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Abstract

First-order greedy selection algorithms have been widely
applied to sparsity-constrained optimization. The main
theme of this type of methods is to evaluate the function gra-
dient in the previous iteration to update the non-zero entries
and their values in the next iteration. In contrast, relatively
less effort has been made to study the second-order greedy
selection method additionally utilizing the Hessian informa-
tion. Inspired by the classic constrained Newton method, we
propose in this paper the NewTon Greedy Pursuit (NTGP)
method to approximately minimizes a twice differentiable
function over sparsity constraint. At each iteration, NTGP
constructs a second-order Taylor expansion to approximate
the cost function, and estimates the next iterate as the solu-
tion of the constructed quadratic model over sparsity con-
straint. Parameter estimation error and convergence prop-
erty of NTGP are analyzed. The superiority of NTGP to
several representative first-order greedy selection methods
is demonstrated in synthetic and real sparse logistic regres-
sion tasks.

1. Introduction
In the past two decades, sparsity models have re-

ceived broad research interests in high-dimensional sta-
tistical learning and signal processing with many signif-
icant results obtained in theory, algorithm and applica-
tions. A fundamental prior assumption of sparsity mod-
els is that the datasets need to be processed exhibit cer-
tain low-dimensional structure, which can usually been cap-
tured by imposing sparsity constraint on the model param-
eter space. Therefore it is crucial to develop robust and
efficient computational procedures to solve the following
sparsity-constrained optimization problem:

min
x∈Rp

f(x), s.t. ∥x∥0 ≤ k, (1)

where f : Rp 7→ R is a smooth convex cost function.

Unfortunately, due to the cardinality constraint, the prob-
lem (1) is generally NP-hard even for the quadratic cost
function [11]. Thus, one must seek approximate solvers in-
stead. Particularly, the special case of (1) in linear regres-
sion models has gained significant attention in Compressed
Sensing (CS) [7] area. A large body of greedy algorithms
for CS have been proposed including Orthogonal Matching
Pursuit (OMP) [15], Compressive Sampling Matching Pur-
suit (CoSaMP) [12], Iterative Hard Thresholding (IHT) [3],
and subspace pursuit [6] to name a few. The main theme of
these iterative algorithms is to use the residual error from
the previous iteration to successively approximate the posi-
tions of non-zero entries and estimate their values.

While the measure of discrepancy, least square error,
used in CS models is often desirable for signal process-
ing applications, it is not the appropriate choice for a va-
riety of other applications. For example, in statistical ma-
chine learning the log likelihood function is commonly used
in logistic regression problems (see [1] and the references
therein) and graphical models learning [9]. Thus, it is de-
sirable to develop theory and algorithms that apply to a
broader class of sparsity-constrained learning problems as
given in (1). To this end forward greedy selection algo-
rithms have been proposed to select out the non-zero en-
tries in a sequential way [14, 16]. To make the greedy se-
lection procedure more adaptive, [18] proposed a forward-
backward algorithm which takes backward steps adaptively
whenever beneficial. The forward-backward-type method
has also been investigated in [9] for sparse graphical mod-
els learning tasks. More recently, [1] proposed the Gradient
Support Pursuit Method (GraSP) which selects in the cur-
rent iteration multiple entries and update their values based
on the gradient vector in the previous iteration.

The algorithms just mentioned all belong to the cate-
gory of first-order methods which only evaluate the func-
tion value and its gradient in the previous iteration to up-
date the non-zero entries and their values in the next itera-
tion. Although this leads to efficient iterations, using merely
first-order information means that these methods typically

1



require a substantial number of iterations to reach an ac-
curate solution. In classic convex optimization, the con-
strained Newton method (also known as scaled gradient
projection) [2] has been shown to converge superlinearly.
At each iteration this method computes a descent direction
by minimizing, over the original constraints, a second-order
Taylor expansion approximation to the objective function.
Schmidt et al. [13] proposed the Projected Quasi-Newton
(PQN) method in which the quadratic approximation is con-
structed using a L-BFGS [4] update. It has been empiri-
cally shown to frequently beat first-order methods in large-
scale problems where evaluation of the function is substan-
tially more expensive than projection onto the ℓ1-norm ball.
The computational efficiency of quadratic approximation
method has also been demonstrated by [8] in ℓ1-regularized
sparse precision matrix estimation.

Our contribution. Inspired by the efficiency of con-
strained Newton-type methods, we propose in this paper the
NewTon Greedy Pursuit (NTGP) method to approximately
solve (1) with twice continuously differentiable function.
Our iterative method is based on a two-level strategy. At
the outer level, we construct a sequence of ℓ0-constrained
second-order Taylor expansions of the problem; at the in-
ner level, an iterative hard-thresholding algorithm is used
to approximately minimize this ℓ0-constrained quadratic
model. We have analyzed the sparse recovery performance
of NTGP under proper assumptions; and evaluated its prac-
tical performance in sparse logistic regression tasks. Theo-
retical results and empirical evidence both show that NTGP
can lead to substantial gains in accuracy and computational
efficiency. To the best of our knowledge, NTGP is the first
Newton-type greedy selection method with performance
guarantees.

Notation. Given a vector x ∈ Rp, we denote [x]i as its
ith entry; xF as the restriction of x to index set F , i.e.,
[xF ]i = [x]i if i ∈ F , and [xF ]i = 0 otherwise; and xk

as the restriction of x to the top k (in magnitude) entries.
Let ∥x∥2 =

√
x⊤x denote the Euclidean norm; ∥x∥1 =∑p

i=1 |xi| the ℓ1-norm; and ∥x∥0 the number of nonzero of
x. Given a matrix A ∈ Rp×p, let us denote [A]ij its element
on the ith row and jth column; ÃF the principal subma-
trix of A with rows and columns indexed in set F ; and AF

the restriction of A to index set F , i.e., [AF ]ij = [A]ij if
i, j ∈ F , and [AF ]ij = 0 otherwise. Provided that ÃF is
invertible, we define A−1

F ∈ Rp×p by [A−1
F ]F = Ã−1

F and
[A−1

F ]ij = 0 if i /∈ F or j /∈ F . Let |A|∞ = maxi,j |[Aij ]|
denote the element-wise ℓ∞-norm; |A|1 =

∑
i,j |[Aij ]| the

element-wise ℓ1-norm; ∥A∥1 = maxj
∑

i |[Aij ]| the matrix

ℓ1-norm; ∥A∥Frob =
√∑

i,j [Aij ]2 the Frobenius norm;

∥A∥2 = sup∥x∥2≤1 ∥Ax∥2 the spectral norm; and vect(A)
the vectorization of A. Finally, I represents an identity ma-
trix of compatible size.

2. Newton Greedy Pursuit
We start by briefly reviewing the constrained Newton

method for convex optimization. Then we introduce NTGP
method as an adaption of constrained Newton method to the
non-convex problem (1). We will also analyze the sparse re-
covery and computational performance of NTGP.

2.1. Constrained Newton method

The constrained Newton method [2, §2.3] iteratively
minimizes a convex objective f over a convex set Ω, i.e.,

min
x

f(x), s.t. x ∈ Ω. (2)

Here function f is assumed to be twice continuously differ-
entiable over Ω. At iteration t, this method approximates
the objective around the current iterate x(t) by the second-
order Taylor expansion

Qf (y;x
(t)) := f(x(t)) +∇f(x(t))⊤(y − x(t))

+
1

2
(y − x(t))⊤∇2f(x(t))(y − x(t)),

where ∇2f(x(t)) is the Hessian matrix. To generate the
next iterate that decreases the objective while remain-
ing feasible, the method minimizes the quadratic model
Qf (y;x

(t)) over the original feasible set Ω:

x̃(t) = argmin
y∈Ω

Qf (y;x
(t)).

The new iterate is then obtained by simply setting

x(t+1) = x(t) + β(x̃(t) − x(t)),

where β ∈ (0, 1) is the step-size selected via backtracking
line search. If the backtracking line search always selects
the step-size β = 1, then this method achieves a superlin-
ear rate of convergence in the neighborhood of any point
that satisfies the second-order sufficiency conditions for a
minimizer [2, §2.3]. Such an appealing theoretical prop-
erty of the constrained Newton method inspires us to adapt
this method to the sparsity-constrained optimization prob-
lem (1).

2.2. The NTGP algorithm

NTGP is a greedy selection algorithm to approximately
estimate the solution of (1). A high level summary of
its procedure is described in Algorithm 1. The proce-
dure generates a sequence of intermediate k-sparse vec-
tors x(0), x(1), . . . from an initial sparse approximation x(0).
At the time instance t, x(t) is selected as an approxi-
mate solution (up to a precision ϵ) to the quadratic model
Qf (y;x

(t−1)) over the constraint ∥y∥0 ≤ k. It will be as-
sumed throughout the paper that the cardinality k is known;
in practice this quantity may be regarded as a tunable pa-
rameter of the algorithm which can be selected via cross-
validation.
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Algorithm 1: Newton Greedy Pursuit (NTGP).

Initialization: x(0) with ∥x(0)∥0 ≤ k.
for t = 1, 2, ... do

Find any x(t) with ∥x(t)∥0 ≤ k such that for all ȳ
with ∥ȳ∥0 ≤ k,

Qf (x
(t);x(t−1)) ≤ Qf (ȳ;x

(t−1)) + ϵ, (3)

where ϵ ≥ 0 controls the solution precision.
end
Output: x(t).

2.3. Sparse recovery analysis

We require some technical conditions under which the
accuracy of NTGP can be guaranteed. We first introduce
the following concept of stable restricted Hessian [1] which
characterizes the curvature of the cost function over sparse
subspaces.

Definition 1 (Stable Restricted Hessian). Suppose that f is
twice continuously differentiable. For all s-sparse vectors
x, let

Ms(x) = sup
u

{
u⊤∇2f(x)u | ∥u∥0 ≤ s, ∥u∥2 = 1

}
and

ms(x) = inf
u

{
u⊤∇2f(x)u | ∥u∥0 ≤ s, ∥u∥2 = 1

}
.

Then we say f has a Stable Restricted Hessian (SRH) with
constant ρs, or in short ρs-SRH, if 1 ≤ Ms(x)/ms(x) ≤ ρs
holds for all s-sparse x.

The SRH property is analogue to the restricted isometry
property [5] in standard CS analysis. It basically requires
that the curvature of the cost function over the sparse sub-
spaces can be bounded locally from above and below such
that the corresponding bounds have the same order.

We next introduce the concept of restricted Lipschitz
Hessian which characterizes the continuity of the Hessian
matrix over sparse subspaces. To simplify the notation, we
will abbreviate in the following analysis ∇F f := (∇f)F ,
∇sf := (∇f)s and ∇2

F f := (∇2f)F .

Definition 2 (Restricted Lipschitz Hessian). Suppose that f
is twice continuously differentiable. We say f has Restricted
Lipschitz Hessian with constant γs (or γs-RLH), if

∥∇2
F f(x)−∇2

F f(y)∥2 ≤ γs∥x− y∥2

for all index set F with cardinality |F | ≤ s and all x, y with
supp(x) ∪ supp(y) ⊆ F .

The following is our main result on the convergence and
parameter estimation error of NTGP.

Theorem 1. Suppose that f is a twice continuously differ-
entiable function that has ρs-SRH. Let x̄ be a k̄-sparse vec-
tor and k ≥ k̄. Let s = 2k + k̄.

(a) Suppose that for some ms > 0 we have ms(x) ≥ ms

for all s-sparse vector x. Then it holds that

∥x(t) − x̄∥2 ≤ o(∥x(t−1) − x̄∥2) + δs(x̄, ϵ), (4)

where δs(x̄, ϵ) := m−1
s (1 + ρ

1/2
s )∥∇sf(x̄)∥2 +

m
−1/2
s ϵ1/2.

(b) Furthermore if f has γs-RLH, then

∥x(t) − x̄∥2 ≤ θs∥x(t−1) − x̄∥22 + δs(x̄, ϵ), (5)

where θs := 0.5γsm
−1
s (1 + ρ

1/2
s ).

A proof of this theorem is provided in Appendix A.1.

Remark 1. The main message Theorem 1 conveys is that
under proper conditions, up to a precision δs(x̄, ϵ), the se-
quence {x(t)} generated by NTGP locally converges super-
linearly towards any k̄-sparse vector x̄. If we further as-
sume that f has γs-RLH, then the part (b) of Theorem 1
shows that the rate of convergence is at least quadratic.
The estimation error term δs(x̄, ϵ) indicates how accu-
rate the estimate can be. It is controlled by the norm
∥∇sf(x̄)∥2 and the precision ϵ for minimizing the ℓ0-
constrained quadratic model. Particularly, if ∇f(x̄) = 0
(i.e. x̄ is the station point of (1)) and ϵ = 0, then δs(x̄, ϵ) =
0. In this case, provided that x(0) is close enough to x̄,
NTGP is able to exactly recover x̄ asymptotically at super-
linear rate. This result is analogous to accuracy guarantees
for estimation from noisy measurements in CS [5, 12], but
with improved order of convergence rate.

Remark 2. The local superlinear rate of convergence con-
tradicts NTGP from those first-order greedy selection meth-
ods which converge sublinearly/linearly. The two key con-
ditions used in our analysis are: (i) f is twice continuously
differentiable; and (ii) f has SRH. These two conditions are
also key to the analysis of GraSP [1] as a gradient support
pursuit method with linear rate of convergence. By using
a slightly stronger assumption that f has RLH, we further
derived the local quadratic rate of convergence for NTGP.

The following result is a direct consequence of the part
(b) in Theorem 1. This result more precisely shows the con-
ditions under which the local quadratic rate of convergence
and the estimation error bound can be guaranteed. Its proof
can be found in Appendix A.2.

Corollary 1. Under the assumptions in Theorem 1(b), if
∥x(0) − x̄∥2 ≤ θ−1

s /4 and δs(x̄, ϵ) ≤ θ−1
s /8, then we have

∥x(t) − x̄∥2 ≤ θ−1
s (1/4− 2θsδs(x̄, ϵ))

2t
+2δs(x̄, ϵ). (6)
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2.4. Constrained quadratic model

At the t-th iteration, NTGP needs to approximately mini-
mize the following sparsity-constrained quadratic program:

min
y

Qf (y;x
(t−1)), s.t. ∥y∥0 ≤ k. (7)

This reduced problem is a standard CS problem which is
still NP-hard. We resort to the IHT [3] method, as described
in Algorithm 2, to approximately solve such an inner loop
subproblem.

Algorithm 2: Iterative Hard Thresholding (IHT) for
solving the subproblem (7).

Initialization: y(0) = x(t−1).
for τ = 1, 2, ... do

(S1) Compute gradient descent:
ỹ(τ) = y(τ−1) − η∇Qf (y

(τ−1);x(t−1));
(S2) Identify support: T (τ) = supp(ỹ(τ), k);
(S3) Minimizer over support:
y(τ) = argminsupp(y)⊆T (τ) Qf (y;x

(t−1));
end

The following result establishes the convergence prop-
erty of {y(τ)} generated by Algorithm 2.

Theorem 2. Suppose that f is a twice continu-
ously differentiable function. Let ȳ be a k̄-sparse
vector. Given that η ∈ (0, 2/Ms(x

(t−1))) and

k ≥ k̄
(
1 + 4Ms(x

(t−1))
m2

s(x
(t−1))(2η−η2Ms(x(t−1)))

)
, if Qf (y

(τ)) ≥
Qf (ȳ), then we have

Qf (y
(τ);x(t−1)) ≤ Qf (ȳ;x

(t−1)) + (1− ν)τ△0,

where ν = (2η−η2Ms(x
(t−1)))ms(x

(t−1))

2k̄
and △0 =

Qf (y
(0);x(t−1))−Qf (ȳ;x

(t−1)).

A proof of this theorem is given in Appendix A.3.

Remark 3. One implication of Theorem 2 is that if the
step size is set to be η = 1/Ms(x

(t−1)) and f has
ρs-SRH, then for any k̄-sparse ȳ, after at most τ =
(ln ϵ − ln△0)/ ln(1 − (2k̄ρs)

−1) steps of iteration we
will have Qf (y

(τ);x(t−1)) ≤ Qf (ȳ;x
(t−1)) + ϵ. This

is desired at each iteration of Algorithm 1. Note that
Ms(x

(t−1)) is the so called s-sparse eigenvalue of the Hes-
sian ∇2f(x(t−1) [17]. In our implementation, we choose
s = 3k and estimate Ms(x

(t−1)) using the truncated power
(TPower) method [17] which is quite efficient and accurate
in our practice. We then set η as the inverse of Ms(x

(t−1)).

Computational cost. The overhead cost at each iteration of
Algorithm 2 is dominated by the steps S1 and S3. To eval-
uate ∇Qf in the step S1, we only need to calculate prod-
uct of the Hessian ∇2f(x(t−1)) with the 2k-sparse vector

y(τ−1)−x(t−1). The computational complexity of this step
is O(kp). In the step S3, y(τ) is given by the solution of the
following linear system

∇2
T (τ)f

(t−1)y = −∇T (τ)f (t−1) + [∇2f (t−1)x(t−1)]T (τ) ,

in which we have used the abbreviation f (t−1) :=
f(x(t−1)). Therefore, to estimate y(τ) it is sufficient to
compute the principle submatrix ∇2

T (τ)f
(t−1) restricted on

the index set T (τ) and then solve a linear system. Since
|T (τ)| ≤ 3k, a direct solution leads to O(k3) complexity1.
When k is relatively large, the step S3 can be solved via gen-
eral purpose convex solvers such as PQN used in our imple-
mentation. One may compare the per-iteration complexity
of NTGP with that of GraSP [1]: the former minimizes a
quadratic function over a sparsity constraint whilst the lat-
ter minimizes an arbitrary convex objective over a fixed sup-
porting set. It is open to compare the complexity of these
two subproblems for general cases. As we will see in §3
that NTGP is as efficient as GraSP in the considered sparse
logistic regression tasks.

2.5. Example: sparse logistic regression

As an example, we specialize NTGP to the sparse lo-
gistic regression problem which is one of the most popular
models in pattern recognition and machine learning. Given
a set of n independently drawn data samples {(ui, vi)}ni=1

where ui ∈ Rp is the feature and vi ∈ {−1,+1} is the bi-
nary label, logistic regression learns parameters w so as to
minimize the logistic loss

l(w) :=
1

n

n∑
i=1

log(1 + exp(−2viw
⊤ui)).

The following sparsity-constrained ℓ2-regularized logistic
regression is widely used in high-dimensional analysis [1]:

min
w

f(w) = l(w) +
λ

2
∥w∥22, s.t. ∥w∥0 ≤ k, (8)

where λ > 0 is the regularization strength parameter. Ob-
vious f(w) is λ-strongly convex, thus it has a unique mini-
mum. The cardinality constraint enforces sparse solution.
Verifying SRH and RLH. Let σ(z) = 1/(1 + exp(−z))
be the sigmoid function. It is easy to show that the gra-
dient ∇f(w) = Ua(w)/n + λw where a(w) ∈ Rn

with [a(w)]i = −2vi(1 − σ(2viw
⊤ui)); and the Hes-

sian ∇2f(w) = UΛ(w)U⊤/n + λI where Λ(w) is an
n × n diagonal matrix whose diagonal entries [Λ(w)]ii =
4σ(2viw

⊤ui)(1− σ(2viw
⊤ui)).

The continuity of σ(z) implies the continuity of
∇2f(w), i.e., f(w) is twice continuously differentiable. It

1We consider here that solving linear systems takes cubic time. This
time complexity however can be improved.
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has been shown in [1, Corollary 1] that under mild condi-
tions, f(w) has SRH with overwhelming probability. The
following result further verifies that f has RLH.

Proposition 1. Assume that for any index set F with |F | ≤
s we have ∀i, ∥(ui)F ∥2 ≤ Rs. Then the ℓ2-regularized
logistic loss has γs-RLH with γs ≤ 24sR3

s .

A proof of this proposition is provided in Appendix A.4.
Concerning the estimation error bound δs(x̄, ϵ), if the preci-
sion ϵ = 0, then δs(x̄, ϵ) is proportional to ∥∇sf(w)∥2. The
bounding analysis of ∥∇sf(w)∥2 for the ℓ2-regularized lo-
gistic loss can be found in [1].

3. Experimental Results
In this section, we show some numerical results to

demonstrate the effectiveness and efficiency of NTGP when
applied to sparse logistic regression tasks. All the consid-
ered algorithms are implemented in Matlab 7.12 running on
a person desktop with Core i7 CPU@3.40GHz.

3.1. Simulation study

In our simulations, we consider a data model with sparse
parameter w̄ is a p = 2000 dimensional vector that has k̄ =
200 nonzero entries drawn independently from the standard
Gaussian distribution. Each data sample u is a normally
distributed vector. The data labels, v ∈ {−1, 1}, are then
generated randomly according to the Bernoulli distribution

P(v = 1|u; w̄) = exp(2w̄⊤u)

1 + exp(2w̄⊤u)
.

We fix the sparsity parameter k = k̄ and the regulariza-
tion parameter λ = 10−4 in (8). We compare NTGP with
three first-order greedy selection methods: the GraSP [1],
the FCFGS [14] and the FoBa [18]. All these three methods
are designed to solve the sparsity-constrained optimization
problem (1). For each choice of the sample size n with
n/p ∈ {0.1, 0.15, 0.2, ..., 1} we generate 100 independent
copies of data and the associated labels. For each copy, we
generate an independent copy of the same size for validating
the tuning parameter k. We initialize w(0) = 0 for the con-
sidered algorithms. Throughout our experiment, we set the
stopping criterion of |f(w(t))− f(w(t−1))|/|f(w(t−1))| ≤
10−4.

Figure 3 shows the average values of the estimation er-
ror (i.e., ∥ŵ − w̄∥2), the support recovery precision and the
CPU running time achieved by the considered algorithms
under a wide range of sampling ratio n/p. The following
observations are made from this figure: 1) in terms of pa-
rameter estimation performance, NTGP is consistently bet-
ter than the other three considered methods; 2) in terms of
support recovery performance, NTGP significantly outper-
forms the other three considered methods; 3) in terms of

running efficiency, NTGP is as efficient as GraSP and these
two are significantly faster than FBS and FoBa. Overall,
for this simulation study, we conclude that NTGP is able to
find much more accurate solutions than the three considered
first-order greedy selection methods, without sacrificing ef-
ficiency.

3.2. Real data

The considered algorithms are also assessed on the
rcv1.binary dataset (p = 47,236) which is a standard bench-
mark for binary classification on sparse data [10]. A train-
ing subset of size n = 20,242 and a testing subset of size
20,000 are used. We set the regularization parameter λ =
10−5 and test with sparsity parameter k ranging from 500
to 5000. The initial vector is set to be w(0) = 0 for all the
considered algorithms.

The left two panels of Figure 2 plot the curves of empir-
ical logistic loss verses number of function/gradient evalu-
ations, for k = 1000 and k = 5000 respectively. It can
be seen from these two plots that NTGP converges faster
than the other three algorithms. This confirms the theoreti-
cal prediction of Theorem 1. The classification errors of the
considered algorithms are shown in the right most panel of
Figure 2. It can be seen that NTGP is comparable to GraSP
in testing performance and they are both superior to FCFGS
and FoBa. Also, we observe that the testing performances
of FCFGS and FoBa are insensitive to k. This is because
these two methods pursuit support in a sequential way.

4. Conclusions
We proposed NTGP as a quadratic approximation

greedy selection method for sparsity-constrained optimiza-
tion problem. The main idea is to construct a second-order
Taylor expansion to approximate the objective function and
solve the resultant sparsity-constrained quadratic model at
each iteration. Theoretically we showed that up to an esti-
mation error, NTGP converges superlinearly in a vicinity
of a target sparse solution. The estimation error is con-
trolled by the gradient norm at the target sparse solution,
as well as the solution quality of the constrained quadratic
subproblem. We demonstrated the performance of NTGP
when applied to sparse logistic regression tasks. To con-
clude, NTGP is a theoretically and computationally sound
second-order greedy support pursuit method.
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Figure 1. Simulated data: parameter estimation error (left panel), support recovery precision (middle panel) and running time (right panel).
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Figure 2. rcv1.binary data: objective value convergence curves (left and middle panels) and testing error curves (right panel).

A. Technical Proofs
This appendix section is devoted to proving the theoreti-

cal results stated in this paper.

A.1. Proof of Theorem 1

We need the following lemma which shows the progress
of Newton iteration carried out in a sparse subspace spanned
over an index set F .

Lemma 1. Assume that f is twice continuously differen-
tiable. Consider an index set F with |F | ≤ s and an vector
x satisfies supp(x) ⊆ F . Assume that ∇2

F f(x) is invertible.
Let y = x − [∇2

F f(x)]
−1∇F f(x). Consider any x̄ with

supp(x̄) ∪ supp(x) ⊆ F .

(a) If ms(x) ≥ ms > 0 for all s-sparse vector x, then we
have

∥y − x̄∥2 ≤ o(∥x− x̄∥2) +m−1
s ∥∇sf(x̄)∥2.

(b) Furthermore if f has γs-RLH, then we have

∥y − x̄∥2 ≤ 0.5γsm
−1
s ∥x− x̄∥22 +m−1

s ∥∇sf(x̄)∥2.

Proof. Part (a): From the definition of y we have that

y − x̄ = x− x̄− [∇2
F f(x)]

−1∇F f(x)

= [∇2
F f(x)]

−1[∇2
F f(x)(x− x̄)−∇F f(x) +∇F f(x̄)]

−[∇2
F f(x)]

−1∇F f(x̄). (9)

Since Taylor’s theorem tells us that

∇F f(x)−∇F f(x̄) =

∫ 1

0

∇2
F f(x+ t(x̄− x))(x− x̄)dt,

we have that

∥∇2
F f(x)(x− x̄)−∇F f(x) +∇F f(x̄)∥2

=

∥∥∥∥∫ 1

0

[∇2
F f(x)−∇2

F f(x+ t(x̄− x))](x− x̄)dt

∥∥∥∥
2

≤
∫ 1

0

∥∇2
F f(x)−∇2

F f(x+ t(x̄− x))∥2dt∥x− x̄∥2.

By substituting the preceding inequality to (9) we obtain

∥y − x̄∥2 ≤ m−1
s ∥x− x̄∥2 ×∫ 1

0

∥∇2
F f(x)−∇2

F f(x+ t(x̄− x))∥2dt

+m−1
s ∥∇sf(x̄)∥2.

Since f is twice continuously differentiable, we have that
∇2

F f is continuous. It follows that ∥y − x̄∥2 ≤ o(∥x −
x̄∥2) +m−1

s ∥∇sf(x̄)∥2.
Part(b): If f has γs-RLH, then the proceeding relation

yields

∥y − x̄∥2 ≤ m−1
s ∥x− x̄∥22

∫ 1

0

γstdt+m−1
s ∥∇sf(x̄)∥2

= 0.5γsm
−1
s ∥x− x̄∥22 +m−1

s ∥∇sf(x̄)∥2.
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This proves the desired result.

We are now in the position to prove Theorem 1.

Proof of Theorem 1. Part (a): Let Ft := supp(x(t)) and
F := Ft−1 ∪ Ft ∪ supp(x̄). Obviously |F | ≤ s. Consider
the following vector

x′
t = x(t−1) − [∇2

F f(x
(t−1))]−1∇F f(x

(t−1)).

It is easy to verify that for any x with supp(x) ⊆ F

Qf (y;x
(t−1)) = (y − x′

t)
⊤∇2

F f(x
(t−1))(y − x′

t) + const.
(10)

By using the part (a) in Lemma 1, we have that

∥x′
t − x̄∥2 ≤ o(∥x(t−1) − x̄∥2) +m−1

s ∥∇sf(x̄)∥2. (11)

It follows from triangle inequality and (10) that

∥x(t) − x̄∥2
≤ ∥x(t) − x′

t∥2 + ∥x′
t − x̄∥2

≤ ms(x
(t−1))−1/2

×
√
(x(t) − x′

t)
⊤∇2

F f(x
(t−1))(x(t) − x′

t)

+∥x′
t − x̄∥2

≤ ms(x
(t−1))−1/2

×
√
(x̄− x′

t)
⊤∇2

F f(x
(t−1))(x̄− x′

t) + ϵ

+∥x′
t − x̄∥2

≤ ms(x
(t−1))−1/2

√
(x̄− x′

t)
⊤∇2

F f(x
(t−1))(x̄− x′

t)

+ms(x
(t−1))−1/2ϵ1/2 + ∥x′

t − x̄∥2
≤ ((Ms(x

(t−1))/ms(x
(t−1)))1/2 + 1)∥x′

t − x̄∥2
+ms(x

(t−1))−1/2ϵ1/2

≤ (ρ1/2s + 1)∥x′
t − x̄∥2 +m−1/2

s ϵ1/2, (12)

where the second “≤” follows (3) and (10). By comb-
ing (11) and (12) we obtain

∥x(t) − x̄∥2
≤ o(∥x(t−1) − x̄∥2) +m−1

s (1 + ρ1/2s )∥∇sf(x̄)∥2
+m−1/2

s ϵ1/2.

This proves (4).
Part (b): By using the part (b) in Lemma 1, we obtain

∥x′
t − x̄∥2 ≤ 0.5γsm

−1
s ∥x(t−1) − x̄∥22

+m−1
s ∥∇sf(x̄)∥2. (13)

By combing (13) and (12) we obtain

∥x(t) − x̄∥2 ≤ 0.5γsm
−1
s (1 + ρ1/2s )∥x(t−1) − x̄∥22

+m−1
s (1 + ρ1/2s )∥∇sf(x̄)∥2

+m−1/2
s ϵ1/2.

This proves (5).

A.2. Proof of Corollary 1

Proof. This can be proved by induction. Obviously, in-
equality (6) holds for t = 0. Assume that (6) holds for
t− 1. From the part (b) of Theorem 1 we obtain

∥x(t) − x̄∥2 ≤ θs∥x(t−1) − x̄∥22 + δs(x̄, ϵ)

≤ θs[θ
−1
s (1/4− 2θsδs(x̄, ϵ))

2t−1

+2δs(x̄, ϵ)]
2 + δs(x̄, ϵ)

≤ θ−1
s (1/4− 2θsδs(x̄, ϵ))

2t

+2δs(x̄, ϵ),

where the second “≤” follows from the assumption
δs(x̄, ϵ) ≤ θ−1

s /8. This finishes the induction.

A.3. Proof of Theorem 2

Proof. Let F = T (τ−1) ∪ supp(ȳ). Note that if |F −
supp(ȳ)| < k̄, then we add additional (arbitrary) indices
to F so that |F − supp(ȳ)| = k̄. For the sake of notation
simplicity, we write Qf (y;x

(t−1)) as Qf (y), ∇Qf (y
(τ)) as

∇Q
(τ)
f and ms(x

(t−1)) (and Ms(x
(t−1))) as m

(t−1)
s (and

M
(t−1)
s ). From Definition 1 we have

m
(t−1)
s

2
∥ȳ − y(τ−1)∥22

≤ Qf (ȳ)−Qf (y
(τ−1))− (ȳ − y(τ−1))⊤∇Q

(τ−1)
f

≤ Qf (ȳ)−Qf (y
(τ−1)) +

m
(t−1)
s

4
∥ȳ − y(τ−1)∥22

+
1

m
(t−1)
s

∥∇FQ
(τ−1)
f ∥22,

where the last inequality follows from Cauchy-Schwartz in-
equality and a2/(4m) + mb2 ≥ ab. From the step S3 we
know that ∇T (τ−1)Q

(τ−1)
f = 0. By definition of T (τ) we

may decompose T (τ) = G1 ∪ (T (τ−1) − G2) with G1 ⊆
supp(∇Q

(τ−1)
f ), G2 ⊆ T (τ−1) and |G1| = |G2| = k′ ≤ k.

That is, G1 contains the top k′ (in magnitude) entries in
∇Q

(τ−1)
f while G2 contains the bottom k′ entries in y(τ−1).

We assume without loss of generality that k′ ≥ 1 (otherwise
the algorithm terminates). Combing these facts and the pre-
ceding inequality we get

(k̄/k′)∥∇G1Q
(τ−1)
f ∥22 ≥ ∥∇FQ

(τ−1)
f ∥22

≥ m(t−1)
s

[
δQf +

m
(t−1)
s

4
∥ȳ − y(τ−1)∥22

]

≥ m(t−1)
s

[
δQf +

(k − k̄)m
(t−1)
s

4k′
∥y(τ−1)

G2
∥22

]
,(14)

where δQf = Qf (y
(τ−1)) − Qf (ȳ). Now let z(τ) :=

y
(τ)

T (τ) = y(τ−1) +∆(τ−1) where

∆(τ−1) = −η∇G1Q
(τ−1)
f − y

(τ−1)
G2

.
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From steps S1 and S3 in Algorithm 2 we have that

Qf (y
(τ)) ≤ Qf (z

(τ))

≤ Qf (y
(τ−1)) + ⟨∇Q

(τ−1)
f ,∆(τ−1)⟩

+
M

(t−1)
s

2
∥∆(τ−1)∥22

≤ Qf (y
(τ−1)) +

M
(t−1)
s

2
∥y(τ−1)

G2
∥22

−2η − η2M
(t−1)
s

2
∥∇G1Q

(τ−1)
f ∥22

≤ Qf (y
(τ−1))− k′(2η − η2M

(t−1)
s )m

(t−1)
s

2k̄

(Qf (y
(τ−1))−Qf (ȳ))

+

(
M

(t−1)
s

2
− (k − k̄)(2η − η2M

(t−1)
s )(m

(t−1)
s )2

8k̄

)
∥y(τ−1)

G2
∥2Frob

≤ Qf (y
(τ−1))

− (2η − η2M
(t−1)
s )m

(t−1)
s

2k̄
(Qf (y

(τ−1))−Qf (ȳ))

where the third inequality follows (14), the last inequality
follows k ≥ k̄

(
1 +

4M(t−1)
s

(m
(t−1)
s )2(2η−η2M

(t−1)
s )

)
and k′ ≥ 1.

This proves the desired result.

A.4. Proof of Proposition 1

Proof. Consider an index set F with cardinality |F | ≤ s
and all w,w′ with supp(w) ∪ supp(w′) ⊆ F . Since σ(z) is
Lipschitz continuous with constant 1, we have that

|σ(2viw⊤ui)− σ(2viw
′⊤ui)| ≤ |2(w − w′)⊤viui|

≤ 2∥(ui)F ∥2∥w − w′∥2 ≤ 2Rs∥w − w′∥2.

Using this above inequality and the fact that σ(z) ≤ 1 we
obtain

|σ(2viw⊤ui)(1− σ(2viw
⊤ui))

−σ(2viw
′⊤ui)(1− σ(2viw

′⊤ui))|
≤ 3|σ(2viw⊤ui)− σ(2viw

′⊤ui)| ≤ 6Rs∥w − w′∥2.

This yields that ∥Λ(w) − Λ(w′)∥2 ≤ 24Rs∥w − w′∥2.
Therefore we have

∥∇F f(w)−∇F f(w
′)∥2

≤ 1

n
∥UF•∥22∥Λ(w)− Λ(w′)∥2

≤ 24

n
∥UF•∥22Rs∥w − w′∥2 ≤ 24sR3

s∥w − w′∥2,

where the last “≤” follows from ∥UF•∥2 ≤√
snmaxi ∥(ui)F ∥2 ≤

√
snRs. This proves the de-

sired result.
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