead
to different corresponding dual problems. We intentionally
chose the constraints as stated in Eq. 3, since these allow
a very simple derivation of a block coordinate method to
solve the dual program, which reads as

E∗LP-MAP(λ, ρ) =
∑
s

ρs (4)

s.t. ∀xs : ρs =
∑

t∈N(s)

λst→s(xs)

λst→s(xs) + λst→t(xt) ≤ θst(xs, xt).

The main unknowns in the dual objective are the λst→s(·)
and λst→t(·), which are for historic reasons often called
“messages.” Since edges are undirected in the underlying
graph, we have λst→s = λts→s and λst→t = λts→t by
convention. The quantities

θλs (xs)
def
=

∑
t∈N(s)

λst→s(xs), and

θλst(xs, xt)
def
= θst(xs, xt)− λst→s(xs)− λst→t(xt)

are often called “reparametrized potentials,” since replacing
the original potentials θst by the reparametrized ones does
not change the solution of the label assignment problem nor
the one of the corresponding LP relaxation.

Complementary slackness: : Complementary slackness
allows to (partially) decode the primal optimal solution
µ∗ from optimal dual variables. Since the reparametrized
potentials θλs (xs) have always the same value ρs for all
xs, one cannot extract µ∗s(xs) directly. We chose the dual
program such that the unary reparametrized potentials are
least informative about the primal solution. Nevertheless, we



can utilize the following fact: if for some state xs at node s
and optimal dual variables λ∗ we have∑
t∈N(s)

min
xt

{θst(xs, xt)− λ∗st→s(xs)− λ∗st→t(xt)} > 0,

then this implies µ∗s(xs) = 0 in an optimal primal solu-
tion µ∗. This follows immediately from the complemen-
tary slackness for pairwise primal variables, θst(xs, xt) −
λ∗st→s(xs) − λ∗st→t(xt) > 0 =⇒ µ∗st(xs, xt) = 0, and the
marginalization constraints. The quantity

ηλs (xs)
def
=

∑
t∈N(s)

min
xt

{
θλst(xs, xt)

}
(5)

therefore allows to rank the states xs according to a
reparametrization θλ, and this ranking will reveal constraints
on the primal solution if λ is optimal.

Algorithm 1 Convex (min-sum) belief propagation
Require: Arbitrary λ

1: while not converged do
2: loop over s ∈ V
3: µst→s(xs)←minxt

{θst(xs, xt)− λst→t(xt)}
4: ρs ← minxs

{∑
t∈N(s) µst→s(xs)

}
5: λst→s(xs)← µst→s(xs)−

∑
r µsr→s(xs)−ρs

deg(s)
6: end loop
7: end while

A dual block coordinate descent method:: If we fix a
node s and maximize the dual only with respect to ρs and
all messages incoming at s, λst→s(xs) for t ∈ N(s) and all
xs, then the restricted dual subproblem becomes

max
ρs,{λst→s(xs)}

ρs s.t. ρs =
∑
t

λst→s(xs)

λst→s(xs) ≤ min
xt

{θst(xs, xt)− λst→t(xt)}︸ ︷︷ ︸
def
=µst→s(xs)

.

Note that we have simple bounds constraints on λst→s(xs).
Since we want to maximize ρs, we need to maximize∑
t λst→s(xs) subject to upper bounds µst→s(xs) on each

λst→s(xs). Therefore, ρs attains the smallest feasible value
of
∑
t λst→s(xs), or

ρs ← min
xs

{∑
t

µst→s(xs)

}
. (6)

If for some xs the upper bounds are tight, i.e. ρs =∑
t µst→s(xs), then λst→s(xs) ← µst→s(xs). The up-

date equations for the remaining λst→s(xs) with ρs <∑
t µst→s(xs) allow some freedom. One option, that handles

all xs, is to assign the “slack”
∑
t µst→s(xs)−ρs uniformly

over the edges, and the updates are therefore given by

λst→s(xs)← µst→s(xs)−
∑
r µsr→s(xs)− ρs

deg(s)
. (7)

Note that this algorithm is a particular instance of con-
vex max-product belief propagation (e.g. [6]) derived in
an extremely simple way. We summarize the updates in
Algorithm 1. If the algorithm is provided with an infeasible
set of dual variables λ, these will be feasible after all dual
messages are updated at least once. Another crucial aspect
of the method, which will be important later, is the “warm-
restart” capability by providing any (not necessarily feasible)
dual variables as input.

IV. BASIC ITERATIVE STATE SPACE REFINEMENT

In this section we describe a generic approach for ap-
proximate MAP inference with either very large or (virtu-
ally) continuous state space. Our exposition will focus on
1D state spaces, but extends to product label spaces in a
straightforward manner. Let the underlying state space be
L = {1, . . . , L} with L = |L| � 1, e.g. L is in the order of
100s or 1000s. In the following we will use lower-case letters
to indicate “fine-grained” states from L, e.g. xs, xt ∈ L, and
upper-case letters to denote “coarsened” or “group states”
such as Xs, Xt ⊆ L. Without loss of generality, but for
representational simplicity, we will restrict these group states
to form intervals such as

Xs = [X−s , X
+
s ] ⊆ L.

In product label spaces these intervals are replaced by hyper-
rectangles. Now assume we are provided with partitions Ps
of L at each s ∈ V . Thus, group states Xs are elements
from Ps. We introduce lower bound potentials

θst(Xs, Xt)
def
= min

xs∈Xs,xt∈Xt

θst(xs, xt). (8)

It is clear that the following primal program yields a lower
bound on the original many-label program,

Ecoarse-MAP(µ|{Ps})=
∑

(s,t)∈E

∑
Xs,Xt

θst(Xs, Xt)µst(Xs, Xt)

(9)

subject to

µs(Xs)=
∑
Xt

µst(Xs, Xt) µt(Xt)=
∑
Xs

µst(Xs, Xt)∑
Xs

µs(Xs) = 1 µst(Xs, Xt) ≥ 0.

By moving to successively finer grained partitions this lower
bound minµEcoarse-MAP(µ) approaches minµELP-MAP(µ)
optimized over the full state space. In practice we utilize
a message passing algorithm to optimize the following dual
program,

E∗coarse-MAP(λ, ρ|{Ps}) =
∑
s

ρs (10)

s.t. ∀Xs : ρs =
∑

t∈N(s)

λst→s(Xs)

λst→s(Xs) + λst→t(Xt) ≤ θst(Xs, Xt).



Another way to relate approximate inference using coarse
states with the one using the full state space, is that
E∗coarse-MAP(·|{Ps}) adds the following equality constraints
to E∗LP-MAP,

∀xs, x′s ∈ Xs : λst→s(xs) = λst→s(x
′
s)

and

∀xt, x′t ∈ Xt : λst→t(xt) = λst→t(x
′
t).

Therefore it becomes clear that E∗coarse-MAP(·|{Ps}) is a
lower bound for E∗LP-MAP. We propose the following basic
procedure to obtain a sequence of lower bounds for ELP-MAP
and associated dual and primal variables:

Algorithm 2 Iterative refinement of the state space
1: Initialize {Ps}s∈V
2: Optional: apply DEE (Sec. VI-A)
3: while target accuracy not reached do
4: Improve E∗coarse-MAP(·|{Ps})
5: Refine state space {Ps}
6: Extend the dual variables to the refined state space
7: Optional: merge group states (Sec. VI-B)
8: end while
9: Extract (approximate) primal solution

This is essentially the same meta-algorithm as also con-
sidered in [1], but there the authors quickly discarded the
approach as non-practical. We list some challenges making
the above algorithm look less appealing, and also state how
we address these issues: (i) As a nested iterative algorithm
the above method is slow, since it requires message passing
to (reasonably) converge in the inner loop. Below we outline
that it is not neccesary to find the exact dual optimum
in step 4 in each round, and a single iteration of convex
BP (with “warm restart”) is theoretically sufficient. (ii)
Because of the irregular state space structure, fast message
passing algorithms in step 4 are not available. We show in
Section V that if efficient message passing can be done for
the fine-grained problem, it is also available for coarse MAP
inference. (iii) Computation of the lower bound θst(Xs, Xt)
can be very expensive. In this work we focus our attention
on problem instances where the lower bound is relatively
straightforward to obtain. Such instances occur frequently
in low-level computer vision problems, which is the main
application behind this work. For some unstructured pairwise
potentials (such as the ones occurring in the protein design)
one potential answer is our extension of a well-known
criterion for DEE to grouped states (Section VI-A).

One question is when Algorithm 2 and optimizing the
fine-grained problem E∗LP-MAP lead to the same solution. By
using a complementary slackness argument it is relatively
easy to see that the following two conditions are sufficient
for Algorithm 2 to converge to the dual optimum equivalent

to E∗LP-MAP (for a formal proof we refer to the supplementary
material):

1) The iterative maximization method used in line 4 of
Algorithm 2 is guaranteed to converge to the dual
optimal solution of E∗coarse-MAP(·|{Ps}).

2) Coarse states in Xs ∈ Ps which have the smallest
value ηλs (Xs) are ultimately refined, where ηλs (Xs)
for a group state Xs is defined as

ηλs (Xs)
def
=

∑
t∈N(s)

min
Xt

{
θλst(Xs, Xt)

}
, (11)

with θλst(Xs, Xt)
def
= θst(Xs, Xt)−λst→s(Xs)−λst→t(Xt).

One of the main questions is how to refine the partitions
Ps after each message passing round. Refining Ps is one
instance of the classical exploration/exploitation dilemma:
subdividing fewer group states in Ps may need many more
(outer) rounds, but splitting many group states slows down
step 3 in Alg. 2 and leads to higher memory consump-
tion. It is clear that “promising” states with the lowest
reparametrized costs seem to be good candidates for re-
finement. We use the following simple strategy: states Xs,
that are in the better half according to the current unary
reparametrized cost ηλs (Xs), are refined (until Xs = {xs}
is only a singleton).

Another, equally important question, is whether the size
of the partitions Ps can be bounded or its growth slowed
down. In Section VI-B we show that some group states can
be merged (i.e. the partition {Ps} can be coarsened) without
decreasing the dual objective.

V. CONVEX BP AND GROUP STATES

In this section we focus on how to improve
E∗coarse-MAP(·|{Ps}) in line 4 of Alg. 2 efficiently. In
the following the set of group states {Ps} is fixed. The
main computational step of convex BP (recall Alg. 1)
applied on E∗coarse-MAP(·|{Ps}) is the determination of

µst→s(Xs)← min
Xt∈Pt

{θst(Xs, Xt)− λst→t(Xt)} .

for all Xs ∈ Ps. We obtain of µst→s(Xs),

µst→s(Xs) = min
Xt

{θst(Xs, Xt)− λst→t(Xt)}

= min
Xt

{
min

xs∈Xs,xt∈Xt

θst(xs, xt)− λst→t(Xt)

}
= min
xs∈Xs

min
xt

{θst(xs, xt)− λst→t(xt)}

= min
xs∈Xs

µst→s(xs).

This means in particular, that if µst→s(xs) can be efficiently
computed in the original many-label state space L, then one
can also obtain µst→s(Xs) relatively efficiently: first, expand
λst→t(Xt) to L by setting λst→t(xt)← λst→t(Xt) for xt ∈



Xt, and perform subsequent min-convolution on L. Finally,
extract

µst→s(Xs)← min
xs∈Xs

µst→s(xs).

This approach becomes less efficient if the number of fine-
grained states, |L|, is very large, but it retains low memory
requirements. If we allow to use term-wise lower bounds,
i.e. we introduce

θs(Xs)
def
=

1

deg(s)
min
xs∈Xs

θ̂s(xs)

θst(Xs, Xt)
def
= θs(Xs) + θt(Xt)

+ min
xs∈Xs,xt∈Xt

θ̂st(xs, xt)

(which is a weaker lower bound on the potentials than the
one defined in Eq. 8), then we can design a much more ef-
ficient method to compute µst→s(Xs), whose runtime com-
plexity depends on |Ps| and |Pt| rather than |L|. The method
relies on efficient computation of the min-convolution for
non-uniformely sampled collections of location/function-
value pairs. In Alg. 3 we illustrate a slightly more general
method than the one proposed in [13] for pairwise potentials
θ̂st(xs, xt) that can be written as θ̂st(xs, xt) = f(xt − xs)
for a convex function f attaining its minimal value at 0.

Algorithm 3 Non-uniform min-convolution
Require: array of input values h[0 : N − 1]
Require: array of locations b[0 : N − 1]
Require: Convex function f
j ← 0, v[0]← 0, z[0]← −∞, z[1]←∞
for q = 1 : N − 1 do

repeat
j ← j + 1
tv ← b[v[j − 1]], tq ← b[q]
s← intersection of t 7→ h(q) + f(t− tq)

and t 7→ h(v[j − 1]) + f(t− tv)
until s > z[j − 1]
v[j]← q, z[j]← s, z[j + 1]←∞

end for
j ← 0
for q = 0 : N − 1 do

while z[j + 1] < q do j ← j + 1
Dh[q]← h(v[j]) + f(q − b[v[j]])

end for

The computation of µst→s(Xs) outlined in Alg. 4 first
computes the min-convolution at all interval boundary loca-
tions

B def
=
⋃
{X−s , X+

s }︸ ︷︷ ︸
def
=Bs

∪
⋃
{X−t , X+

t }︸ ︷︷ ︸
def
=Bt

and subsequently determines µst→s(Xs) as the minimum
of Dh(x) over all states x ∈ Xs. The correctness of the

algorithm can be seen as follows: first, Dh can be naturally
extended from the set of breakpoints B to all xs ∈ L.
Let xs ∈ [X−, X+] with X−, X+ be the two nearest
breakpoints in B. Then we have

min
xs∈[X−,X+]

µst→s(xs) = min
{
µst→s(X

−), µst→s(X
+)
}

since the smoothness cost f is minimal at 0. Therefore

µst→s(Xs) = min
xs∈[X−s ,X+

s ]
µst→s(xs)

= min
X∈Xs∩B

µst→s(X) = min
j:b[j]∈Xs

minDh[j]

as computed in line 7 in Alg. 4. The overall runtime of
the algorithm is linear in |B|. The methods immediately
generalizes when the pairwise potential is actually the min-
imum of convex potentials. Further, product label spaces
with decomposable pairwise terms can be handled by higher
dimensional distance transforms (e.g. [21]).

Algorithm 4 Computation of µst→s(Xs)

1: Run a “merge sort” step on Bs and Bt to fill (increasing)
locations b[·]

2: for j = 0 : len(b)− 1 do
3: h[j]← θt(Xt)− λst→t(Xt) such that b[j] ∈ Xt

4: end for
5: Run Algorithm 3 to obtain Dh

6: for Xs = 0 : |Ps| − 1 do
7: µst→s(Xs)← minj:b[j]∈Xs

Dh[j]
8: end for

VI. DEAD-END ELIMINATION AND COARSENING

The basic coarse-to-fine approach presented in Section IV
consecutively increases the size of the state space in each
round. In this section we discuss the possibilities of early
pruning of non-optimal group states and “undoing” refine-
ment steps in order to shrink the state space size.

A. Pruning Group States

Some states are known in advance not to be part of any op-
timal labeling, e.g. due to extremely large unaries rendering
these states unfavorable. Detection of such suboptimal states
is frequently applied in protein design and called “dead
end elimination” (DEE) in the literature [22], [23]). In the
MAP inferenece literature the term “partial optimality” is
commonly used (we refer to [24] for a recent overview). The
(simple) Goldstein DEE condition [23] (which is stronger
but also computationally more expensive than the original
DEE condition in [22]) for (fine-grained) states can be
phrased as “a state xs can be discarded if there exists a state
x′s such that for all labels assigned to the neighborhood of
s the local contribution to the objective is always smaller
than the one of xs.” In our framework we are facing group
states, i.e. sets of fine-grained labels, and want to establish



respective DEE conditions. A similar setting is addressed
in [25] (where the “minDEE” or minimized DEE criterion is
proposed) and [26] (establishing the “iMinDEE” criterion).
We use the Goldstein DEE criterion as starting point to
obtain a DEE condition for group states, which is provably
stronger than minDEE and in practice also stronger than
iMinDEE. The Goldstein DEE conditions for group states
is now: group state Xs can be pruned if there exists another
group state X ′s such that∑

t

min
Xt

{
θst(Xs, Xt)− θst(X ′s, Xt)

}
> 0, or (12)

∃X ′s : ∀Xt :
∑
t

θst(Xs, Xt) >
∑
t

θst(X
′
s, Xt), (13)

i.e. the local “optimistic” contribution of Xs to the objective
is larger than the “pessimistic” one for X ′s for all labels
assigned to the neighbors of s. θst(Xs, Xt) denotes an upper
bound of

θst(Xs, Xt) ≥ max
xs∈Xs,xt∈Xt

θst(xs, xt).

In the supplementary material we show that the above
condition implies the standard Goldstein DEE one, and
prunes states conservatively. Intuitively, the condition in
Eq. 12 is stronger than minDEE (and usually iMinDEE),
since the latter criteria are based on comparing lower and
upper bounds of full min-marginals, not on local contri-
butions to the overall energy. In our tests the iMinDEE
condition never pruned any state, since in typical computer
vision applications the unaries are not strong enough for the
iMinDEE criterion to apply. Dead-end elimination is only
useful to prune the initial group states at the beginning of
Alg. 2, since unpromising states passing the DEE condition
will almost never be refined in line 5 of Alg. 2.

B. Coarsening States
Pruning as described in the previous section discards

suboptimal (group) states. In many cases it is not possible
to directly prove suboptimality of a state (since all DEE
criteria are conservative), but an alternative is to show that
merging two group states into a coarser one does not lead
to a decrease of the dual. This is addressed in this section.

Assume that two group states X ′s and X ′′s are candidates
for merging at node s, i.e. to be represented by a single state
Xs = X ′s∪X ′′s . We need to define dual variables λst→s(Xs)
such that they are still feasible for the dual energy, and
therefore guarantee that the dual energy will not immediately
decrease in the next round. The dual constraints that need
to be satisfied are

ρs =
∑
t

λst→s(X
′
s) =

∑
t

λst→s(X
′′
s ) =

∑
t

λst→s(Xs),

and

λst→s(Xs) + λst→t(Xt) ≤ θst(Xs, Xt)

= min {θst(X ′s, Xt), θst(X
′′
s , Xt)} .

The “coarser” dual variables λst→s(Xs) now jointly repre-
sent states X ′s and X ′′s . If we check whether X ′s and X ′′s can
be merged by successively traversing nodes s, then the dual
variables λst→t(Xt) are fixed, and merging X ′s and X ′′s will
not reduce the dual (render the dual solution infeasible) if

ρs <
∑
t

min
Xt

{θst(Xs, Xt)− λst→t(Xt)}

=
∑
t

µst→s(Xs).

We require ρs to be strictly less than the right hand side
to rule out the possibility of non-convergent oscillations in
Algorithm 2. If the condition is met, then coarsened and
feasible dual variables λst→s(Xs) can be determined by one
iteration of message passing, i.e.

λst→s(Xs)← µst→s(Xs)−
∑
r µsr→s(Xs)− ρs

deg(s)
.

In a nutshell, refining promising (group) states in Ps and
subsequent coarsening of non-promising states essentially
resamples the representation of the full state space without
sacrificing dual optimality.

VII. NUMERICAL RESULTS

We illustrate two applications for our method. The first
one is a very parametric continuous labeling problem with
a one-dimensional state space. The second one uses an
arbitrary data term and a 2D product label space. Run-time
measurements of our OpenMP enabled C++ implementation
are obtained on a standard PC with a 2.5 GHz quad-core
processor. For exact details on the algorithmic settings we
refer to the supplementary material.

Lena Tsukuba Teddy Cones Art
Our 139.38 68.859 94.953 107.64 803.41
Full 2048 864 1318.4 1318.4 12054

Table I
MEMORY REQUIREMENTS (IN MIB) OF OUR IMPLEMENTATION AND

THE ONE FOR STORING ALL DUAL VARIABLES.

A. Piece-Wise Smooth Denoising

Our “toy” example is a discretized version of the contin-
uous Mumford-Shah functional,

EMS(f |g) =
λ

2

∑
s∈V

(fs − gs)2 +
∑

(s,t)∈E

min
{
µ, (fs − ft)2

}
,

(14)

which is a model for image denoising favoring piece-wise
smooth solutions f . V represents the pixel on a regular grid,
and E is the set of 4-connected edges. This is a labeling
problem over continuous states, but practical solutions often
work with an 8-bit discretized label space. Table I lists the
memory requirements of our implementation (as reported by



the operating system) and the minimum memory needed to
store the dual variables for a full 256 state space. Our choices
of λ and µ are 1 and 1/10, respectively, leading to substantial
smoothing (we refer to the supplementary material for visual
results). Figure 1 depicts the increase of the dual energy with
respect to clock time. Fig. 2 displays the average number
of active group states per pixel over time. At some point
this number decreases slightly due to the coarsening step
(Section VI-B). The low number of active states (about 16
instead of 256) is reflected in the one order of magnitude
memory reduction observed in Table I. In the supplementary
material we provide additional graphs for different choices
of initial group states {Ps}.
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Figure 1. Dual energy evolution with respect to clock time.
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Figure 2. Evolution of the number of active group states.

B. Optical Flow Field Estimation

One aspect of image denoising with non-robust noise
models is the strong data term (i.e. very discriminative unary
potentials), which makes finding a MAP solution relatively
easy. We pick motion estimation as illustrative example
for (i) large product label spaces and (ii) more ambiguous
unaries.2 In order to avoid the very expensive 2-dimensional
distance transform in each message update, we build on
the “decomposed” MRF formulation [27], which maintains
two labels (horizontal and vertical disparity) per pixel and
encodes the data term as unstructured pairwise potential.
This formulation is potentially a weaker relaxation than the
one using product labels, but in practice we did not observe
differences between them.3

2Input data from vision.middlebury.edu.
3We also implementated the proper product label formulation (requiring

a much slower 2D min-convolution step).
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Figure 3. Dual energy evolution with respect to clock time.
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Figure 4. Evolution of the number of active group states.

We use a 128 × 128 state space to represent 2D flow
vectors at quarter-pixel resolution, which allows a ±16 pixel
search range in both image directions. The evolution of
the obtained dual energies using a 3 × 3 SAD data term
and an L1 smoothness prior for the horizontal and vertical
components is shown in Fig. 3.

While the memory needed to store the dual messages for
2× 128 states are not out of reach (although still high), the
message updates between the horizontal and vertical labels
have quadratic complexity due to the generally unstructured
data term (whose profile depends on the image content).
Having a smaller number of (group) states (see Fig. 4 for its
evolution) reduces the run-time complexity of these message
updates. Additionally, dynamic computation of the matching
costs in the message updates is only feasible for the simplest
ones, but caching the full 1282 precomputed scores per pixel
is not tractable. Consequently we report the number of data
terms required to be cached in each round of Alg. 2 in
Fig. 5. Much of the actual run-time is spent in (repeatedly)
computing the data term. In summary, the fraction of active
group states is higher than in Section VII-A due to the more
ambiguous data term, and we refer to the supplementary
material for visualizations of the returned flow fields.

VIII. CONCLUSION AND FUTURE WORK

In this work we demonstrate that a principled coarse-to-
fine label space exploration approach allows tractable MAP
inference for huge state spaces without losing important
properties such as guaranteed lower bounds of the true
energy, and obtaining certificates for LP optimality. Our
methods allows to obtain a “gold-standard” solution for
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Figure 5. Evolution of the avg. number of cached data terms/pixel.

MAP inference for large problem instances, which can be
used to identify failure cases of cheaper and more approx-
imate inference methods. The obtained numerical results
give hints of how many “particles” are actually needed
in the best case to represent a global labeling solution.
One direction of future work addresses the incorporation
of computationally expensive potentials, for which more
efficient lower and upper bounds are available. This can be
seen as generalization of methods used for fast but exact
template search to random fields.
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