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Abstract

This paper presents a novel method to generate a hy-
pothesis set of class-independent object regions. It has been
shown that such object regions can be used to focus com-
puter vision techniques on the parts of an image that matter
most leading to significant improvements in both object lo-
calisation and semantic segmentation in recent years. Of
course, the higher quality of class-independent object re-
gions, the better subsequent computer vision algorithms can
perform. In this paper we focus on generating higher qual-
ity object hypotheses. We start from an oversegmentation
for which we propose to extract a wide variety of region-
features. We group regions together in a hierarchical fash-
ion, for which we train a Random Forest which predicts at
each stage of the hierarchy the best possible merge. Hence
unlike other approaches, we use relatively powerful features
and classifiers at an early stage of the generation of likely
object regions. Finally, we identify and combine stable re-
gions in order to capture objects which consist of dissimilar
parts. We show on the PASCAL 2007 and 2012 datasets
that our method yields higher quality regions than compet-
ing approaches while it is at the same time more computa-
tionally efficient.

1. Introduction
Finding and identifying objects within an image is very

challenging not only because of the large variety in appear-
ance of objects, but also due to the staggering number of
possible locations that an object can occupy. Humans have
the remarkable ability to quickly find coherent regions in
an image which surely facilitates recognition. Recently,
impressive progress has been made in computer vision on
finding sets of coherent regions that accurately cover ob-
jects [6, 10, 20, 23]. By reducing the set of possible interest-
ing locations and providing better object boundaries, these
works facilitate the use of more expensive and advanced
computer vision techniques on the regions of an image that
matter most, giving rise to substantial improvements in ob-
ject localisation and semantic segmentation [2, 7, 14, 5, 20].

In this paper our goal is to improve the generation of class-
independent object regions.

Our work is illustrated in Figure 1 and rests on four pil-
lars: (1) We use a greedy, bottom-up hierarchical grouping
algorithm, as is done in [20]. This contrasts with [6, 10]
who use a graph based framework with randomly sampled
foreground and background seeds to generate a variety of
segments. While the graph-based models produce globally
optimal segmentations, the sizes of the segments are depen-
dent on a parameter, which is varied to create segments of
all scales. Instead, using all regions in a hierarchical group-
ing algorithm naturally captures all possible scales without
any need for parameter selection and optimization. Fur-
thermore, region features can be propagated, making tex-
ture/colour measurements more reliable as regions grow.

(2) We use relatively strong regional features at an early
stage while generating object hypotheses. This contrasts
with [6, 10] who rely on simple features to generate a first
set of candidates, only to use more advanced features in the
filtering stage. By using relatively strong regions features
from the beginning we can much more accurately and reli-
ably generate segments without needing filtering.

(3) We use Random Forests to learn which segments
should be grouped together at each stage of the hierarchy.
This contrasts with [20] who foregoes learning altogether.
While [6, 10] do use learning in both their segment genera-
tion and filtering stages, they combine it with more powerful
features only at the filtering stage.

(4) We identify “stable” regions and consider combina-
tions of such regions in order to capture objects which con-
sist of dissimilar parts. Many objects consist of parts which,
taken individually, bear no resemblance to each other. For
example, the wheels of vehicles are completely different in
appearance than the rest of the vehicle. The head of a person
is completely dissimilar to the clothes he/she wears. The
works of [6, 10] rely on random seeds to combine dissim-
ilar parts into a single region, while [20] cannot find such
objects. In this paper we identify possible object parts and
merge adjacent ones to find objects consisting of dissimilar
parts.

Experiments on the Pascal 2007 and 2012 datasets show
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Figure 1. The proposed framework for generating class-independent object hypotheses. We start with an oversegmentation. Then we
greedily group segments together in a hierarchical fashion where we use a pre-trained Random Forest classifier to determine at each stage
of the hierarchy which regions should be merged. Afterwards we identify stable blobs and merge all adjacent pairs. Merging stable blobs
allows for the discovery of objects which consist of visually dissimilar parts.

that our work significantly outperforms [20] in terms of
quality and quantity of extracted regions, and significantly
outperforms [6, 10] in terms of quality and computational
efficiency.

2. Related work

Uijlings et al. [20] propose a greedy, bottom-up hierar-
chical grouping algorithm to generate a small set of class
independent object locations. The main idea of their ap-
proach is to use a diverse set of strategies in order to find
all possible objects. They show that they can generate a
small set of high quality bounding boxes, which are suc-
cessfully used in a powerful localisation system based on
Bag-of-Words [9, 19]. In this paper we also start from a
greedy hierarchical grouping algorithm but differ from [20]
in three important ways: (1) We rely on machine learning
to predict which regions should be merged rather using than
a simple combination of similarities. (2) We use a much
larger and more powerful set of region features and mea-
surements. (3) Our work is able to find objects composed
of dissimilar parts by combining stable regions.

Carreira and Sminchisescu [6] and Endres and
Hoiem [10] both have similar pipelines: first, a large
pool of figure-ground binary segmentations is generated,
which is afterwards ranked to suppress redundant and
unlikely object hypotheses. Specifically, Carreira and
Sminchisescu [6] use a segmentation algorithm which
solves many binary graph-cuts optimization problems for
different initializations. As similarity measures colour
distribution and contour energy of globalPb [3] are used.
Furthermore, the authors train a random regression forest
to rank generated segments. Here the authors consider a
large set of features which are inherent to an object, such as
contrast with the background, convexity, smooth contours,

alignment of contours with image edges, and the location
in the image. The authors succesfully use their regions in
a subsequent semantic segmentation process [17]. Endres
and Hoiem [10] first generate hierarchical segmentation
with agglomerative grouping based on energy of occlusion
boundaries and figure-ground likelihood [16]. Afterwards,
generated regions are used as seeds for a figure-ground
Conditional Random Fields segmentation. The latter uses
colour distribution, texture distribution, and an affinity
function as similarity measures. At the final stage, Endres
and Hoiem use the slack-rescaled method with loss penalty
to rank generated object hypothesis. Here they describe
appearance of a region with the following features: align-
ment of contours with occlusion boundaries, contrast with
the background, geometrical location within an image, and
the probability of being ’stuff’ like grass or sky. In contrast
to [6, 10], we do not use a re-ranking phase. Instead, we
rely on powerful region features and machine learning at
an early stage to generate a small set of object hypotheses.

More recently, Weiss et al. [23] proposed a method for
generating potential object regions in three steps: First
they generate bounding boxes using two class-independent
methods [3, 18] and the well-known class-specific part-
based model [12]. Then they use class-specific shape priors
within the bounding boxes to get a rough shape estimate,
after which superpixels from an oversegmentation are used
to generate the final regions. While they report improve-
ments over [6, 10], the generated regions are highly class
specific, which may make the approach of [23] suitable
for better semantic segmentation, but not for generating a
class-independent set of object hypotheses which is the aim
of [6, 10, 20] and the work we present here.

Several methods aim to generate class-independent ob-
ject windows. Alexe et al. [1] introduce a generic object-
ness measure based on three object characteristics: well de-



fined contours, contrast to the surrounding, and uniqueness
within an image. They randomly sample a large amount of
windows, where the windows with the highest objectness
measure are served as object hypotheses. They successfully
use their windows to speed up the part-based localisation
method of [12]. Rahtu et al. [18] build on [1] and propose
better objectness cues as well as an improved initial sam-
pling strategy based on the non-generic Pascal VOC object
location distribution. Bounding boxes often contain large
parts of the background which may be undesirable when
extracting object features. In this paper, we focus on sam-
pling image regions of arbitrary shape to better capture the
exact location of an object.

3. Method

Our method starts from an oversegmentation produced
by the algorithm by Felzenszwalb and Huttenlocher [13].
This results in an oversegmentation whose segments (ide-
ally) do not cover different objects yet are large enough to
extract region-based features. We propose to extract a wide
variety of region-based features which are detailed in sec-
tion 3.1. We greedily and hierarchically group adjacent re-
gions together until there is a single segment covering the
complete image. To determine which regions should be
merged, we train a Random Forest classifier as detailed in
section 3.2. Finally, some objects consist of parts which
are visually dissimilar, hence a visual grouping strategy can
only find the parts of such objects. We address this by iden-
tifying stable regions likely to contain parts and merging
these, as explained in section 3.3.

3.1. Region-based Features

We propose to extract a wide variety of region-features.
We include the features and measurements proposed in [20]
to facilitate evaluating the impact of our region-based fea-
ture set. These are defined as [20]:

Colour similarity. The histogram intersection between
colour histograms, which use 25 bins per colour channel
for a 75-dimensional histogram. Whereas [20] uses only
the colour space of the initial oversegmentation, we use al-
ways four different colour spaces: Lab, HSV, Opp (Oppo-
nent colour space [15]), and rgI (normalized red, normal-
ized green, and intensity).

Texture similarity. The histogram intersection between
texture histograms of the regions. For texture histograms for
each colour channel its gradient responses in 8 orientations
are calculated using a Gaussian derivative filter with σ =
1. Per channel per orientation a 10-dimensional histogram
is created, for a 240 dimensional histogram. We use Lab,
HSV, Opp, and rgI texture histograms.

Fill. The area of the combination of two regions divided
by the tightly fitting bounding box around this area.

Size. The area of the combination of two regions divided
by the size of an image.

Additionally, we include the Image Patch Exemplars of
Varma and Zisserman [21] and a range of features based
on contours and borders, where we define a contour as be-
ing the boundary of a complete region, and a border as the
boundary between two regions. Specifically, we define the
similarity measures between region a and b which would
combine into region c as follows:

Image Patch Exemplar Similarity[21]. We sample 3x3
raw image patches at every pixel which can be represented
as 27-dimensional vectors. We train a visual vocabulary on
the Pascal VOC 2007 training set using the VLFeat hier-
archical k-means [22] with depth 2 and 64 splits per level,
resulting in 4096 visual words. Similarity is measured by
the histogram intersection between normalised frequency
histograms of the visual words. We always use the colour
spaces Lab, HSV, Opp, and rgI.

Insideness. measures how well one region fits into an-
other region. If two regions touch at a single point, together
they can hardly form an object. On the other hand, if their
border is at the same time a contour of one region, combin-
ing them fills up a hole in the other region. Generally, high
insideness tends to yield convex regions.

insideness(a, b) =
borderSize(a, b)

min(contourSize(a), contourSize(b))
(1)

ContourEdgeR measures edge response along contours,
as objects are expected to have clear object boundaries:

contourEdgeR(a, b) =
edgeResponseContour(c)

contourSize(c)
. (2)

edgeResponseContour(c) is the sum of edge responses over
all pixels of the contour, where an edge response is the max-
imum edge response over all colour channels of all four
colour spaces (HSV, Lab, Opp, rgI).

BorderEdgeR is one minus the average edge response
of the border of the segments:

borderEdgeR(a, b) = 1− edgeResponseBorder(a, b)
borderSize(a, b)

. (3)

edgeResponseBorder(a, b) is sum of edge responses over
all pixels of the border between segment a and b. This mea-
sure reflects that two segments which have a strong edge
between them are unlikely to belong to the same object.

Border smoothness measures the total amount of
change in direction of the border between segment a and
b. If this border is smooth, it likely coincides with a real ob-
ject boundary. In contrast, adjacent regions in high textured
areas such as grass often have irregular borders.

We first obtain the pixel coordinates of the border which
we smooth using a Gaussian derivative filter (σ = 2) to re-
move artefacts caused by the pixel grid. On each inflection



point (i.e. the point where the border changes direction)
we measure the amount of direction change with respect
to the previous inflection point, where we ignore direction
changes smaller than 20 degrees. We then convert this mea-
sure with a sigmoid function to a value between 0 and 1. If
the border is discontinuous, we set the similarity to zero.

Contour compactness is the ratio between the length of
a circle having the same area as the combined region c and
the size of the contour of the combined region:

contourCompactness(a, b) =
(2
√
π × area(c))

contourSize(c)
, (4)

This measure reflects that most objects are compact. For a
circle the value is 1, while for highly elongated regions and
regions with rough contours this ratio is close to zero.

Border compactness is a ratio of the distance between
end points of the border between regions to the length of
the border. When the border is discontinuous we define the
similarity to be zero. This measure gives high similarity to
borders which are incompact and therefore unlikely object
borders. Notice that smooth, highly curved borders may
be highly incompact. Therefore, compactness and smooth-
ness are complimentary measures, although their both pun-
ish rough curves.

To be computationally efficient, we defined all the con-
tour/border similarities above in such a way that we can
propagate the features they use through the hierarchy: the
exact border paths, the size of the borders and contours,
and the sum of the edge responses of the borders and con-
tours. Therefore we only have to determine these features
once for the segments of the initial oversegmentation. As
before, let segments a and b merge into segment c. If
there is a border between a and d border(a, d) but not be-
tween b and d, then border(c, d) = border(a, d). How-
ever, when there is also a border between b and d, then
border(c, d) = border(a, d) ∩ border(b, d), where one has
find where the borders touch and if the new border is con-
tinuous or not. The border size resulting from a merge
is simply the sum of the old borders: borderSize(c, d) =
borderSize(a, d) + borderSize(b, d). This is the same for
edgeResponseborder. As for the contours, both the size and
the edgeResponses can be calculated in the same way:

contourSize(c) =contourSize(a) + contourSize(b)
− 2 ∗ borderSize(a, b). (5)

edgeResponseContour(c) =edgeResponseContour(a)+
edgeResponseContour(b)
− 2 ∗ edgeResponseBorder(a, b).

(6)

3.2. Learning with random forests

We want to learn the best combination of the similarity
measures defined above. As the similarity measures are all

of a different nature, we choose to use Random Forests [4,
8] as they are insensitive to this aspect.

To obtain learning examples, we first apply for all train-
ing images a grouping strategy without doing learning but
by simply averaging similarities. For all resulting segments,
we measure their precision: i.e. the fraction of the area
of the segment which is part of a single ground truth ob-
ject. Ideally, we want to merge segments which belong to
the same object. Therefore as positive examples we con-
sider pairs of adjacent segments who both had a precision
(within the same object) higher than a threshold t. As nega-
tive examples, we want to penalize pairs where one segment
is inside an object and the other segment is not. Hence we
consider pairs where one segment has a precision higher
than t, and the other a precision lower than t. We use the
same treshold t = 0.8 for both positive and negative ex-
amples. Note that in an initial test we also tried regression
rather than classification, but this gave much lower results.

In our experiments we obtained around 450,000 positive
and 140,000 negative training examples. We train a random
forest consisting of 50 trees, which we found to perform
well. For each tree, we use 66% of the training data to con-
struct the tree (bagging), where in each node we perform 10
random splits and take the one with the highest information
gain. We stop when either (1) a maximum depth of 15 is
reached or (2) when there are less than 5 examples in a leaf.
All the training data is used to set the prediction probabili-
ties of the leaf nodes.

3.3. Merging stable regions

As we use a greedy, hierarchical grouping method, the
algorithm always tries to merge the most similar regions.
However, sometimes objects consists of completely dissim-
ilar parts such as a human head and its body covered by
clothes, or a sail and a boat together forming a sail-boat. In
order to be able to deal with such objects, we propose to
find “stable” regions as a proxy for object parts and merge
adjacent stable regions.

Intuitively, the most obvious way to find stable regions
is to use a centre-surround measurement on each region.
While this works, we found a more computationally ef-
ficient way specific to our method which works as good
or better. Quite often, segments of a homogeneous region
slowly grow by merging with relatively small regions of the
same appearance. Once the segment covers a complete ho-
mogeneous region, it tends to merge with relatively big re-
gions. Hence, we can identify stable blobs by relatively
big jumps in size. In our experiments blobs are consid-
ered “stable” when their parent in the hierarchy is more than
25% bigger. In practice this means we consider fewer than
50% of the blobs to be stable. Once we identified the stable
blobs, we take all combinations of adjacent stable blobs and
add these to our set of object hypotheses.



Table 1. Evaluating our novelties with respect to Selective Search [20] on the segmentation part of PASCAL VOC 2007 test set.

# Method Number of k Colour Features Random Merge MABO RegionsHierarchies Spaces Forest Stable
1 Fast SS [20] 8 50,100 Lab, HSV C+T+S+F, T+S+F 0 0 0.739 4,753

2 Quality SS [20] 80 50,100, Lab, HSV, C+T+S+F, T+S+F, F, S 0 0 0.818 23,418150,300 rgI, H, I
3 Single Hierarchy SS [20] 1 50 Lab C+T+S+F 0 0 0.598 920
5 Single Hierarchy SS + RF 1 50 Lab C+T+S+F 1 0 0.602 920
4 All Features this paper 1 50 Lab 4C+4T+4PE+F+S+I+2Co+2E+Sm 0 0 0.622 920
6 All Features + RF 1 50 Lab 4C+4T+4PE+F+S+I+2Co+2E+Sm 1 0 0.675 920
7 All Features + Stable 1 50 Lab 4C+4T+4PE+F+S+I+2Co+2E+Sm 0 1 0.718 4,416
8 All Features + RF + Stable 1 50 Lab 4C+4T+4PE+F+S+I+2Co+2E+Sm 1 1 0.749 2,868

4. Results

We consider two datasets: (1) the segmentation part of
PASCAL VOC 2007 test set, and (2) the segmentation part
of PASCAL VOC 2012 validation set [11]. We train ran-
dom forests using the training and validation parts of 2007
only. As the performance measure we use the Mean Aver-
age Best Overlap (MABO) and the number of generated re-
gions. Overlap is defined as the intersection of two regions
divided by their union, for which we use the code as pro-
vided by the the Pascal VOC challenge [11]. Best Overlap
is the score of the best overlapping segment with the ground
truth of a single object instance. Average Best Overlap is
the average over all BO scores of the instances of a single
class. The final Mean Average Best Overlap is the average
ABO over all 20 Pascal classes. MABO [20] is also used as
evaluation measure under different names in [6, 10].

4.1. Comparison with Selective Search

The basis of our algorithm is similar to the Selective
Search approach [20]: Selective Search starts with the same
oversegmentation method [13]. Then it greedily groups
regions with the highest similarity together until the com-
plete image is a single region. All regions are considered
potential object locations and the final set of object loca-
tions is created by combining multiple hierarchies with dif-
ferent starting segmentations and merging criteria. In this
section we first evaluate the impact of the three novelties
introduced in this paper: (1) we use a much wider variety of
region-based similarity measures, including the similarity
measures from Selective Search. (2) we use a Random For-
est classifier to optimally combine different similarity mea-
sures, while in the Selective Search all similarities are added
together using equal weights. (3) we identify stable blobs
and enrich a set of segments generated by the hierarchical
grouping by considering combinations of stable blobs.

For ease of presentation, our novelties are evaluated
starting from a single hierarchy of [20]. In particular, we
choose the threshold of [13] to be k = 50 (the minimum
size of a segment in the oversegmentation [13] is set to k
pixels in all experiments), we use Lab colour space, and we
use all four similarity measures of [20]: colour (C), tex-
ture(T), size (S), and fill (F). For reference we also include
the two main strategies of [20]: the ’Fast’ and the ’Quality’

method, combining 8 and 80 hierarchies respectively.
Results are shown in Table 1. The third entry is a single

hierarchy from [20] and generates 920 regions per image on
average yielding a MABO of 0.598. If we train a Random
Forest using the same features, we get an insignificant im-
provement to 0.602 MABO, which means that for this lim-
ited set of features a simple combination is optimal. Note
that the final number of regions for a single hierarchy is de-
termined by the initial oversegmentation. As we keep this
the same, the total number of regions does not change (until
we introduce stable blobs).

Next we use all features as defined in Section 3.1: size
(S), colour similarity in 4 colour spaces (4C), texture sim-
ilarity in 4 colour spaces (4T), image patch exemplars in 4
colour spaces (4PE), fill (F), size (S), insideness (I), contour
and border compactness (2Co), contour and border edge
responses (2E), and border smoothness (Sm). If we sim-
ply add all similarity measures, we obtain 0.622 MABO,
an increase of 0.02. However, if we use Random Forest to
learn how to combine similarity measures, we obtain 0.675
MABO. Hence learning adds a significant 0.05 MABO and
is necessary to obtain good results with our large set of fea-
tures that are diverse in nature.

To get an idea of the importance of similarity measures
as learned by the random forest, we calculate its perfor-
mance when the values of a single feature are randomized
while all others are left unchanged. Then the accuracy of
the random forest on the corrupted data is compared with
the accuracy on the original data and we measure impor-
tance as the drop in accuracy. Results are shown in Figure 2.
We observe that all features contribute. The measures Fill,
Size, Patch Exemplars and Colour Similarity in Lab colour
space are particularly important. The significance of Lab
colour space may be because in our experiment the initial
segmentation has been done in Lab colour space.

Finally, we examine the impact of adding combinations
of stable blobs (SB) to the object hypotheses. Entry 8 in Ta-
ble 1 demonstrates that with 2,868 regions we reach MABO
of 0.749, which is higher than the Fast Selective Search re-
sult of 0.739 with 4,753 regions (first entry). Notice, that
the quality of the combinations of stable blobs is highly de-
pendent on the quality of the regions generated by the hier-
archical grouping: Method 8 (with RF) outperforms method
7 (no RF) in both MABO and the number of regions.
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Figure 2. The importance of similarity measures for the random
forest classifier.

To conclude, the new similarities, random forest learn-
ing, and combination of stable blobs, all contribute to a sig-
nificant increase in performance, to the point where we ob-
tain a higher MABO with fewer regions than the Fast Se-
lective Search method [20].

4.2. Comparison with the state-of-the-art

In this section we compare the proposed method with the
object hypotheses of [6], [10], and [20]. In all experiments
we used the publicly available code of the authors.

We test two configurations of the proposed method: 2H
and 4H. The first (2H) is based on 2 initial segmentations
in Lab and HSV colour spaces with the scale parameter
k = 100. To obtained it, we build 2 hierarchical groupings
with 20 similarity measures using random forest, then we
identify stable blobs and add their combinations. The sec-
ond configuration of our method (4H) is the same, but based
on 4 initial segmentations: Lab and HSV colour spaces with
the scale parameter k = 50 and 100. Notice, that in all cases
we use only one random forest trained on ’Lab k = 50’ ini-
tial segmentation, which generalizes well on other initial
segmentations. This demonstrates that the considered sim-
ilarity measures are not tuned to a particular initial image
partition.

Table 2 shows that the proposed method outperforms the
state-of-the-art in terms of MABO, reaching 0.771 with 2
initial segmentations and 0.812 with 4 initial segmentations.
In terms of the number of regions, we generate 1.5 and 4
times more segments that [10] and [6] respectively, and 0.6
less than [20]. However, it is important to notice that both
[6] and [10] are quite computationally demanding, whereas
our method with 4 initial segmentations takes only 39 sec-
onds per image, and the version with 2 initial segmentation
is even faster, it generates a high quality set of object hy-
potheses in 17 seconds.

Table 2. Comparison with the state-of-the-art.

VOC 2007 VOC 2012 Time
Method MABO Regions MABO Regions (s)

[6] 0.732 695 0.759 642 432
[10] 0.752 1,827 0.760 1,512 226
[20] 0.739 4,753 0.759 4,624 3.8
2H 0.770 2,815 0.781 2,659 17
4H 0.812 10,231 0.820 9,784 39

4.3. Example Segmentations

To illustrate what it means to generate object hypotheses
with MABO of 0.77, we show representative best regions
for all 20 object classes on Pascal 2012. Therefore we show
instances that have an overlap score close to the average best
overlap for that class in Figure 3. The class ’bicycle’ has the
lowest Average Best Overlap of 0.473. This is because a bi-
cycle does not correspond to a coherent region but rather to
a wireframe, whereas our method aims to identify coherent
regions. However, the second lowest Average Best Overlap
is much higher at 0.704 and corresponds to the ‘chair’ class.
Such a jump in performance illustrates that the focus on co-
herent regions is beneficial for most of the object classes.
Nine over 20 considered classes have Average Best Overlap
higher than 0.8, including bird which is a very heteroge-
neous class. As can been seen in Figure 3, the proposed
method even finds a parrot occluded by a wire-mesh, which
is possible since the wires are too thin to become regions by
themselves.

Figure 4 contains several examples where our method
cannot find proper segments for the target object. An im-
portant reason of failure is when the target object is small,
such as in the bottle image (and many other instances which
we do not show). In this case, the initial oversegmentation
already makes mistakes which are irreversible in our algo-
rithm. Another problem arises when the object is occluded
by similar objects, such as the first two images in the sec-
ond row (car and cat). Without recognizing objects or rec-
ognizing the 3D environmental layout and its constraints on
physical objects, there is little hope of accurately separat-
ing similar objects that occlude each other. Such informa-
tion would also help when objects blend very well into the
background, such as the table and the baby. Another prob-
lem is occlusion, such as in the airplane and car images on
the first row, the second cat image on the second row, the
chair, and the horse. As our algorithm only merges adjacent
regions, disjunct objects will not be found. While it is pos-
sible to generate disjunct regions, it significantly increases
the search space and, if not done carefully, may introduce
many extra non-object regions. Finally, our algorithm is
not designed to deal with wire-frames, hence it often has
problems with bicycles (first row Figure 4), and sometimes
chairs (see second row) and plants (third row).



airplane: 0.812/0.793 bicycle: 0.440/0.473 bird: 0.835/0.839 boat: 0.782/0.766 bottle: 0.729/0.720

bus: 0.796/0.803 car: 0.733/0.739 cat: 0.900/0.890 chair: 0.691/0.704 cow: 0.836/0.840
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plant: 0.758/0.755 sheep: 0.841/0.827 sofa: 0.862/0.867 train: 0.805/0.802 tv: 0.880/0.881

Figure 3. Examples of generated object proposals for 20 classes of Pascal VOC 2012 whose overlap is close to the average best overlap of
that class. The first number is the region overlap with the ground truth, and the second number is the average best overlap per class. The
red line corresponds to the contour of regions created using the proposed method based on 2 hierarchical groupings.

4.4. Discussion

The main goal of generating class-independent object
hypotheses is to improve semantic segmentation and ob-
ject recognition by focusing computational resources on
promising parts of the image. MABO provides an up-
per bound for semantic segmentation. It is less clear how
MABO influences object recognition, since this depends on
the recognition method of choice. For example, part-based
recognition [12] is more sensitive to the exact (box-based)
location [1] than Bag-of-Words [7, 20]. Furthermore, not all
object parts are equally informative: a cat’s head is smaller
than its body, yielding a smaller MABO score but providing
more discriminative information. Nevertheless, best over-
lap scores give a reasonable indication of the usefulness of
object proposals. In future work we want to refine the anal-
ysis into small/large objects and use the occluded/difficult
flags present in the ground truth. The desired number of re-
gions is mostly bounded by computational resources: good
recognition systems do not suffer from additional but bad
regions, they only require a single high-quality region.

5. Conclusions

In this paper we presented a novel algorithm for generat-
ing class-independent object regions. We start from an over-
segmentation after which we perform a greedy, hierarchi-
cal grouping algorithm. Regions are represented through a
wide variety of relatively powerful region-features. We train
a Random Forest to determine at each step of the hierarchy
which regions should be merged. We deal with objects con-
sisting of dissimilar parts by identifying stable regions and
merging adjacent ones. Our results show a significant per-
formance improvement in terms of both quality and quan-
tity of regions with respect to [20]. We report significant
improvements over [6, 10] in terms of both computational
efficiency and quality of regions.
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airplane: 0.333/0.793 bicycle: 0.311/0.473 bicycle: 0.293/0.473 bottle: 0.255/0.720 car: 0.267/0.739

car: 0.489/0.739 cat: 0.640/0.890 cat: 0.628/0.890 chair: 0.494/0.704 table: 0.434/0.782

dog: 0.636/0.852 horse: 0.389/0.782 person: 0.427/0.755 person: 0.462/0.755 plant: 0.370/0.755

Figure 4. Selection of examples of objects for which the best segment has a low Best Overlap score. The first number is the BO score for
this image while the second number is the ABO for that class.
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