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Abstract

This paper presents a scalable scene parsing algorithm
based on image retrieval and superpixel matching. We fo-
cus on rare object classes, which play an important role in
achieving richer semantic understanding of visual scenes,
compared to common background classes. Towards this
end, we make two novel contributions: rare class expan-
sion and semantic context description. First, considering
the long-tailed nature of the label distribution, we expand
the retrieval set by rare class exemplars and thus achieve
more balanced superpixel classification results. Second, we
incorporate both global and local semantic context infor-
mation through a feedback based mechanism to refine image
retrieval and superpixel matching. Results on the SIFTflow
and LMSun datasets show the superior performance of our
algorithm, especially on the rare classes, without sacrific-
ing overall labeling accuracy.

1. Introduction
The goal of scene parsing is to associate a semantic la-

bel such as sky, trees, cars, etc. with every pixel in a still
image. Such an image description has broad applications,
e.g. image editing, image search and autonomous vehi-
cles. Considering potentially hundreds or thousands of se-
mantic labels in common outdoor environments and indoor
scenes, it is of great interest to endow the scene parsing sys-
tem with the ability to operate in a large scale. Large scale
scene parsing faces two main challenges. First, the distri-
bution of objects in natural images tends to be heavy-tailed,
with many pixels in the images coming from common back-
ground classes (the sky, water, and sand in Figure 1) and
far fewer pixels coming from any given one of the thou-
sands of possible object types. The large number of rare
object classes and their relatively small sizes in many im-
ages make it difficult for algorithms to accurately segment
important objects (the persons and boat in Figure 1). In
fact, when evaluating error on a per-pixel basis, the perfor-
mance of algorithms can often be improved by eliminating
the rare classes altogether if their sizes in the images are

(a) Query image 

(c) Tighe et al .[22] (d) Ours 

(b) Human annotation 

Figure 1. Given a query image (a), our method (d) recognizes small
objects of rare classes (people, boat) while state-of-the-art systems
(c) tend to miss them. Note that our method also recognizes the
sand while the human annotator leaves it unlabeled (b).

usually small, despite the rare classes being very important
to human observers. Secondly, it is expensive to optimize
image labeling problems with hundreds or thousands of la-
bels. For example, given efficient optimization algorithms
such as graph-cut [1], it still takes minutes to solve a pair-
wise Markov Random Field (MRF) on a 600 × 800 image
with 100 labels. These two challenges make learning based
algorithms [19, 11, 5] less applicable.

An alternative is to use nonparametric approaches [15,
4, 20, 22, 21]. To parse an input image, these algorithms
first retrieve a small set of similar images and their associ-
ated semantic labels from the database, and compute clas-
sification confidence maps by matching the query with re-
trieved images in pixels or superpxiels. The final seman-
tic labeling is obtained by solving a pairwise MRF model.
The core of these nonparametric algorithms is motivated
by two important observations. On one hand, a single im-
age usually contains very few labels that are constrained
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by the scene category of the image, compared to the hun-
dreds in total. For example, a photo taken at the beach
usually contains sand, sea, boat and person (Figure 1(a)).
Image retrieval constrains the potentially large number of
candidate labels to the ones present in the similar scenes,
which greatly reduce the labeling efforts. On the other hand,
segments usually capture different partial appearances of
objects and are difficult to fit into unified category mod-
els. Matching-based algorithms break the category barrier
and recognition can be realized by transferring labels from
matched segments to query segments. These nonparametric
approaches [15, 4, 20, 22, 21] achieve good performance
on overall per-pixel labeling accuracy. However, by tak-
ing a closer look at their semantic labeling results, we find
that the overall performance is in fact dominated by sev-
eral common background classes, e.g. mountain, building,
water, road and wall, while the performance on interesting
object classes is still lagging, e.g. people, animals and man-
made objects.

In this paper, we propose a novel context-driven scene
parsing system. Different from previous approaches, we fo-
cus more on rare object classes aiming at generating richer
and more structured semantic labelings. Beyond the three
basic components of nonparametric algorithms, i.e. image
retrieval, superpixel matching and MRF labeling, we make
two novel contributions:

1. We propose to regularize the retrieval set by a dictio-
nary of rare class superpixels, since the semantic labels
of retrieval images usually follow a long-tailed distri-
bution. Therefore, we obtain more balanced classifica-
tion results.

2. Visual context plays an important role in scene pars-
ing [17]. Beyond the traditional co-occurrence statis-
tics, we bring local and global spatial context into su-
perpixel scoring process to refine image retrieval and
superpixel classification, which gives us more contex-
tually sensible parsing results.

We demonstrate our system on the SIFTflow dataset (2688
images, 33 labels) and the LMSun dataset [22] (45576 im-
ages, 232 labels). The results show that the proposed algo-
rithm achieves superior labeling performance than the pre-
vious state-of-the-art algorithms in terms of per-class accu-
racy and per-pixel accuracy on the rare classes, while still
achieving similar or superior results on all classes.

2. Related Work

With the same concern on interesting object classes,
Tighe and Lazebnik [21] propose to augment their previous
superpixel based parsing system [22] with pre-trained ex-
emplar SVMs [16]. Although per-exemplar detectors makes

it possible to transfer object shape masks, their training in-
deed requires considerable amounts of computational re-
sources and their output also needs to be calibrated with su-
perpixel parsing output in a complicated post-classification
step. This hybrid system shows state-of-the-art labeling per-
formance in general, but is still constrained by the quality
of per-exemplar detectors and the over-smoothing property
of post-processing. In Figure 1(c), for example, it misses
two interesting object classes (boat and person), although it
achieves good overall per-pixel labeling accuracy. Instead
of using expensive object detectors, we pay more attention
to the context in different levels.

Context has been investigated in various semantic seg-
mentation algorithms from co-occurrence statistics to scene
categories [12, 4, 20, 7]. In terms of using semantic con-
text information for nonparametic scene parsing, our paper
is closely related to [4, 20]. Similar to ours, both of them
learn context information through the feedback mechanism
in the parsing process. The key idea is to first label the in-
put image only using appearance information, and then ex-
tract context information from initial semantic labels. Eigen
and Fergus [4] investigate context information in superpixel
neighborhoods. By observing that the initial labeling usu-
ally produces reliable results on background classes, they
build a context index for each superpixel using background
labels in its four-directional neighborhood. Therefore, in
additional to image retrieval, their method is able to find
more relevant superpixels for matching. However, in large
scale, even similar background (indoor) can encapsulate
many object categories, which will result in the uncontrol-
lable size of retrieved superpixels. Singh and Kosecka [20]
instead focus on global semantic context. They construct
a semantic label descriptor for each image in a three-layer
spatial pyramid to refine image retrieval. Compared to ap-
pearance image descriptors, semantic label descriptors are
much lower dimensional and allow fast image matching,
but also more vulnerable when the initial labeling fails. The
major difference of our method from [4, 20] lies in that we
incorporate richer context information and show its effec-
tiveness in large scale. Instead of using semantic labels
for context description, we build our global and local con-
text descriptors based on classification likelihood maps, in a
way similar to the Object Bank representation [9]. Our con-
text representations are more tolerant to labeling mistakes.
Furthermore, we use our context descriptors together with
appearance features for superpixel classification. This com-
bined feature representation has been shown to be effective
for semantic segmentation at the patch level [23].

3. The Baseline System

Our base system consists of three components: image
retrieval, superpixel matching and MRF labeling.
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3.1. Image Retrieval

Image retrieval is a critical step for our system. It deter-
mines the labels we use to parse the input image. If the al-
gorithm fails to retrieve relevant images and true labels, we
are not able to recover them in later steps. In this paper, we
use the method in [18] to compute the spatially constrained
image similarity m(Iq, Id) between the query image Iq
and database images Id, and retrieve top-K most similar
images {I1

d , I
2
d , ..., I

K
d },where m(Iq, I

k
d ) > m(Iq, I

k+1
d ).

Based on the Bag-of-Words image matching algorithm, this
method incorporates spatial voting of local features (SIFT
and RGB color) into image scoring. Therefore, the retrieved
images usually have similar scene layout to the query, which
is desirable for our parsing system. We use a SIFT vocabu-
lary of 10,000 words and a RGB color vocabulary of 1,000
words for local feature quantization. The retrieval top-K
images also determine a subset of candidate labels L′ ⊂ L
for the query image, where L is the overall label set. This
method shares a similar spirit with commonly used spatial
pyramid matching [13], but favors scene retrieval more than
scene classification in terms of implementation.

3.2. Superpixel Matching

We intend to assign semantic labels to every pixel of
the query image, based on retrieval images and their cor-
responding ground truth semantic labels (annotated by hu-
man). As a single pixel alone does not contain sufficient
information for recognition, we thus choose to recognize
pixels in their proper neighboring regions, i.e. superpixels.
We use the fast graph-based segmentation algorithm in [6]
for producing superpixels for both query and retrieved im-
ages. Different from traditional methods, we harvest su-
perpixels of retrieved images from multiple scales. This
increases the chance to find good matches for the query
superpixel at a controllable computational cost. In exper-
iments, we segment the retrieved images in four scales by
varying the k value k = 50, 100, 200, 400 in [6]. The
smaller k means fine-scale segmentation while the larger k
means coarse-scale segmentation. Note that many superpix-
els from multi-scale segmentation may include labels from
different classes, and cannot be assigned a single category
label. We thus screen the superpixels by checking their la-
bel purity, which is defined as the percent of label majority.
We assign a semantic label yi to a superpixel si if its label
purity is greater than 95%; otherwise, we remove it from re-
trieval set. For the query image, we segment it in the finest
scale by setting k = 50 to control their purity.

We represent each superpixel by four kinds of features,
SIFT histogram, RGB histogram, location histogram and
PHOG histogram. We extract SIFT descriptors of four
scales per 4 pixels by using VLFeat package [24] and en-
code them by 5 words from a vocabulary of size 1024 us-
ing the LLC algorithm [25]. For each superpixel, we com-

pute a 128-dimensional color histogram by quantizing the
RGB features from a vocabulary of 128 color words, and a
36-dimensional location histogram by quantizing the (x,y)-
locations into a 6×6 grid. In addition, the 168-dimensional
PHOG histogram is extracted from the bounding box of
each superpixel in a 1× 1, 2× 2, 4× 4 pyramid. To in-
corporate the contextual features into the superpixel repre-
sentation, we also dilate the superpixel masks by 10 pixels
and extract the same four kinds of features in the dilated
superpixel regions. We thus obtain a 2712-dimensional
((1024+128+36+168)×2) feature vector xi for each su-
perpixel si.

We compute the classification cost of each input super-
pixel si ∈ Q by its k-nearest neighbors Nk(i) in retrieval
setR = {sj , xj , yj},

U(yi = c|si) = 1−
∑

j∈Nk(i),yj=cK(xi, xj)∑
j∈Nk(i)K(xi, xj)

, (1)

where K(xi, xj) denotes the intersection kernel between
two histogram feature vectors xi and xj .

To reduce the computational complexity, we further map
feature vectors into a high-dimensional space φ(xi) where
the inner product approximates the intersection kernel [24],

K(xi, xj) ≈< φ(xi), φ(xj) > (2)

3.3. MRF Labeling

We build a four-connected pairwise MRF for semantic
labeling. The energy function is given by

E(Y ) =
∑
p

U(yp =c) + λ
∑
pq

V (yp =c, yq =c′), (3)

where p, q are pixel indices, c, c′ are candidate labels that
belong to retrieval label subset C′ and λ is the weight of
pairwise energy. The unary energy of one pixel is given by
its superpixel,

U(yp = c) = U(yi = c|si), p ∈ si. (4)

The pairwise energy on edges is given by spatially variant
label cost,

V (c, c′) = d(p, q) · µ(c, c′), (5)

where d(p, q) = exp(−‖I(p) − I(q)‖2/2σ2) is the color
dissimilarity between two adjacent pixels and µ(c, c′) is the
penalty of assigning label c and c′ to two adjacent pix-
els. We define µ(c, c′) by the log-likelihood of label co-
occurrence statistics,

µ(c, c′) = − log[(P (c|c′) + P (c′|c))/2]× δ[c′ 6=c] (6)

which we estimate from the training images by calculat-
ing conditional probabilities P (c|c′) of adjacent superpix-
els. We obtain the semantic labeling by performing MAP
inference on E(Y ) by alpha-beta swap algorithm [1].
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Figure 2. Rare class expansion. The orange bars denotes the rare classes while the blue bars denote the common classes. In this example,
we enrich 9 rare classes.

4. Rare Class Expansion
In scene images, the salient regions usually capture the

attention of human observers [8], as they provide more in-
formation than generic background for scene understand-
ing. It is thus crucial to recognize these objects of inter-
est for generating rich semantic description of images. The
saliency property of interesting objects also result in their
insufficient representations in the retrieval set. For exam-
ple, in the “Before expansion” portion of the plot in Fig-
ure 2, the superpixels of retrieved images are dominated by
sky, sea and sand while boat and people classes are in the
very tail of the distribution. This fact brings challenges to
recognizing those objects of rare classes.

In this paper, we propose to enrich the retrieved set of
superpixels with exemplars of rare classes from the entire
database. The label distribution of the retrieval set could be
noisy due to the possibly irrelevant images. It is thus dif-
ficult to tell if a class in the tail part are interesting objects
(boat and people) or simply outliers (building). We instead
define “rare” classes by examining the superpixel label dis-
tribution of the entire training set. We partition this distribu-
tion into head and tail parts based on the 80%-20% Pareto
rule, and define the classes in the tail as “rare” Lr while the
other classes in the head as “common” Lc. In Figure 3, we
present the superpixel distribution of the SIFT flow train-
ing set [15], and our definition of rare and common classes.
Given this definition, we can partition the label subset of re-
trieval superpixels into two parts L′ = L′r

⋃
L′c and pop-

ulate the superpixels in the classes of L′r with exemplars.
Note that the reduced label set remains the same after ex-
pansion. In Figure 2, we expand 9 classes (road, field, plant,
grass, river, rock, sand, person, boat) and obtain a more bal-
anced, noise resistant superpixel distribution as shown in
the “After expansion” portion of the plot.

4.1. Building a Dictionary of Exemplar Superpixels

We build a dictionary Dc of exemplar superpixels for
each class c ∈ L. We project superpixel feature vectors xi
into a low-dimensional space by PCA and cluster them into
1000 centers by using k-means. We select those superpixels

Figure 3. The long tailed superpixel label distribution on the SIFT-
flow training set. The orange bar denotes the rare classes while the
red bars denote the common classes.

which are closest to the centers as exemplars of particular
class. Note that we use this method to build dictionaries
for its simplicity, although a more sophisticated algorithm
such as in [14] could help to mine more discriminative and
diverse exemplars.

4.2. Superpixel Classification

We classify the superpixels of query image si ∈ Q
by using both the retrieval set R and auxiliary set of rare
class exemplars Dc, c ∈ L′r. Similar to our base system
in Section 3.2, we compute the classification cost of one
query superpixel si by its κ-nearest neighbors N ′k(i) ∈
{R

⋃
Dc, c ∈ L′r},

U1(yi = c|si) = 1−
∑

j∈N ′k(i),yj=cK(xi, xj)∑
j∈N ′k(i)K(xi, xj)

. (7)

We set κ = 37 through all the experiments. To increase the
classification accuracy of κ-NN, systems in [4, 20] learn
weights for superpixels feature vectors. In this work, we
choose to hybridize the κ-NN classifier with an SVM clas-
sifier [3]. We train the SVM classifier only using the ex-
emplars in our dictionary. Given this small and balanced
set of training samples, we can train linear SVM classifiers
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{wc, bc}, c ∈ L in a very efficient way [2]. The SVM clas-
sification cost for the query superpixel si ∈ Q is given by
U2(yi = c|si) =−<wc, φ(xi)>−bc. The total superpixel
classification cost is thus computed by combining the κ-NN
cost and the SVM cost,

U(yi =c|si) = αU1(yi =c|si)+(1−α)U2(yi =c|si), (8)

where α is the combination coefficient.

5. Semantic Context

Context is an important source of information for scene
labeling. Although there are many ways to explore this in-
formation, we choose to a simply, yet effective feedback
mechanism based approach, inspired by [4, 20, 23]. In the
base system with rare class expansion, we transfer semantic
labeling information from the database to the input image
through image retrieval and superpixel classification. In this
feedforward process, we obtain the initial semantic knowl-
edge of the input image that are represented by the pixel-
wise classification likelihood maps.

`(p, c) =
1

1 + exp(U(yp = c))
, c ∈ L′, (9)

where U(yp = c) is the cost of assigning label c to pixel
p in (4) and L′ ⊂ L is the candidate label subset. These
classification maps in the reduced label set grant us natu-
rally sparse representation of semantic information without
an extra sparse coding step [9]. The question is how we
can use this initial result as a feedback to reinforce the la-
beling process, in particular the two key components, im-
age retrieval and superpixel classification. First, the likeli-
hood maps in (9) can serve as global context, which has the
potential to improve the appearance based image retrieval
with semantic scene description. Second, we can generate
local semantic descriptors from the likelihood maps for su-
perpixels. Together with local appearance descriptors, we
can achieve more contextually consistent classification re-
sults. We introduce the algorithms to construct both global
and local context descriptors from the likelihood maps in (9)
below. Note that to compare semantic context between the
query and the database images, we compute the classifica-
tion likelihood maps for all the training images in a leave-
one-out fashion.

5.1. Global Context Descriptor

We define the global context of an image as the spa-
tial layout of semantic content in multi-scale. To this
end, we partition an image into a three-layer spatial pyra-
mid {I =

⋃
i Ωl

i, l = 1, 2, 3, i = 1, ..., 2l−1}, and for
each cell Ωl

i, we compute its |L| × 1 sparse context vec-
tor zli = [zlic]c=1,2,...,|L| by max pooling of classification

Figure 4. Computing global and local context descriptors from
the likelihood maps. The bottom-right figure shows the method
of constructing global context descriptor using a three-layer spa-
tial pyramid. In the bottom-left figure, the local context de-
scriptor of one superpixel s (shown in orange) is computed from
four-directional neighborhoods: top (blue), bottom (purple), left
(green) and right (yellow).

likelihood maps,

zlic =

{
maxp∈Ωl

i
`(p, c) if c ∈ L′;

0, otherwise.
(10)

The global context descriptor is thus formed by con-
catenating the sparse vectors from all the cells z =
[zli]l=0,1,2,i=1,...,2l−1 . Figure 4 demonstrates the process of
computing the global context descriptor of one query im-
age. We use global context descriptor z to update the image
similarity between the query image and database images,
m′(Iq, Id) = m(Iq, Id)+ < zq, zd > and obtain a new set
of retrieved images.

5.2. Local Context Descriptor

We describe superpixels by their local context for
robust matching. For each superpixel si, we divide
its neighborhood into left, right, top, bottom four cells
{∆0

i ,∆
1
i ,∆

2
i ,∆

3
i } as illustrated in Figure 4, and for each

cell ∆j
i , we compute its |L| × 1 sparse context vector

hj
i = [hjic], c = 1, 2, ..., |L| by the same operation as for

global context descriptors,

hjic =

{
maxp∈∆j

i
`(p, c) if c ∈ L′;

0, otherwise.
(11)

We represent the superpixel si by concatenating the vi-
sual feature vector xi and spatial context descriptor hi =
[h0

i ;h1
i ;h2

i ;h3
i ]. Therefore, we can classify superpixels of

the query image using the same procedure described in Sec-
tion 4, but with new feature vectors φ([xi;hi]).
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Figure 5. Some representative scene parsing results on the SIFTflow dataset

6. Experimental Results

6.1. SIFTflow

The SIFTflow dataset consists of 2488 training images
and 200 test images. All the images are 256 × 256 pixels
from 33 semantic labels. We retrieve K = 40 images for
each query. By applying the 80%-20% rule to all the super-
pixels of training dataset, we identify 5 classes as common
while 28 classes as rare (Fig. 3). We set α = 0.7 to com-
bine the κ-NN and SVM classifiers in (8), and set λ = 6 for
the pairwise term of MRF energy function in (3). We com-
pare our results with recent work in Table 1. Compared to
nonparametric methods, our method (79.8%) outperforms
the state-of-the-art per-pixel rate (79.2%) in [20], and per-
class rate (39.2%) in [21] by a large margin (8.5%). The
state-of-the-art learning based method in [5] can achieve
close per-class rate (46.0%) to our system at a cost of more
than 4% performance drop on per-pixel rate (74.2%). In
contrast, we achieve overall performance improvement us-

Table 1. Comparing accuracy (%) on the SIFTflow dataset. Note
that in our results, Full=baseline+RCE+LCD+GCD.

SIFTflow Per-pixel Per-class
Liu et al. [15] 76.7 N/A

Farabet et al. [5] 78.5 29.5
Farabet et al. [5] balanced 74.2 46.0

Eigen et al. [4] 77.1 32.5
Singh and Kosecka [20] 79.2 33.8
Tighe and Lazebnik [22] 77.0 30.1
Tighe and Lazebnik [21] 78.6 39.2

Full 79.8 48.7
baseline + RCE + LCD 79.4 46.9

baseline + RCE 78.4 45.4
baseline 78.0 27.5

ing the proposed rare class expansion and semantic context
descriptors. We present some qualitative results in Fig. 5.
In the bottom of Table 1, we evaluate the contributions of
important components to our system: rare class expansion
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(RCE), local context descriptors (LCD) and global context
descriptors (GCD). The results show that rare class expan-
sion plays a central role on per-class rates while semantic
context boosts the system performance in general. To fur-
ther investigate the influence of the rare classes, we compare
the performance of our full system with [21] only on the 28
rare classes. Table 2 shows that our system outperforms the
state-of-the-art by more than 10% for both per-pixel and
per-class rates on those rare classes.

Table 2. Accuracy (%) on the 28 rare classes of SIFTflow dataset.
Rare classes Per-pixel Per-class

Tighe and Lazebnik [21] 48.8 29.9
Our full system 59.4 41.9

Runtime. For this dataset, it takes<1 sec. to retrieve rele-
vant images,∼5 sec. for feature loading,∼5 sec for super-
pixel classification, and<1 sec. to solve the MRF. The use
of context descriptors doubles the classification time.

6.2. LMSun

The LMSun dataset consists of 45176 training images
and 500 test images. The size of images ranges from
256×256 pixels to 800×600 pixels. There are 232 seman-
tic labels in total. By using the same 80%-20% rule on all
the superpixels in the training set, we identify 47 common
classes and 185 rare classes. Since this is more complex
dataset, we retrieve K = 120 images to cover large ap-
pearance variations. We set α = 0.9 to trade-off the KNN
and SVM classifiers, and set λ = 6 for the pairwise term
in MRF energy function. We compare our results with re-
cent work in Table 3. As we focus on the rare classes, our
method indeed produces the superior per-class result 18.0%
to the previous one 15.2%, while remaining competitive on
the per-pixel rate 60.6% vs. 61.4% in [21]. By looking
at the accuracy on outdoor (65.4 per-pixel, 17.7 per-class)
and indoor (41.8 per-pixel, 16.1 per-class) separately, we
observe our system loses the per-pixel performance mainly
on indoor images (4.5% lower than [21] vs. 0.1% lower
than [21] for outdoor). In Table 4, we present the results

Table 3. Comparing accuracy (%) on the LMSun dataset.Note that
in our results, Full=baseline+RCE+LCD+GCD.

Per-pixel Per-class
Tighe and Lazebnik [22] 54.9 7.1
Tighe and Lazebnik [21] 61.4 15.2

Full 60.6 18.0
baseline + RCE + LCD 59.4 17.8

baseline + RCE 57.1 14.5
baseline 58.5 9.0

on the 185 rare classes. It turns out that our system outper-
forms the state-of-the-art for both per-pixel and per-class
rates, which further demonstrates our contributions to rare
class boosting. We present some qualitative results in Fig-

Table 4. Accuracy (%) on the 185 rare classes of LMSun dataset.
Rare classes Per-pixel Per-class

Tighe and Lazebnik [21] 19.0 12.9
Our full system 26.4 14.4

ure 6.
Runtime. Scene parsing is more expensive on the LMSun
dataset than the SIFTflow dataset. It takes< 20 sec to re-
trieve relevant images, ∼ 60 seconds for feature loading,
∼60 sec for superpixel classification, and∼60 sec to solve
MRF for an 600×800 image with 50-100 labels. Using con-
text descriptors doubles the superpixel classification time.

6.3. Discussion

Image retrieval has significant influence on our system.
Superpixel matching and MRF inference becomes much
easier to solve within a compact set of relevant images to
the query; on the contrary, we notice most of the failure
cases are caused by incorrect retrieval. We plan to investi-
gate more effective image retrieval techniques, such as con-
volutional neural networks [10].

Our system faces challenges in indoor scenes. Indoor
scenes are usually composed of many man-made 3D objects
(bed, cabinet, table, chairs) and thus have more line struc-
tures than textures. Our SIFT based superpixel represen-
tation becomes less applicable in this scenario, compared
to the HOG feature used in object detectors [21]. We plan
to develop better indoor object representations by exploring
their 3D geometric structures.

The runtime efficiency is one of the most important fac-
tors in large scale problems. On one hand, we plan to incor-
porate hashing algorithms to accelerate superpixel feature
loading and matching; on the other hand, we plan to inves-
tigate faster MRF inference algorithms.

7. Conclusions

We have presented a novel scene parsing algorithm,
which can operate in large scale. By investigating the roles
of rare classes in the database, we have proposed two novel
techniques: rare class expansion and local/global seman-
tic context descriptors, which are able to significantly boost
the per-class performance of our system. Based on that, we
have achieved the state-of-the-art results on the SIFTflow
and the large scale LMSun datasets.
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Figure 6. Some representative scene parsing results on the LMSun dataset
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