
Co-Segmentation of Textured 3D Shapes with Sparse Annotations

Mehmet Ersin Yumer
Carnegie Mellon University

meyumer@cmu.edu

Won Chun
Google

wonchun@google.com

Ameesh Makadia
Google

makadia@google.com

Abstract

We present a novel co-segmentation method for textured
3D shapes. Our algorithm takes a collection of textured
shapes belonging to the same category and sparse annota-
tions of foreground segments, and produces a joint dense
segmentation of the shapes in the collection. We model the
segments by a collectively trained Gaussian mixture model.
The final model segmentation is formulated as an energy
minimization across all models jointly, where intra-model
edges control the smoothness and separation of model seg-
ments, and inter-model edges impart global consistency. We
show promising results on two large real-world datasets,
and also compare with previous shape-only 3D segmenta-
tion methods using publicly available datasets.

1. Introduction
3D shape segmentation is a core problem that facilitates

high level shape processing [17]. Recent high level shape
analysis works [13, 29, 30] either assume a low level seg-
mentation is already present, or use manual segmentation
to circumvent the limitations of current shape segmenta-
tion methods. Moreover, most of these methods require a
compatible segmentation over a class of objects to facilitate
intra-class shape operations.

In order to address the need for segmentation at scale,
recent efforts have focused on fully supervised learning
methods [14, 25] and co-segmentation approaches [10, 24,
28, 26] that leverage similarity of multiple objects to gen-
erate compatible segmentations. However, the limitations
of these methods (such as requiring shape homogeneity
within a category for unsupervised co-segmentation, requir-
ing fully segmented models for learning segmentation, or
working with only untextured models with clean manifold
geometry and uniform discretization) make them still un-
suitable for use in many practical applications.

What is missing is a segmentation process that can han-
dle real-world datasets that exhibit large intra-category vari-
ation yet does not require the arduous process of collect-
ing fully-segmented 3D models for training. To this end

we introduce a new shape segmentation method tailored for
real-word datasets of textured 3D models. Our process co-
segments multiple models of the same category and requires
only sparse annotations of foreground segments (see Fig-
ure 1(g)).

Our primary contributions are:

• We introduce a new problem in shape segmentation
from sparse annotations, where shapes have not only
geometry in R3 but also appearance in R2 in the form
of texture images.

• We present a novel discretization for 3D shapes with
textures, where we exploit well known superpixeliza-
tion methods in R2 projected back into R3, which cap-
tures variability of appearance properties as well as ge-
ometric ones.

• We formulate a fully coupled shape co-segmentation
process as an energy minimization task that incorpo-
rates both intra- and inter-model constraints.

Our promising results on challenging datasets indicating
that with minimal sparse labeling we can consistently
outperform unsupervised co-segmentation, and also come
close in performance to fully supervised segmentation
methods.

2. Related Work
Much of the existing 3D shape segmentation work has

been inspired by advances in image segmentation. Im-
age co-segmentation has been a long studied problem in
computer vision (e.g. [19, 12, 27]). Interactive segmenta-
tion [18] and co-segmentation [15, 2] have also been pro-
posed, where typically only foreground-background sub-
traction is desired and users indicate pixels on the fore-
ground and background through scribbles. In our setting
we are seeking to co-segment multiple foreground part seg-
ments per model, and our assumption is that we have only a
single user-provided point per foreground segment (and no
indication for the background).

As we highlighted in the previous section, automating
3D mesh segmentation has been an area of recent interest.

1



Figure 1. Given a set of textured models and sparse annotations (a), we first extract geometry and appearance descriptors (b). We create
a discretization of the model leveraging its texture space and projecting back into 3D (c). We propagate the sparse label information
to initialize constraints (d), followed by a GMM clustering (e). Finally, we construct a coupled energy minimization system (f) for a
co-segmentation of the set (g).

Early works in mesh segmentation focus on partitioning a
single mesh based on a single metric (See [21] for an ex-
tended survey).

Works on co-analysis exploit the latent information em-
bedded in a larger shape set. Golovinskiy et al. [7] utilize
rigid shape alignments and clustering of initial segmenta-
tions among a set of shapes to compute consistent segmen-
tations. Fully supervised mesh segmentation and labeling
algorithms that exploit a set of segmented training models
[14, 25] require densely labeled training data. The acqui-
sition of such data is labor intensive, and therefore cannot
be scaled easily. Conversely, we require only very limited
sparse labeling information.

Huang et al. [10] and Sidi et al. [24] introduced unsuper-
vised consistent segmentation algorithms that first segment
each model in a shape set independently before creating a
joint segmentation. Wang et al. [28] extended the descrip-
tor space clustering of [24] to improve co-analysis by it-
eratively introducing user provided constraints to the joint
segmentation problem. They also utilize limited user input
similar to ours, but the active learning framework requires
user interaction during co-segmentation. In our framework,
the sparse labels are can be collected in advance, which can
easily be scaled.

3. Methodology

We begin with the assumption that all 3D shapes in the
collection to be processed belong to a single category. A
shape S in category C is represented by its surface in R3 as
well as a texture image that is mapped onto its surface.

Let G = {V,E} be a discretization of S, where
nodes V each represent a relatively small part in S
(Area(xi)� Area(S)|xi ∈ V ), and an edge (xi, xj) ∈ E
exists between nodes xi and xj if they are neighbors in S.
Note that V need not be the faces of the polygonal mesh
representation (i.e. triangles in most common cases). We

use superpixels in 3D (Section 3.2).
Let D =

{
l1, l2, . . . , l|D|

}
be a dictionary of foreground

segment labels for shapes in C. Given D, we assume that
each shape S in the collection has a sparse labeling YS =
{(xi, γi)|i = 1, . . . , n}, where xi ∈ V , γi ∈ DS and DS ⊂
D. We further assume that for each separate segment in S,
only a single (xi, γi) pair is given (n� |V |). However, we
allow multiple segments of the same label (n ≥ |DS |), and
all segments are separated by background regions.

Let ZS = {(xi, zi)|i = 1, . . . , |V |} be a dense label-
ing of shape S, where each entity xi ∈ V is labeled. We
assume that there is an additional label lb in the dense
labeling which indicates the background (i.e. regions of
the model that do not belong to any label in D). Hence,
zi ∈ {DS ∪ {lb}}. Given D and sparsely labeled shapes
(Si,YSi

) that belong to set C, our task is to jointly deter-
mine a dense labeling ZSi for each shape Si ∈ C.

3.1. Descriptors

The surface of shape S is given by points P ∈ R3, and
planar faces F (usually triangles) whose corners are defined
by points in P . The appearance of a textured shape is spec-
ified by a 2D image I. We also use these conventions for
our geometry and appearance definitions. We compute ge-
ometry descriptors on the discrete mesh given by {V, F},
and the appearance descriptors in the image space given by
I. Prior to descriptor computation, we scale each mesh uni-
formly to match a unit bounding box in R3. Furthermore,
we also down sample the textures I of each mesh uniformly
in R2 to match the number of pixels of smallest texture.

3.1.1 Geometry Descriptors

Numerous geometry descriptors have been developed for
shape analysis tasks (e.g. see [8]). At each point in P we
extract common local features such as Curvature [6, 14],



Figure 2. (a) Superpixelized charts in 2D (only the active pixel
regions are superpixelized). (b) Projected superpixels in 3D, where
chart boundaries are repaired.

Spin Images [11], 3D Shape Contexts [3], Neighborhood-
PCA [14], and Average Geodesic Distance [9] (for im-
plementation details please see the supplemental material).
Furthermore, we introduce the following novel descriptor.

Geodesic Distance to Landmark Labels. Let D̃ ⊂ D
be the set of landmark labels present on all models in C
(example of landmarks are lens and shutter button for the
cameras category). For any point on a model we compute
a Landmark Distance Descriptor (LDD) vector −→x ∈ R|D̃|

where the value in dimension i is the geodesic distance to
the landmark point labeled with li ∈ D̃. This descriptor
captures the spatial context of a point by measuring the dis-
tances to landmark label locations.

3.1.2 Appearance Descriptors

We incorporate the appearance cues implicit in the tex-
ture of the 3D models by processing the original texture im-
age I. We use a color feature (pixels represented in L*a*b*

color space) as well as textons (we adopt the 17 filter bank
and texton clustering of [23]). Please see the supplemental
material for details.

3.1.3 Descriptor Fusion

We first rasterize the geometry descriptors defined on the
surface of S in R3 into R2 using the Geometry-Buffer [20].
However, instead of rendering into the image plane (which
is the conventional use case of the G-buffer for viewpoint
camera rendering), we rasterize into the texture space by
using the texture coordinates associated with each vertex
of the mesh. This procedure allows us to define a vector
of concatenated (geometry and appearance) descriptors in
R129+|D̃|.

3.2. Superpixelization

Prior to segmentation, we generate a superpixelization of
each shape independently, in their respective texture spaces.
We follow SLIC superpixelization [1], however our distance

measure dij also considers 3D proximity and orientation:

dij = dlab +
mI√
As

dI +
mP

dbox
dP +mα ∗ sin(α) (1)

where dlab, dI , and dP are Euclidean distances between
ith and jth pixels in L*a*b* color space, image space, and
3D model space respectively. As is the average superpixel
size in pixels, dbox is the bounding box diameter of the 3D
model, and α is the acute angle between the 3D normals
assigned to pixels i and j. mI , mP , and mα control the
compactness of superpixels in image, 3D position, and 3D
normal spaces respectively 1.

We compute a graphG = {V,E}, where nodes V are the
superpixels, and edges E are the edges between neighbor-
ing superpixels in the texture space. Recall that we enable
a trivial transfer of any function defined on the surface of a
shape into its texture space (Section 3.1.3). Thus, for each
pixel that belongs to a chart in the texture image there is
a valid 3D position. Using the rasterized 3D position we
project the superpixels back into 3D space and complete
the edges between neighboring superpixels at chart bound-
aries and other 3D intersections (Figure 2). A superpixel’s
descriptor vector is computed using the average of the ras-
terized descriptors (Section 3.1.3) associated with its pixels.

3.3. Co-Segmentation

Recall that for each foreground segment we have just a
single labeled point on the surface of the mesh, and fur-
thermore there is no indication about the background (Fig-
ure 1(a)). To go from such input to full segmentations we
introduce the novel co-segmentation process outlined be-
low.

3.3.1 Semi-Supervised Gaussian Mixture Model

The shapes we are concerned with exhibit a consider-
able amount of detail both in the foreground segments as
well as in the background. It is clear from the nature of
the data (Figure 8) that some of the foreground segments,
and most of the background, are multi modal. We therefore
use Gaussian Mixture Model (GMM) clustering to model
part segments as well as the background. We will estimate
this GMM using all the objects in a category, and also we
wish to exploit the sparse input labeling to guide the cluster-
ing (i.e. points in different segments should map to different
clusters). To incorporate these sparse label inputs into the
GMM model we follow closely the approach of [16].

Overloading our earlier notation, let X = {xi} , i =
1, . . . , N be the observed descriptors from all the super-
pixels of all shapes in category C. The traditional M -
component GMM is:

P (x|Θ) =

M∑
k=1

πkP (x|θk) (2)

1In experiments: mI = 30, mP = 300, mα = 10, and As = 250.



Figure 3. (a) Region growing initialization for sparse labels. (b)
Corresponding confidence map. (c) An example constraint set
generated by n = 3 nearest geodesic neighbors (for visual clar-
ity, only one label’s constraints are shown).

where Θ = (π1, . . . , πM , θ1, . . . , θM ) are the parameters
of the GMM (P (x|θk) = N (σk,Σk) is a normal distribu-
tion and πi are the mixing coefficients).

If we let Y = {yi|i = 1, . . . , N} , yi ∈ {1, . . . ,M}
be the latent variables (cluster assignments of the observed
data in the GMM), then the complete data-likelihood for the
GMM becomes

P (X,Y |Θ) = P (X|Y,Θ)P (Y |Θ) (3)

where P (X|Y,Θ) =
∏N
i=1 P (xi|θyi), and P (Y |Θ) =∏N

i=1 πyi .
Following [16] we can incorporate constraints into the

model by introducing a weighting function g(Y )

P (Y |Θ, G) =
1

C

(
M∏
i=1

πyi

)
g(Y ) (4)

g(Y ) =
∏
i6=j

eWijδ(yi,yj)

Here C =
∑
Y

(∏
j πyj

)
g(Y ) is a normalization term.

Prior clustering constraints can be incorporated through the
weights Wij = Wji. Wij > 0 indicates a soft link pref-
erence and Wij < 0 indicates a soft do-not-link preference
between xi and xj (details on how we selectW are provided
below).

Region growing initialization. Recall that we assume
only one labeled point per foreground segment, and none
for the background, is provided (Section 3). Since this in-
formation is not sufficient to fit our GMM model, we in-
troduce a conservative breadth-first-search label propaga-
tion scheme. Specifically, for each foreground segment, we
start from the initial labeled seed superpixel and continue
merging adjacent neighboring superpixels if its descriptor
vector is within a threshold γ relative to that of the seed
superpixel (γ is 5% in our experiments). In each iteration
we perform one merge step per segment before continuing,
and we do not allow superpixels to belong to multiple seg-
ments. A sample result of such label propagation is given in
Figure 3(a). All superpixels that are not claimed by region
growing are considered to be part of the background at this
initial stage.

Confidence Score. Each superpixel is given a confi-
dence score c ∈ [0, 1] to indicate the confidence that it be-
longs to the segment in which it was included in after the

segment region growing step. This c is computed purely
based on distance, so that the initial seed superpixel for the
region is given score c = 1, and the superpixel in the seg-
ment furthest from the seed (at distance dmax) is given score
c = 0. Any other superpixel in the segment at distance d
from the seed is given score c = d

dmax
. For any background

region segment we consider the superpixel furthest from all
non-background superpixels to be the region seed. See Fig-
ure 3(b) for a visualization.

GMM clustering constraints. For clustering we intro-
duce soft do-not-link constraints between labeled regions
and the background. For any two labeled region seed super-
pixels (say xi, xj), let xk be the superpixel at the midpoint
of the geodesic shortest path between xi and xj . We place a
do-not-link constraint between (xi, xk) and (xj , xk). Such
constraints help ensure separation between the segments
during clustering. Specifically, we set Wij = K(−ci − cj)
where ci is the confidence score of xi, and K is a constant
that controls the contribution of W in the GMM. We will
introduce these soft do-not-link constraints as described be-
tween each seed label and its geodesically n (n = 3 in our
experiments) closest other seed labels (Figure 3(c)). We in-
tentionally limit the number of constraints to a few fraction
of the superpixels available in the shape since clustering
time-complexity increases considerably with higher num-
ber of connected constraints.

With these constraints, we can fit the GMM model with
EM [5] following the update rules of [16].

Cluster-to-Label Assignment. Overloading the nota-
tion we introduced in Section 3, Let Z = {zi} , i = 1, ..., N
be label assignments for all superpixels of all models in the
shape set, and zi ∈ L, where L = {D ∪ {lb}} is the dictio-
nary of labels including the background label (D given as in
Section 3). Note that the fitted GMM model has more num-
ber of clusters than the number of labels (M > |L|) since
we assume a multi-component label representation. Fur-
thermore, let this initial labeling generated by region grow-
ing be Q = {qi} , i = 1, ..., N , where qi ∈ L. Hence, once
the model fitting is completed, we can compute a label score
for assigning cluster k to label l as follows:

arg max
l∈L

N∑
i=1

si, si =

{
eci if qi = l and yi = k

0 otherwise
(5)

Each cluster gets assigned to the label for which it scores
the highest.

3.3.2 Co-segmentation as Energy Minimization

Once the we fit the constrained GMM model, we gener-
ate the final segmentation through a coupled energy min-
imization computed over all the models in the category.
Given the superpixel graph of shape i as Gi = Vi, Ei, we
construct a coupled graph G which encapsulates all individ-



ual shape graphs and additional edges across models:

G = {V, E} , V =

s⋃
i=1

{Vi} , E =

(
s⋃
i=1

{Ei}

)
∪{EC} , (6)

here s is the number of models in the set, and EC are the
inter-model edges.

One of the novel contributions of our approach is the in-
troduction of the inter-model edges EC into the augmented
graph using the structurally aware LDD descriptor intro-
duced in Section 3.

We build the inter-model edges as follows:

EC =
⋃

a∈[1,n]

⋃
b∈{[1,n]−{a}}

⋃
xi∈Va

⋃
xj∈Vb

(xi, xj) (7)

∀(xi, xj) s.t. |−→x i −−→x j | ≤ Lib + ε

where−→x i is the LDD of superpixel xi, Lib is the minimum
LDD distance between xi to all superpixels in Vb, and ε is
a small threshold (ε is the average superpixel size in 3D in
our experiments).

We now define the total energy to be minimized in order
to compute the joint segmentation for all models in the set:

E(z) =
∑
xi∈V

EGMM (xi, zi) + λS
∑

(xi,xj)∈ES

ES (xi, xj , zi, zj)

+ λC
∑

(xi,xj)∈EC

EC (xi, xj , zi, zj) (8)

where zi and zj are the labels assigned to nodes xi and
xj , and ES = {E − EC}, and λS and λC2 are regulating
constants that control the influence of each smoothness in
the total energy.

The GMM fit clustering energy is given by:

EGMM (xi, zi) = −log (p(zi|xi)) (9)

where p(zi|xi) =
∑
yj∈zi p(yj |xi). is the probability of

assigning label zi to superpixel xi given by the constructed
GMM.

Intra-model smoothing energy considers the continuity
of label preferences for each model independently:

ES (xi, xj , zi, zj) =


0 if zi = zj

∞ if zi 6= zj ∧ zi 6= lb ∧ zj 6= lb

−log
(
βij
π

)
otherwise

(10)
where lb is the background label, and βij is the dihedral an-
gle between the superpixels xi and xj in 3D. Similar to pre-
vious 3D segmentation methods [22, 24, 14], our smoothing
energy is favoring cuts through sharp 3D transitions on the
surface of the mesh, however, we also incorporate our prior
assumption (Section 3) of foreground segments not being
adjacent to each other, but being separated by background.

2λS = λC = 1.0 after range normalization between energy terms for
all experiments presented in this paper.

The inter-model smoothing energy is controlled by dis-
tances between LDD descriptors:

EC (xi, xj , zi, zj) =

0 if zi = zj

−log
(
|−→x i−−→x j |
Lmax

)
otherwise

(11)

where Lmax is the maximum LDD distance between all
superpixel pairs across models in the set.

Note that, while the intra-model smoothness (ES) im-
proves the boundaries of segments by favoring homoge-
neous segment areas, inter-model edges (EC) favor simi-
larly shaped and located segments across models. We solve
the resulting energy minimization system with the multi-
label approximate graph cut method [4]. In the final energy
minimization system, the edge potentials are Potts poten-
tials. We handle the infinite values by replacing them with
practically large finite values (i.e. at least 6 orders of mag-
nitude larger than any existing edge).

3.4. Generalization

Although our methodology is tailored for textured
shapes, it is applicable to non-textured shapes with the fol-
lowing trivial changes: 1) Ignore appearance descriptors
and 2) Skip superpixelization and assume that the mesh tri-
angles are superpixels. Also, if the models to be segmented
do not have any backgrounds, and we use do-not-link con-
straints (Wij = −w, where w is a constant) between all
sparse labels of each model independent of the other mod-
els. Lastly if the shape sets does not exhibit a shared part
label seed in all the models, one can align the objects prior
to computation, and select a vertex that is at the bottom of
the objects to be utilized as the landmark label.

4. Datasets
Digital Cameras. This is a collection of 91 tex-

tured models of real digital cameras acquired from
http://www.maybe3d.com. The sparse labels are provided
by the modelers, and only encode the foreground segments
of interest. The category consists of 37 foreground segment
labels. Each label appears in at least 8 models, and on aver-
age only 19 out of the 37 labels appear on a model.

Video Recorders. Similarly to the cameras data, this is
a collection of 47 textured models of real video recorders
from http://www.maybe3d.com. There are 32 foreground
segment labels. Each segment appears in at least 5 models,
and on average only 21 out of the 32 labels appear on a sin-
gle model. See the supplemental material for more details.

Note that both the video recorder and digital camera data
shows large variation in the foreground segments (Figures
8 - 9, left column). There are very small segments such
as buttons and connection ports alongside segments such as
LCD screens that may cover up to 25% of the surface.



Figure 4. Accuracy of our method on two datasets vs. the number
of components used in GMM normalized by the number of sparse
labels in their dictionaries.

Table 1. Performance of different labeling schemes.
Region Growing w/o EC w/ EC

Cameras 51.3% 82.3% 91.5%
V. Recorders 48.1% 77.2% 86.3%

We have collected a full ground truth labeling of 4 cam-
eras and 3 video recorders (Figures. 8 - 9, right column)
performed by a 3D modeling artist to quantitatively evaluate
a portion of our co-segmentation results.

For cameras and video recorders, the presence of texture
maps present new challenges relative to existing datasets:
while the texture brings in an additional cue which may
translate to better segmentation, it also brings in a new di-
mension of variability across models in the data set.

Untextured datasets. For comparison with published
results of existing segmentation methods, we present our
results on synthetic untextured models of Candelabras,
Chairs, Lamps, and Vases3, which consist of 28, 20, 20,
and 28 models, respectively.

4.1. Experiments and Analysis

To measure accuracy, we apply the metric of [24] to
the superpixel graph, so that we define accuracy as the
segmentation ovelap of the predicted foreground pixels
with the ground truth segmentation and labeling: Acc =∑

i aiδ(zi=ti∧zi 6=lb∧ti 6=lb)∑
i aiδ(zi 6=lb∧ti 6=lb)

, where ai, zi, ti are the superpixel
area, co-segmentation resulted label, and ground truth label
respectively for superpixel i.

Cameras and Video Recorders. For each category we
perform co-segmentation over the entire dataset, and eval-
uate the results on the subset of models for which we have
full ground truth segmentation (Figures 8 - 9). Mean pro-
cessing time for for both datasets less than 10 minutes on a
workstation with an 8-core 2.0GHz processor bank.

An important parameter in our co-segmentation proce-
dure is the number components used in the GMM. We em-
pirically show, for both datasets, accuracy saturates when

3Shapes are available at: http://web.siat.ac.cn/ yunhai/ssl/ssd.htm

Figure 5. (a) Without using the inter-model energy. (i.e. Indepen-
dent energy minimization). (b) With using inter-model energy.

Figure 6. Comparison of our co-segmentation performance with
Kalogerakis et al. [14] and Sidi et al. [24] with datasets in [24].

the number of components is roughly 8 times the size of
the label dictionary (Figure 4). Figure 5 shows visually the
benefit of incorporating the inter-model energy into our co-
segmentation formulation.

Untextured 3D models. Since the untextured models
do not contain sparse labeling input, we generate a sparse
labeling by randomly selecting a single point from each
foreground segment based on the distribution of point-to-
boundary distances. We use a parameter α ∈ (0, 1] in our
sampling (see the supplemental material for details). Es-
sentially, for small α we bias the random point selection
towards areas far from segment boundaries. We show re-
sults for α = {0.05, 0.25, 0.50, 0.75} and for each value we
average accuracy over 10 trials of sampling.

In Figure 6, we compare our method with a supervised
[14] and an unsupervised method [24]. As expected, our
algorithm outperforms the unsupervised method, with the
prior information (one vertex per segment), even with a con-

Figure 7. Failure: (a) sparse label, (b) ground truth, (c) our result.



siderable variation in the position of the initially given label.
However, when the given sparse annotation’s centrality is
very skewed (e.g. α = 0.75), this misleads the algorithm
and performance decreases.

Figure 7 shows two instances where our algorithm fails.
In the top row, there is no geometric cue for the algorithm to
find a fine boundary for the button, where as in the bottom
row, a sparse pattern is missed by the algorithm.

5. Conclusion
We presented a novel co-segmentation method for tex-

tured 3D shapes. Our method leverages an assumption of
sparse foreground labeling, and creates a co-segmentation
of a set of objects that belong to the same category. Re-
quiring only a sparse input labeling lends our algorithm
to real-world segmentation tasks where data collection of
fully-segmented training models may be impractical.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. Slic superpixels. École Polytechnique Fédéral
de Lausssanne (EPFL), Tech. Rep, 149300, 2010. 3

[2] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. icoseg:
Interactive co-segmentation with intelligent scribble guid-
ance. In IEEE Conference on Computer Vision and Pattern
Recognition, 2010. 1

[3] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. IEEE Trans. Pattern
Anal. Mach. Intell., 24(4):509–522, Apr. 2002. 3

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. IEEE Trans. Pattern Anal.
Mach. Intell., 23(11):1222–1239, 2001. 5

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. J. of
the Royal Statistical Society. Series B, pages 1–38, 1977. 4

[6] C.-S. Dong and G.-Z. Wang. Curvatures estimation on trian-
gular mesh. Journal of Zhejiang Uni. Science, 2005. 2

[7] A. Golovinskiy and T. Funkhouser. Consistent segmentation
of 3d models. Computers & Graphics, 33(3), 2009. 2

[8] P. Heider, A. Pierre-Pierre, R. Li, and C. Grimm. Local shape
descriptors, a survey and evaluation. In Eurographics Con-
ference on 3D Object Retrieval, pages 49–56, 2011. 2

[9] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii.
Topology matching for fully automatic similarity estimation
of 3d shapes. In Computer Graphics and Interactive Tech-
niques, pages 203–212. ACM, 2001. 3

[10] Q. Huang, V. Koltun, and L. Guibas. Joint shape segmen-
tation with linear programming. In ACM Transactions on
Graphics, volume 30, 2011. 1, 2

[11] A. E. Johnson and M. Hebert. Using spin images for effi-
cient object recognition in cluttered 3d scenes. IEEE Trans.
Pattern Anal. Mach. Intell., 21(5):433–449, 1999. 3

[12] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering
for image co-segmentation. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2010. 1

[13] E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun. A
probabilistic model for component-based shape synthesis.
ACM Transactions on Graphics, 31(4):55, 2012. 1

[14] E. Kalogerakis, A. Hertzmann, and K. Singh. Learning 3D
Mesh Segmentation and Labeling. ACM Transactions on
Graphics, 29(3), 2010. 1, 2, 3, 5, 6

[15] A. Kowdle, D. Batra, W.-C. Chen, and T. Chen. imodel: in-
teractive co-segmentation for object of interest 3d modeling.
In ECCV, pages 211–224, 2012. 1

[16] Z. Lu and T. K. Leen. Penalized probabilistic clustering.
Neural Computation, 19(6):1528–1567, 2007. 3, 4

[17] N. J. Mitra, M. Wand, H. Zhang, D. Cohen-Or, and
M. Bokeloh. Structure-aware shape processing. In Euro-
graphics 2013-State of the Art Reports, pages 175–197. The
Eurographics Association, 2013. 1

[18] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: interac-
tive foreground extraction using iterated graph cuts. In ACM
SIGGRAPH, pages 309–314, 2004. 1

[19] C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Coseg-
mentation of image pairs by histogram matching - incorpo-
rating a global constraint into mrfs. In IEEE Conference on
Computer Vision and Pattern Recognition, 2006. 1

[20] T. Saito and T. Takahashi. Comprehensible rendering of 3-d
shapes. In ACM SIGGRAPH, volume 24, 1990. 3

[21] A. Shamir. A survey on mesh segmentation techniques. In
Computer graphics forum, volume 27, pages 1539–1556.
Wiley Online Library, 2008. 2

[22] L. Shapira, S. Shalom, A. Shamir, D. Cohen-Or, and
H. Zhang. Contextual part analogies in 3d objects. Int. J.
of Computer Vision, 89(3):309–326, 2010. 5

[23] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost
for image understanding: Multi-class object recognition and
segmentation by jointly modeling texture, layout, and con-
text. Int. J. of Computer Vision, 81(1), 2009. 3

[24] O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-
Or. Unsupervised co-segmentation of a set of shapes via
descriptor-space spectral clustering. In ACM Transactions
on Graphics, volume 30, 2011. 1, 2, 5, 6

[25] O. Van Kaick, A. Tagliasacchi, O. Sidi, H. Zhang, D. Cohen-
Or, L. Wolf, and G. Hamarneh. Prior knowledge for part
correspondence. In Computer Graphics Forum, volume 30,
pages 553–562. Wiley Online Library, 2011. 1, 2

[26] O. van Kaick, K. Xu, H. Zhang, Y. Wang, S. Sun, A. Shamir,
and D. Cohen-Or. Co-hierarchical analysis of shape struc-
tures. ACM Transactions on Graphics, 32(4), 2013. 1

[27] S. Vicente, C. Rother, and V. Kolmogorov. Object cosegmen-
tation. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2217–2224, 2011. 1

[28] Y. Wang, S. Asafi, O. van Kaick, H. Zhang, D. Cohen-Or,
and B. Chen. Active co-analysis of a set of shapes. ACM
Transactions on Graphics, 31(6), 2012. 1, 2

[29] K. Xu, H. Zhang, D. Cohen-Or, and B. Chen. Fit and di-
verse: Set evolution for inspiring 3d shape galleries. ACM
Transactions on Graphics, 31(4):57, 2012. 1

[30] Y. Zheng, D. Cohen-Or, and N. J. Mitra. Smart variations:
Functional substructures for part compatibility. In Computer
Graphics Forum, volume 32, pages 195–204, 2013. 1



Figure 8. Left: Models with sparse labels (sparse labels are given as bright green, not all labels are annotated for visual clarity). Middle:
Our co-segmentation result (generated using all models in the cameras dataset). Right: Ground-truth generated by a 3D artist. Color
overlays are the foreground segments (same colors in different shapes represent same labels), white overlay is the background.

Figure 9. Left: Models with sparse labels (sparse labels are given as bright green, not all labels are annotated for visual clarity). Middle:
Our co-segmentation result (generated using all models in the video recorders dataset). Right: Ground-truth generated by a 3D artist. Color
overlays are the foreground segments (same colors in different shapes represent same labels), white overlay is the background.


