
Gesture Recognition Portfolios for Personalization

Angela Yao1 ∗

1ETH Zürich
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Abstract

Human gestures, similar to speech and handwriting, are
often unique to the individual. Training a generic classifier
applicable to everyone can be very difficult and as such, it
has become a standard to use personalized classifiers in
speech and handwriting recognition. In this paper, we ad-
dress the problem of personalization in the context of gesture
recognition, and propose a novel and extremely efficient way
of doing personalization. Unlike conventional personaliza-
tion methods which learn a single classifier that later gets
adapted, our approach learns a set (portfolio) of classifiers
during training, one of which is selected for each test subject
based on the personalization data. We formulate classifier
personalization as a selection problem and propose several
algorithms to compute the set of candidate classifiers. Our
experiments show that such an approach is much more ef-
ficient than adapting the classifier parameters but can still
achieve comparable or better results.

1. Introduction
The last few years have seen tremendous interest in devel-

oping “natural” user interfaces. These interfaces do not use
keyboards or mice, which have been the dominant modes
of human-computer interaction over the last few decades.
Instead, they infer user intent through verbal commands and
body gestures. An important milestone in the progress of nat-
ural user interfaces was the launch of Microsoft Kinect [18].
In fact, the combination of cheap depth cameras and real-
time human pose estimation algorithms [7, 18] has sparked
a trend of adding gesture-based control into all sorts of con-
sumer electronics and hobbyist projects. Although Kinect
has enabled the estimation of body part movements, the in-
terface developer is still left with the challenge of assigning
meaning to the movements.

A number of gesture recognition methods have been pro-
posed in the literature [15, 6, 13], including some which
operate on the human pose estimated from the Kinect [15, 6].
Most of these methods follow a standard classification
paradigm. During training, samples are collected and a clas-
sifier is learned; during testing, end-users use this classifier,
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which may or may not generalize to his or her gestures. Ges-
tures, however, like handwriting and speech, are inherently
unique to an individual [6]. For instance, people in west-
ern societies usually perform a “Greet” gesture by shaking
hands, while people from eastern societies, such as Japan,
greet by bowing, or in the case of India, by performing ”Na-
maste“1. Even if the same body movement is associated with
a gesture, there are still significant variations in the speed
and magnitude of movements among individuals. Finally, in
a learning based approach, the system associates the gestures
with movements natural to the people in the training dataset,
but these movements may not be natural to the end-user.

One way to resolve the difficulties of learning a generic
classifier is to personalize the classifier to every user. Typ-
ically, personalization involves learning the general classi-
fier’s parameters on the training data and then adapting these
parameters to give the best performance on some “person-
alization” set – extra training samples collected from the
intended user [11, 19, 21]. This type of user adaptation is
used extensively in speech [12, 17] and handwriting recogni-
tion [3, 11], with the obvious tradeoff between the amount
of personalization data (and subsequent accuracy) versus the
inconvenience to the user. Depending on the extent of adapta-
tion, the personalization step may involve a computationally
expensive search for user parameters.

Personalization solves a problem that is conceptually sim-
ilar to transfer learning and domain adaptation, where the
target application, domain, or data distribution differs from
the original training data. Solutions typically involve fea-
ture transformations between domains [16, 8] or adjustment
of the classifier parameters [10, 19, 21, 5]. Many of these
cases assume that significant amounts of data exists in the
target domain, albeit partially [19, 16] or completely unla-
beled [21, 8]. Such an assumption is unrealistic for gesture
recognition, since collecting large amounts of personaliza-
tion data is highly inconvenient for a target user and may be
impossible after system deployment.

In this paper, we propose a novel and extremely efficient
method of classifier personalization. We target applications
with limited computational resources, e.g. a mobile app,
requiring very little personalization data, since its collection
can be onerous for the end user. Unlike traditional personal-
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(a) single generic classifier 

(b) personalization data 

(c) personalized classifier 

(d) classifier portfolio 

(e) personalization data 

(f) selected personal classifier 

Classifier Adaptation Our Portfolio Approach 

Figure 1. We compare standard personalization ((a) to (c)) with our proposed approach of selecting a personal classifier from a portfolio
((d) to (f)). The different shapes, i.e. the circles and stars, represent different gesture classes, while the colours represent different users.
In standard personalization, one (a) learns a generic classifier on the training data, (b) collects personalization data and (c) then uses it
as a regularizer for adjusting the original classifier parameters. Such approaches are undesirable as they may require large amounts of
personalization data, be computationally expensive, or infeasible after system deployment. Our proposal is to (d) learn a portfolio of
classifiers on the training data such that at least one classifier is well-suited to any given user. At run time, (e) personalization data is used to
evaluate all classifiers in the portfolio and (f) to select the best for the target user. (Best viewed in colour.)

ization, which learn a single classifier that later gets adapted,
our method learns a set, or portfolio, of classifiers during
training. The training procedure ensures that at least one
classifier is well-suited to any given user, so that during per-
sonalization, one simply evaluates all classifiers in the set
and choose the best performing one (overview in Figure 1).

The key contributions of this paper are (1) formulation of
classifier personalization as a selection problem, (2) proposal
of methods for computing sets of candidate personalized clas-
sifiers, and (3) evaluation of the benefits of personalization
on two datasets. While we use gesture recognition as the
target application, the method is applicable for adapting any
classifier to be user-specific.

2. Personalized Gesture Recognition
We formulate gesture recognition as a classification prob-

lem. For a set of data/label pairs {(x, y)|x ∈ X , y ∈ Y}, one
can find a mapping f with parameters θ to make predictions
ŷ = f(x, θ). In the standard classification paradigm, one
learns an optimal θ∗g on the training set G = {(xis, yis) | i ∈
1...K, s ∈ 1...M} with K data/label pairs from M training
subjects. Following a maximum likelihood estimate frame-
work, θ∗g is determined by:

θ∗g = argmax
θ

L(θ) = argmax
θ

∑
s,i

log
(
p(yis|xis; θ)

)
. (1)

For a target user r, θ∗g is applicable only if the user’s
underlying distribution pr(x, y) is the same as the training
data pg(x, y). By factoring p(x, y)=p(x|y) · p(y), one can
see that variations arise from differing p(x|y) or p(y). p(x|y)
reflects different physical movements that people associate
with a given gesture, while p(y) is the prior probability of
observing a gesture being performed by an individual. In
the case of gesture recognition, the need for personalization
may come from both types of variation.

2.1. Subject- and Instance-Specific Reweighting

One can adapt the generic classifier of Eq. (1) into a
user-specific classifier targeting user r by emphasizing the
training instances coming from subjects more similar to
the target user. More formally, a user-specific θ∗r which is
optimal for subject r can be determined by:

θ∗r = argmax
θ

∑
s,i

d
(
r, s
)
· log

(
p(yis|xis; θ)

)
. (2)

The function d(r, s) encodes the similarity between user r
and training subject s; its value is large if r and s are similar
in terms of some attributes (e.g. age, gender, height etc.)
that could affect the movements users associate with cer-
tain gestures. The reweighting has the effect of biasing the
likelihood so that the learned classifier is especially good



at recognizing gestures from training subjects similar to the
target user; one can also extend such a concept to make d(·)
instance specific. Such an approach to personalization is in-
tuitive and is analogous to the instance weighting approaches
used in natural language parsing [1, 10, 5]. Unfortunately,
it is impractical when extended to gesture recognition for a
number of reasons. Firstly, it is unclear which user attributes
are useful for measuring the similarity d(·). Secondly, the
values of these attributes for the training subjects and or
end-user may be unavailable. Finally, the optimal form that
function d(·) ought to take is unclear.

2.2. Personalized Training Set

In some scenarios, the system can access some additional
personalization data Pr = {(xjr, yjr) | j ∈ 1...N} data from
the target user r. This might be collected from the user
before he or she starts using the recognizer for the first time
and is usually very limited in quantity, i.e. N � M ×K.
By having access to the personalization data, one can then
attempt to model p(x|y). Previous works [11, 21] have
proposed the use of Pr as an additional regularization term
in the likelihood, i.e.

θ∗r = argmax
θ

L(θ) + λf ·
∑
i

log
(
p(yir|xir; θ), (3)

where λf serves as a regularizing constant. The above prob-
lem formulation, which we will refer to as full personaliza-
tion, involves a complete re-maximization of the original
conditional likelihood along with a personalized conditional
likelihood. One way to simplify such a maximization is to
assume that θ∗r is close to θ∗g and can be approximated as

θ∗r ≈ argmax
θ

∑
i

log
(
p(yir|xir; θ)

)
− λa · ||θ∗g − θ||. (4)

The summation term maximizes only the personalized condi-
tional likelihood, while the second term prevents large devia-
tions from θ∗g , with some regularizing constant λa. We refer
to this formulation as adaptive personalization. Note that
depending on the nature of the cost function and classifier
in question, such a maximization can still be computation-
ally expensive. Furthermore, with very few personalization
samples, estimates of the personalized conditional likelihood
may still be unreliable.

3. Learning a Portfolio of Classifiers
We now present our method that side-steps explicitly max-

imizing the personalized likelihood function in Eqs. (3,4) at
personalization time. We learn a set or portfolio of classifiers
at training time and choose the one that performs best on
the personalization samples. Let Θ denote the parameters of
a portfolio of J classifiers i.e. Θ = {θj |j = 1...J}, where
each θj is the parameter of classifier j.

3.1. Attribute-Based Portfolios

One way of creating a gesture recognition portfolio is
to learn specialized classifiers where each classifier targets
a range of attribute values. For example, if height were
a relevant attribute, one could fill the portfolio with some
classifiers tuned for short subjects and others for tall subjects.
A simple way of integrating attributes is to weight the loss
of each classifier according to the targeted attribute value.
More formally, let each training instance xis be associated
with attribute value ais; its weighting ws,i is determined by
mj(·), where mj could be adjusted to emphasize different
values of a for each classifier j.

Algorithm 1 Learning of an attribute-based portfolio
initialize: Θ = {}
for k = 1→ J do

1. ws,i := mj(as,i)

2. θ∗j = argmax
θ

∑
s,i

ws,i · log
(
p(yis|xis; θ)

)
3. Θ← Θ ∪ θ∗j

end for

Based on Algorithm 1, one can learn a portfolio of classi-
fiers which may target height, age, gender etc. which may
affect the movements users associate with certain gestures.
For one or two relevant attributes, this is a feasible solution,
but for more attributes, Algorithm 1 no longer scales, partic-
ularly if one combines the attributes, e.g. learning classifiers
dedicated to middle-age, tall, Caucasian women. As such,
we propose a more direct approach in Section 3.2.

3.2. Likelihood-Based Portfolios

Our goal is to learn the optimal parameters Θ∗ for the
portfolio such that for a target user r, there exists θj ∈ Θ
which is an adequate classifier, i.e. maximize p(y|x; θj). We
begin with the likelihood in Eq. (1), and define a portfolio
objective LP (Θ) as the sum, over training subjects, of the
maximum likelihood for one such classifier in the portfolio
on the instances of each subject. More formally,

Θ∗ = argmax
Θ

LP (Θ) = argmax
Θ

∑
s

Ls(Θ), (5)

where the subject-specific likelihood Ls(Θ) is defined as

Ls(Θ) := max
θj∈Θ

∑
i

log
(
p(yis|xis; θj)

)
. (6)

Such a formulation is related to the Multiple Choice Learning
framework [9], which used a coordinate descent procedure
to minimize the set loss.

Greedy Minimization The portfolio objective defined in
Eq. (5) is a supermodular set function [14]. Maximization of



super-modular functions are in general NP-hard, even if the
set of all solutions is finite. We can use the greedy procedure
of Algorithm 2 to approximate a solution. In each iteration
of Algorithm 2, the log likelihood ls from the best classifier
so far in the existing portfolio is determined for every subject.
A new classifier with parameter θ∗k is then learned based on
the max of the new log likelihood and ls.

Algorithm 2 Greedy maximization of portfolio objective
initialize:
θ∗1 = argmax

θ

∑
s,i

log
(
p(yis|xis; θ)

)
Θ = {θ∗1}

for k = 2→ J do
1. for all s do

ls := max
θj∈Θ

∑
i

log
(
p(yis|xis; θj)

)
end for

2. θ∗k = argmax
θ

∑
s

(
max

{∑
i

log
(
p(yis|xis; θ)

)
, ls

})
3. Θ← Θ ∪ θ∗k

end for

3.3. Robust Likelihood-Based Portfolios

Note that ls considers only the max log likelihood among
the J classifiers in the portfolio for each subject, i.e. only one
classifier needs to maximize the likelihood on the instances
from any subject. The remaining classifiers can have any
likelihood and not affect the overall portfolio objective. Such
an objective implicitly assumes that we are somehow able
to isolate the best classifier for any given subject at test
time. This is a reasonable assumption if there are a large
number of instances in the personalization set. In this case,
we could select the best classifier from the portfolio for each
subject with very high confidence by observing the classifier
accuracy on the personalization instances.

In real world personalization scenarios, the personaliza-
tion set is usually quite small; the low number of personal-
ization instances may lead to the selection of a sub-optimal
classifier. This observation necessitates a robust version
of the portfolio objective, to encourage every classifier in
the portfolio to have an acceptable log likelihood on each
subject. As such, we introduce a threshold ν which encour-
ages all classifiers in the portfolio to have an acceptable log
likelihood for every subject, i.e.

θ∗k = argmax
θ

∑
s

(
max

{∑
i

log
(
p(yis|xis; θ)

)
,min {ls, ν}

})
.

(7)
We can simplify the maximization of θ∗k with a surro-

gate function that takes the form of a weighted sum of the
instances of individual subjects:

θ∗k = argmax
θ

∑
s,i

ws · log
(
p(yis|xis; θ)

)
, (8)

where ws =
κs

min{ls, ν}
(9)

For learning the new predictor θ∗k, Eq. (8) assigns for each
subject a weight inversely proportional to an upper bounded
ls in the current portfolio. Such a weighting is conceptually
similar to the user-specific classifier θ∗r of Eq. (2), but has
the added advantage of not having to estimate d(·) by taking
a direct likelihood maximization approach. Note that the
formulation of Eq. (9) gives all instances of each subject the
same weight. Ideally, one would like to adjust the weights
according the loss of individual instances per subject, i.e.
generalize ws to ws,i:

ws,i =
κs,i

min{ls,i, ν}
, (10)

where ls,i := max
θj∈Θ

log
(
p(yis|xis, θj)

)
, (11)

resulting in Algorithm 3.

Algorithm 3 Robust greedy maximization
initialize:
θ∗1 = argmax

θ

∑
s,i

log
(
p(yis|xis; θ)

)
Θ = {θ∗1}

for k = 2→ J do
1. for all s, i do

ls,i := max
θj∈Θ

log
(
p(yis|xis; θj)

)
end for

2. ws,i =
κs,i

min {ls,i,ν}

3. θ∗k = argmax
θ

∑
s,i

ws,i · log
(
p(yis|xis; θ)

)
4. Θ← Θ ∪ θ∗k

end for

4. Base Classifier
Our proposed personalization method is general enough

that it can be adapted to any type of classifier learned by max-
imizing a likelihood term. We have chosen a random forest
classifier as our base classifier, as they are fast and efficient
for training, and more importantly, for testing, making them
well-suited for real-time applications. Random forests have
been shown to work well for action and gesture recognition
in the past, either through a voting framework [20] or by
direct classification [6].

We use the direct classification approach of [6] with pa-
rameter θ = {F}, where F is a random forest. Each tree
f in the forest F , at time t, classifies input feature data
xt = {xt′ , xt′+1, ..., xt} (composed of observations from



crouch/hide put on goggles shoot a pistol throw an object chevuoi daccordo perfetto vattene ok

Table 1. Example gestures from the MSRC-12 (left) and 2013 ChaLearn Gesture Challenge (right).

time t′ to t) into gesture class ŷt from the set of possible
gesture classes Y . The ensemble of classifications from each
tree f in the forest approximates a posterior class distribution

pF (ŷ = y|xt) = 1
|F|

∑
f

p̂f,l(ŷ
f
t = y|xt) (12)

over Y , where p̂f,l(·) is the distribution stored at leaf node l
of tree f that the sample xt goes to during testing. The trees
themselves are learned according to the standard random
forest framework [2], using information gain as the split
criterion and empirical class probabilities in the entropy
measure. The classified gesture ŷt at time t is a maximum
posterior value. We evaluate recognition performance in the
same way as [6] with a balanced F-score.

The computational cost of learning a random forest is
directly related to the number of potential splits b evaluated
at each node. The cost of each potential split evaluation is in
turn directly related to the number of training data samples,
as well as the cost of computing potential information gain,
i.e. C∆H . For a tree of depth d+ 1 constructed from M ·K
training samples, the overall computational cost, when it is a
full binary tree, can be estimated as

C = (M ·K) · d · b+ 2d · b · C∆H , (13)

where the first term is the cost of evaluating all feature splits
on all data samples, and the second term corresponds to the
cost of computing the information gain of these splits.

4.1. Portfolios of Random Forests

In learning a portfolio of random forest classifiers as per
Algorithm 3, one can directly apply ws or ws,i to the split
nodes and influence tree structure and or to the leaf nodes
to influence the class posterior. At a split node with data
samples X , the empirical class probability p(y|X) can be
replaced with ρy(X):

ρy(X) =
∑
X

ws,i · I(ys,i = y)

ws,i
. (14)

ρy(X) is a normalized summation of the sample weights
over all samples in X , where I is an indicator function equal
to 1 if the predicate is true and 0 otherwise. ρy(X) can
also be similarly substituted at the leaf nodes to adjust the
posterior class distribution.

The computational cost of learning the portfolio of ran-
dom forests is high; for a portfolio of J classifiers, the cost

Type Personalization Cost

full Cf = (M ·K+ N) ·d · b +2d · b · C∆H

Ca = N ·d · ba +2d · ba · C∆H

Cp = N ·d · J
adaptive

portfolio

Table 2. Comparison of personalization costs (per tree). Such a
cost breakdown highlights the efficiency of our proposed portfolio
method, especially since b� ba � J .

is J times that of Eq. (13). The learning phase, however,
can be done offline, before deployment. The benefit comes
during personalization, since one only needs to evaluate
the N personalization samples at d nodes. The resulting
personalization cost is shown in the third row of Table 2.

4.2. Personalized Baselines

Full Personalization We can incorporate personalization
data into the random forest classifier in two different ways.
To use Pr as a regularization term in the likelihood, as per
Eq. (3), we learn new forests on a combined training set of
the original training data and the personalization data. The
regularizing constant λf is proportional to the number of
times that the personalization data is used when constructing
the trees. The computational cost of full personalization is
the same as that of learning a forest with (M ·K +N) data
samples (see first row of Table 2).

Adaptive Personalization To only maximize the person-
alized conditional likelihood, as per Eq. (4), we adapt the
forests learned on the original training data G to the person-
alization data Pr by adjusting the split and leaf nodes. Split
nodes are updated by doing a local search around the original
threshold, i.e. evaluating the new N personalization samples
with ba potential splits and replacing the original split with
the the new split which yields the highest information gain
on the personalization samples. Leaf nodes can be updated
with a weighted mixture of the original and new class pos-
terior from the personalization samples. The regularization
constant λa is then proportional to the neighbourhood size in
which we search for the new threshold as well as the mixing
weight of the new label distribution. The computational cost
of adaptive personalization has a similar form as learning a
forest with N data samples (see Table 2).

5. Experiments
We test our method on two different gesture datasets, both

recorded by the Microsoft Kinect. The first is the MSRC-



12 Kinect Gesture Dataset [6], with 12 gestures (see left of
Table 1) collected from 30 subjects. In total, there are∼4900
gesture instances. The second dataset is the 2013 Chalearn
Gesture Challenge [4], with 20 gestures (see right of Table 1)
collected from 36 subjects. We experiment with the training
and valuation data, with ∼11000 instances.

In both datasets, we temporally segment the gesture in-
stances2 and normalize the segments into 100 and 60 frames
for MSRC-12 and ChaLearn respectively. We concatenate
the coordinates of the body joints (3 x 20 joints) over the
length of the normalized segment as input features. In all
experiments, we use a leave-one-subject-out cross validation
scheme, and report the mean F-scores over 100 runs.

5.1. Base Classifier

We train forests of 5 trees of maximum depth 5, with 1024
feature tests (b) in the regular training and full personaliza-
tion and 400 feature tests (ba) in the adaptive personalization.
For MSRC-12, the base classifier has a mean F-score of 0.77
with stdev of 0.09 across classes and 0.07 across subjects.
For ChaLearn, which is more difficult than MSRC-12, the
base classifier has an average F-score of 0.35 with stdev
of 0.18 across classes and 0.10 across subjects. Of the 20
classes, several are subtle hand gestures that are very difficult
to identify through skeletal data alone and the F-scores vary
widely across the different gestures.

5.2. Personalized Baseline Performance

We plot the mean F-score versus the number of person-
alization instances for the full and adaptive personalization
baselines in Figures 2(a) and 2(b) respectively for MSRC-12
and Figure 2(c)) for ChaLearn. For both baselines, the F-
score increases with the number of personalization instances,
though less so for ChaLearn than MSRC-12.

Full personalization The parameter λf is the number of
times that personalization instances are used for construct-
ing the trees and it controls the extent of personalization.
For MSRC-12, when λf = 1, personalization has little ef-
fect. At λf =1000, the personalization instances dominate
and the classifier tends to over-fit to these instances, hence
the very steep growth curve and the lower F-scores than
λf =100. For ChaLearn, the effects of personalization are
more dramatic, hence the large jump in F-score for even
one personalization instance at λf =1. Further increase in
λf has little effect, with over-fitting occurring already with
λf =100, suggesting that the users are highly individual in
the way they gesture from each other, but consistent amongst
amongst themselves.

Adaptive personalization The two values in λa corre-
spond to the neighbourhood search size of the updated

2On MSRC-12, segments are approximated based on the labelled action
points. On ChaLearn, ground truth segments are provided.
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Figure 4. Mean F-scores for MSRC-12, κs,i = 5 for differing
values of ν. The value of ν has little effect, but without any bounds,
i.e. when ν=log(1), the performance deteriorates significantly.

threshold and the weight of the personalization instances
for determining the label posterior. For both MSRC-12 and
ChaLearn, having a smaller neighbourhood size and a larger
weighting for the personalization samples is more preferable
i.e. λa=(0.1, 1000), though the F-scores are not as high as
full personalization. One key difference is that the adaptive
personalization, which was almost comparable to the full
personalization with MSRC-12, does not improve F-scores
much for ChaLearn, again supporting the conclusion that
ChaLearn subjects gesture very differently.

5.3. Portfolio Performance

Robust versus non-robust portfolios We first compare
the greedy minimization of Algorithm 2 with the robust
version of Algorithm 3. In Figure 4, we plot the mean F-
score for different values of ν, as applied to Eq. 10. The
F-scores are not sensitive to ν; as long as some bound is
applied, the maximization is robust. However, there is a
significant deterioration when there is no bound, i.e. when
ν = log(1) and is equivalent to Alg. 2. For all subsequent
experiments, we use the robust greedy maximization.

Comparison of portfolio types In Figure 3(a), the MSRC-
12 mean F-score is plotted with respect to portfolio size for
the attribute-based (see Alg. 1), subject-based (see Alg. 3,
Eq. 9) and instance-based portfolios (see Alg. 3, Eq. 10).
For each attribute-based portfolio, mj takes the form of
a step functions, emphasizing a subgroup of the subjects.
Subjects were separated into either two (according to gen-
der) or three (according to age, height, gesture velocity)
subgroups. For the subject- and instance-based portfolios,
we set ν = log(0.8) and vary κs and κs,i. We find that
the attribute-based portfolios have similar F-scores as the
subject-based portfolios, while the instance-based portfolios
are slightly better, with κs,i = 5 being the best.

Since the ChaLearn dataset does not provide any user
attributes, we compare only the subject- and instance-based
portfolios; we find that the subject-based portfolios have
slightly higher F-scores, with κs = 3 being best. The reason
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Figure 2. Personalized baseline F-scores for MSRC-12(a,b) and ChaLearn(c). In (a) and (c), λf is the number of times that personalization
instances are used for full personalization (see Eq. (3)). In (b) and (c), λa determines the extent of adaptive personalization (see Eq. (4)).
The first value of λa is the search neighbourhood size for the updated threshold in the split nodes, as a fraction of the entire range of possible
threshold values. The second value is the number of times the personalization instances are weighted for determining the leaf node label
posterior. For both personalization baselines, mean F-score increases with the number of personalization instances both datasets. With
MSRC-12, adaptive personalization performs comparably with full personalization, but worse for ChaLearn.
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(c) ChaLearn Classifier Selection, κs=3

Figure 3. Portfolio F-scores (best viewed in colour). In (a), the portfolio methods are compared, each using five personalization instances per
gesture class; the attribute-based (dotted lines) and subject-based (dashed lines) portfolios have similar performance, while the instance-based
(solid lines) is slightly better. In (b) and (c), the selected, oracle (best possible classifier) and mean (over entire portfolio) F-scores are plotted
for increasing portfolio sizes. F-score increases with more personalization instances since the classifier selection becomes more reliable.

for this is most likely due to the extreme variation in F-scores
across both subjects and gesture classes, thus leading to over-
fitting to specific problematic sequences. We note that our
results are incomparable to those in [4], where the proposed
methods perform combined gesture and speech recognition.

Portfolio size and classifier selection Figures 3(b) and (c)
plots the mean F-score with respect to portfolio size for dif-
ferent number of personalization instances for MSRC-12 and
ChaLearn respectively. For both the selected classifier and
the oracle, i.e. best possible classifier in the portfolio given
ground truth, performance increases and slowly saturates
with portfolio size J . The increase for ChaLearn, however,
is much slower than for MSRC-12, most likely due to the
difficulty of the dataset. Finally, the increase in performance
can be attributed to the selection of suitable classifiers rather
than training better classifiers, the mean performance of the
classifiers in the portfolio stays relatively constant.

Selecting a suitable classifier for a given user becomes in-

creasingly more reliable with more personalization instances,
hence the increase in F-score. The efficacy of using personal-
ization instances to select the best classifier for both datasets
is shown in Figure 5(a). As the portfolio size increases, it
becomes more and more difficult to select the best possible
classifier, but the fraction of times that it is selected is still
higher than chance for both datasets.

Comparison of portfolios to personalization baselines
Finally, we compare the best personalization baseline results
to the portfolio results in Figures 5(b) and (c). At the expense
of more computational power, the personalization baselines
do perform better, especially the full personalization. With
very few personalization instances (1 or 2), however, our
proposed portfolio method can already achieve comparable
or even better performance than the adaptive personalization
though with significantly higher efficiency. Given the trade-
off of performance and user convenience, it is clear that
the portfolio method is ideal for applications with limited
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Figure 5. In (a), the fraction that the best classifier is selected decreases as the portfolio size increases, but is still above chance for both
datasets. Personalization baselines and portfolio F-scores (b,c); the strength of the portfolio method comes when there are very few (1-3)
personalization instances. (Best viewed in colour).

computational power and very few personalization instances.

6. Conclusion
We have shown a very efficient way of personalizing ges-

ture recognition. In particular, our method is well suited for
applications with limited computation resources at run time,
since it does not require any re-optimization of the classifica-
tion parameters. We have shown that it is possible to achieve
good results with very few personalization instances (as little
as 1 to 5), though the exact trade-off between personalization
accuracy and convenience to the end user, i.e. the amount of
personalization data that needs to be collected, is most likely
system-dependent. Furthermore, as gesture recognition sys-
tems are typically designed for interactive applications, there
is also the possibility of not only the classifier adapting to the
user, but also for the user to adapt to the system. It remains
an open research question as to how to guide the user to learn
to gesture within the confines of an existing system.

Acknowledgements Partly funded by the European Union Framework
Seven project ReMeDi (grant 610902).

References
[1] S. Bickel, M. Brückner, and T. Scheffer. Discriminative

learning for differing training and test distributions. In ICML,
2007.

[2] L. Breiman. Random forests. Machine Learning, 45(1):5–32,
2001.

[3] S. Connell and A. Jain. Writer adaptation for online handwrit-
ing recognition. PAMI, 24(3):329–346, 2002.

[4] S. Escalera, J. Gonzalez, X. Baro, M. Reyes, O. Lopes,
I. Guyon, V. Athitsos, and H. J. Escalante. Multimodal gesture
recognition challenge. In ICMI, 2013.

[5] G. Foster, C. Goutte, and R. Kuhn. Discriminative instance
weighting for domain adaptation in statistical machine trans-
lation. In Empirical Methods in NLP, 2010.

[6] S. Fothergill, H. Mentis, P. Kohli, and S. Nowozin. Instructing
people for training gestural interactive systems. In CHI, 2012.

[7] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun. Real
time motion capture using a single time-of-flight camera. In
CVPR, 2010.

[8] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for
object recognition. In ICCV, 2011.

[9] A. Guzman-Rivera, D. Batra, and P. Kohli. Multiple choice
learning: Learning to produce multiple structured outputs. In
NIPS, 2012.

[10] J. Jiang and C. Zhai. Instance weighting for domain adapta-
tion in NLP. In ACL, 2007.

[11] W. Kienzle and K. Chellapilla. Personalized handwriting
recognition via biased regularization. In ICML, 2006.

[12] C. Leggetter and P. Woodland. Maximum likelihood linear re-
gression for speaker adaptation of continuous density HMMs.
Computer speech and language, 9(2):171, 1995.

[13] S. Mitra and T. Acharya. Gesture recognition: A survey.
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Trans. on, 37(3):311–324, 2007.

[14] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis
of approximations for maximizing submodular set functionsi.
Mathematical Programming, 14(1):265–294, 1978.

[15] M. Raptis, D. Kirovski, and H. Hoppe. Real-time classifi-
cation of dance gestures from skeleton animation. In Euro-
graphics Symposium on Computer Animation, 2011.

[16] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual
category models to new domains. In ECCV, 2010.

[17] K. Shinoda and C.-H. Lee. A structural Bayes approach
to speaker adaptation. Speech and Audio Processing, IEEE
Transactions on, 9(3):276–287, 2001.

[18] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook,
M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman,
and A. Blake. Efficient human pose estimation from single
depth images. In PAMI, 2013.

[19] J. Yang, R. Yan, and A. G. Hauptmann. Cross-domain video
concept detection using adaptive SVMs. In of ACM Int. Conf.
on Multimedia, 2007.

[20] A. Yao, J. Gall, and L. Van Gool. Coupled action recognition
and pose estimation from multiple views. IJCV, 2012.

[21] C. Zhang, R. Hamid, and Z. Zhang. Taylor expansion based
classifier adaptation: Application to person detection. In
CVPR, 2008.


