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Abstract—This paper describes the development and appli-
cation of a new approach to total-variation (TV) minimization
for reconstruction problems on geometrically-complex and
unstructured volumetric mesh. The driving application of this
study is the reconstruction of 3D ischemic regions in the heart
from noninvasive body-surface potential data, where the use of
a TV-prior can be expected to promote the reconstruction of
two piecewise smooth regions of healthy and ischemic electrical
properties with localized gradient in between. Compared to
TV minimization on regular grids of pixels/voxels, the com-
plex unstructured volumetric mesh of the heart poses unique
challenges including the impact of mesh resolutions on the TV-
prior and the difficulty of gradient calculation. In this paper, we
introduce a variational TV-prior and, when combined with the
iteratively re-weighted least-square concept, a new algorithm to
TV minimization that is computationally efficient and robust to
the discretization resolution. In a large set of simulation studies
as well as two initial real-data studies, we show that the use
of the proposed TV prior outperforms L2-based penalties in
reconstruct ischemic regions, and it shows higher robustness
and efficiency compared to the commonly used discrete TV
prior. We also investigate the performance of the proposed TV-
prior in combination with a L2- versus L1-based data fidelity
term. The proposed method can extend TV-minimization to a
border range of applications that involves physical domains of
complex shape and unstructured volumetric mesh.

I. INTRODUCTION

Myocardial ischemia, a precursor of myocardial infarc-
tion, occurs when the oxygen supply to the heart is in-
sufficient. Myocardial infarction creates substrate for ven-
tricular arrhythmias and increase the risk of sudden cardiac
death [8]. Nowadays, 12-lead electrocardiograms (ECG) is
routinely used for monitoring and identifying myocardial
ischemia [22], although its low sensitivity and inability to
locate ischemic region has been noted in [1]. Some tomo-
graphic techniques can also be used for ischemia imaging,
such as perfusion scintigraphy [1]. However, high cost and
long procedure time limit the wide application of such
techniques in the clinic [9].

Alternatively, much effort has been devoted to compu-
tational approaches that reconstruct ischemic regions from
body-surface ECG data, mostly through the reconstruction of
potential sequence on the epicardium [2]. These approaches
define location and extent of ischemic regions on the heart
surface only, without information on the transmurality or
3D morphology of ischemic myocardium. Transition to 3D

reconstruction of ischemic regions has been difficult because
this problem is not only mathematically ill-posed due to
the limited number of measurements, but also−as deter-
mined by the biophysics of the underlying electromagnetic
field−has non-unique physical solutions [14]. Existing meth-
ods can generally be divided into two categories. One type
of approaches subjects the reconstruction to physiological
constraints enforced by computational models of cardiac
excitation throughout the entire ECG cycle, either through
deterministic optimization [10] or probabilistic estimation
[20]. While the incorporation of spatiotemporal physio-
logical constraints help overcome the ill-posedness of the
reconstruction problem, it may also impact the accuracy
of the reconstruction when the presence of the ischemic
region in the heart is unknown a priori. The alternative
type of approaches directly regularizes the reconstruction
problem with L2 penalty on the solutions, solved by various
methods such as the level-set framework [12] or constrained
optimization [19].

In this paper, we introduce a TV-prior into the recon-
struction of ischemic myocardium using noninvasive ECG
data. The ability of TV penalty to promote reconstruction
of piecewise homogeneous regions with sharp transitions
ideally matches the electrophysiological property of an is-
chemic heart: during the ST-segment of an ECG cycle, action
potential of healthy myocardium will be mostly uniform
and its spatial gradient is expected to be close to zero.
In a ischemic heart, the potential difference between is-
chemic and healthy myocardium will create a steep gradient
along the ischemic region (Fig. 1 (a,b)). The application
of TV minimization, therefore, is expected to promote the
reconstruction of ischemic region with higher resolution and
accuracy along its border.

Since its original development, TV minimization has been
widely applied to preserve the sharp edge of an image in a
variety of applications, such as blind de-convolution [4] and
image de-noising [16]. Most of these existing applications
deal exclusively with regular grids of pixels or voxels and,
correspondingly, the discrete TV prior is commonly defined
as the L1-norm of the gradient field of the grid. In com-
parison, the biophysical application targeted in this paper
involves a complex volumetric mesh of physical meaning
(geometry of the heart) discretized with an unstructured grid



Figure 1. Illustration of 3D action potential (a) and its spatial gradient
in an ischemic heart (b); (c) volumetric mesh of the heart

as shown in Fig.1(c). It therefore faces the following unique
challenges: 1) the commonly used discrete definition of TV
prior - based on the gradient field of the discrete mesh - is
highly affected by the resolution of the discrete mesh; and
2) gradient of the discrete mesh - given its complex shape
and unstructured grid distribution - is much more difficult
and error-prone to calculate than that of a digital image.

This paper is dedicated to developing an approach to
overcoming the challenges that arise from TV minimization
on a physical domain of complex shape and unstructured
mesh discretization. First, to ensure the accuracy of the TV
prior and its robustness to the resolution of the discrete
mesh, we introduce a variational TV prior that approximates
the continuous TV form by a numerical integration with
Gaussian quadrature points. Adopting the concept from
iteratively re-weighted least-square approximation of L1-
minimization [15], we then introduce a new iterative algo-
rithm that solves the TV minimization with a sequence of
weighted L2 minimization problems, where at each iteration
the variational TV-prior is approximated by a weighted,
variational quadratic prior. Finally, we investigate the per-
formance of the combination of the TV-prior with a L2-
versus a L1-based data fidelity term. Through a large set
of phantom experiments simulating ischemic myocardium
of different locations and sizes within the left ventricle,
we successfully demonstrate that: 1) the adoption of TV-
prior provides significantly higher accuracy over L2-based
penalties in localizing action potential gradient along is-
chemic regions; 2) with the proposed variational TV prior,
TV minimization on the irregular cardiac mesh shows higher
accuracy, robustness, and computational efficiency compared
to that with the commonly used discrete TV prior; and 3)
the use of a L1-based data fidelity term provides higher
accuracy and convergence rate when the reconstruction faces
high measurement noises, while the L2-based data fidelity
term provides better performance facing low to medium
measurement noises. Real-data experiments on two patients
with ischemic hearts further verify the potential of the pre-
sented method in reconstructing the steep gradient along the
ischemic myocardium border and thus outlining the shape
of the ischemic region. Overall, the parented method will
help generalize the application of TV minimization extend
to problems that involve physical domains of complex shape
and unstructured mesh discretization.

II. METHODOLOGY

First, we briefly introduce the biophysical model under-
lying the reconstruction problem. Cardiac electrical excita-
tion produces time-varying voltage data that can be easily
accessible on the body-surface, as if our torso were a quasi-
static electromagnetic field [14]. The spatial distribution of
extracellular potential φte within the myocardium Ωh is
governed by the Poisson’s equation with cardiac electrical
currents as the source term; the distribution of extracellular
potential φti within any other organ Ωti in the region
Ωt/h bounded by the heart’s surface and body surface is
determined by Laplace’s equation assuming no other active
source exist outside the myocardium:

σk∇2φte(r) = ∇ · (−Di(r)∇u(r)), ∀r ∈ Ωh;
σti∇2φti(r) = 0, ∀r ∈ Ωti ∪ Ωti = Ωt/h

(1)

where σk is myocardial conductivity, σti conductivities of
different tissues, Di intracellular conductivity tensor of the
heart, and r the spatial coordinate.

With different numerical methods, such as finite element
method[19] or combined meshfree and boundary element
method [21], this biophysical relationship can be solved on a
subject-specific heart-torso model derived from tomographic
images:

φ(t) = Hu(t) (2)

where φ(t) is the voltage data sensed on the body surface,
u(t) the discrete field of transmural action potential across
the 3D myocardium, and the transfer matrix H is specific to
each individual’s torso anatomy. The condition number of
H was shown at the order of 10−14 [20].

As explain earlier, we propose to incorporate the TV-
prior into the reconstruction of 3D action potentials u(t)
from body-surface measurement φ(t). At this stage, we
exclude the temporal factor and focus on the reconstruction
during the ST-segment of the ECG cycle where the above
electrical pattern persists in the heart. Mathematically, the
reconstruction problem can be formulated as:

û = min
u
{||Hu− φ||qq + λTV (u)} (3)

where q indicate L1 norm or L2 norm of data fidelity term.
TV (u) denotes the total-variation of the discrete field of u.
For a continuous signal u, its total-variation is defined as [4]:∫

Ω
|∇u|dΩ. Here we must form a proper discrete definition

of TV (u) that is close to its continuous definition regardless
of the resolution of the discretization or the complexity of
the mesh.

A. Variational TV prior

In most image-processing applications, a discrete version
of TV (u) is calculated as the L1-norm of the discrete



gradient field of u:

TV (u) = ||∇u||1 =

n∑
i=1

√
(∇xui)2 + (∇yui)2 + (∇zui)2

(4)
where n represents the total number of discrete points
(usually pixels of an image). As a result, it is not possible to
formulate an explicit gradient operator for the entire discrete
field without separately employing directional gradient oper-
ators. One popular method is based on anisotropic separable
approximation[11]:

||∇u||1 ≈ Du = |Dxu|+ |Dxu|+ |Dzu| (5)

where horizontal, vertical and depth discrete derivative op-
erators are denoted by Dx, Dx and Dz, respectively, each
in the form of a n×n matrix. Such approximation sacrifices
accuracy for the simplicity of numerical maneuver and will
introduce large matrix computation and storage during the
optimization process (section 2.2). Individual elements in D,
while straightforward to calculate in digital images because
of the regular grid of pixels, are not trivial to calculate
accurately when the nodes of the discrete mesh of u are
distributed irregularly in space. Furthermore, this definition
(4, 5) can differ substantially from the TV of the underlying
continuous field, depending on the resolution of u.

Therefore, we define an alternative approximation of the
continuous form of TV as:

TV (u) = ΣNi=1|∇ϕiu| ≈
∫

Ωh
|∇u|dΩh (6)

where a numerical integration is performed over the 3D
myocardial field by N (at the order of 105) Gaussian
quadrature points. Depending on the discretization method
used (meshfree method [21]in this paper), ∇u on each
Gauss point is approximated by a linear combination of
its neighboring nodal points in the discrete field u based
on the 3 × n spatial gradients of the shape functions ϕi.
Because each Gauss point has only a small set of support
nodal points, ϕi and ∇ϕi are sparse with a small number
of non-zero values. This definition of TV (u) (6) does not
directly rely on the discrete field defined over u, hence it
is robust to the spatial resolution of u. Furthermore, it is
also consistent with the data-fidelity term in equation (3),
where the biophysical model H is also calculated from
numerical approximations of integrals involved in the quasi-
static Maxwell equations.

B. Iteratively re-weighted TV minimization (IRTV)
Once the L1-norm is applied to the constraint term, the

corresponding object function (3) become difficult to solve.
Here, we adopt the concept of iteratively re-weighted (IR)
to handle this challenge. The general idea of IR is based on
the following iterative approximation of a general variable
x where at iteration k:

|x(k)| ≈ || x(k)

√
x(k−1)

||22 (7)

namely, at each iteration, the L1-norm of x is approximated
by the L2-norm of a weighted-x, where the weight is the
square root value of the x obtained at the previous iteration.
Because the value of x from the previous iteration is known,
the L1 regularization problem can be approximated by a
sequence of weighted L2 regularization with the weight
changing at each iteration depending on the solution from
the previous iteration.

Adopting the concept of IR [15], we can approximate
the continuous form of TV as a sequence of L2-norm of
weighted ∇u, each weight being the square root of ∇u at
the previous (k − 1)-th iteration, i.e.:∫

Ωh

|∇u(k)|dΩh ≈
∫

Ωh

|| ∇u
(k)

√
∇u(k−1)

||22dΩh (8)

Coupling this with our proposed variational approxima-
tion of TV(6), equation (8) can be approximated again by
variational approximation in weight L2 form:∫

Ωh
|| ∇u

(k)
√
∇u(k−1)

||22dΩh ≈
∫

Ωh

|∇u(k)|2
|∇u(k−1)|dΩh

≈ u(k)T (
∑N
i=1

(∇ϕTi ∇ϕi)
|∇ϕiu(k−1)| )u

(k) = ||Wu(k)||22
(9)

where: WTW =
∑N
i=1

(∇ϕTi ∇ϕi)
|∇ϕiu(k−1)|

In another word, at each iteration, the proposed variational
form of TV is now approximated by a weighted L2-norm
of u, with the weight matrix WTW defined as above. It is
important to note that, once a discrete mesh of the heart is
constructed with the Gaussian quadrature points established,
the shape functions used for calculating WTW remain fixed
and the only change in WTW at each iteration comes from
previous u. Therefore, at each iteration, computation of the
weight matrix involves only weighting N pre-stored sparse
matrices - one for each Gauss point - by a scalar |∇ϕiu|
and adding them together.

For comparison, the L1-norm of the gradient field ||∇u||1
(5) can also be approximated by weighted L2-norm with the
application of IR concept. The weight matrix DTWdD is
assembled from [15]:

D =
(
Dx Dy Dz

)T
Wd = diag

(
Ωd

(k) Ωd
(k) Ωd

(k)
)

Ωd
(k) = diag((Dxu(k))2 + (Dyu(k))2 + (Dzu

(k))2)
(10)

where the dimension of matrix D is 3n × n and the
dimension of Wd is 3n × 3n. It is evident that using the
discrete TV form as defined in (5), the IRTV will involve the
computation and storage of high-dimension weight matrices
that will substantially increase the computational coat.

C. IRTV-L2 vs. IRTV-L1

Recent studies have shown that, when combined with
a L1-norm regularization term, an L1-norm data-fidelity
shows higher robustness to measurement error as well as



faster convergence in comparison to an L2-based data-
fidelity norm [5]. To have a better understanding of the
difference between an L1- and L2-norm data-fidelity term
in our problem, we will consider both IRTV-L2 and IRTV-
L1 approaches in this study.

IRTV-L2: First, we considering a common least-square
data fidelity term (setting q in (3) equal to 2). Combin-
ing with the approximation define in (9,10), the IRTV-
L2 minimization can be solved by a set of weighted L2-
minimizations:

û(k) = minu{||Hu(k) − φ||22 + λ(k)||W̃u(k)||22}
⇒ û(k) = (HTH + λ(k)W̃TW̃)−1HTφ

(11)

where W̃TW̃ =
∑N
i=1

∇ϕTi ∇ϕi
|∇ϕiu(k−1)|+β and λ(k) is the regu-

larization parameter used at iteration k. β is a small positive
value to reduce numerical errors when |∇ϕiu(k−1)| at the
i-th Gauss point is close to zero.

In this way, by iteratively solving the L2 regularization,
the local region with a small spatial gradient (being in the
denominator) will generate a large penalty in the current
iteration, while a large gradient will be promoted until the
final solution exhibits a piecewise smooth pattern with steep
gradient. The convergency of the solution of IR to the
minimum of objective function (3) was proved in [15]. The
equation (11) can be represent as a weight L2 form.

IRTV-L1: Second, we also consider the alternative of a
L1-norm data fidelity term (setting q in (3) equal to 1). The
concept of IR can be extended to this IRTV-L1 model by
replace the L1-norm data-fidelity term with a sequence of
weighted L2-norm, with the weight matrix at each iteration
k defined by Wf

TWf = diag(|Hu(k−1) − φ|). Again,
this IRTV-L1 problem can also be solved as a sequence of
weighted L2-minimization:

û(k) = minu{||Hu(k) − φ||11 + λ(k)||W̃u(k)||22}
⇒ û(k) = (HTWf

TWfH + λ(k)W̃TW̃)−1HTWf
TWfφ

(12)
For both IRTV-L2 and IRTV-L1, matrix inversion is calcu-
lated by Conjugate Gradient method in this study.

D. Algorithm Summary

To put the whole picture together, we need to resolve two
further issues:

Initialization: While the proposed TV method, because
of its underlying sparsity promoting nature, is suitable for
overcoming the physically ill-posedness of the reconstruc-
tion problem, it needs to be initialized with proper meth-
ods that can overcome the mathematical ill-posedness of
the problem. For this purpose, any regularization method
imposing smoothness constraints is expected to be suitable.
Here, a simple 0-order Tikhonov regularization is used for
obtaining the initial solution of u(0).

Regularization parameter: For the initialization with
Tikhonov regularization, λ(0) is calculated by the L-curve

method [7]. After initialization, the iteration repeats until the
convergence criterion, i.e., the difference between two suc-
cessive gradients of solutions is smaller than a pre-defined
tolerance. Unfortunately, there is currently no established
method for objectively determining regularization parameter
in L1-based problems, and most works rely on an empirical
and supervised procedure to select an optimal value of λ af-
ter a large set of experiments. In the proposed IRTV method,
because the regularization term in the objective function
changes in each iteration, a less supervised approach for
the selection of λ(k) is desired for a robust and automatic
algorithm. Here we adopt the method proposed in [17] to
automatically update the magnitude of λ(k) at each iteration
based on the infinity norm of the matrices involved in the
data-fidelity and the regularization terms (See Algorithm 1
the expression of λ(k)).

A complete summary of the algorithm for both the IRTV-
L2 and IRTV-L1 is provide in Algorithm 1.

Algorithm 1 Iteratively re-weighted for TV (IRTV)

1: u(0) = (HTH + λ(0)IT I)−1HTΦ . Initialization u
2: k = 1 . Initialization k
3: while ||TV (u(k))− TV (u(k−1))||2 ≤ tol,
4: tol = 10−3

5: do
6: û(k) = (HTLH + λ(k)W̃TW̃)−1HTLΦ

7: W̃TW̃ =
∑N
i=1

∇ϕTi ∇ϕi
|∇ϕiu(k−1)|+β

8: λ(k) = ||HTLH||∞
||
∑N
i=1

∇ϕT
i
∇ϕi

|∇ϕiu(k−1)|+β
||∞

,

9: if q = 2 then, . IRTV-L2
10: L = I (Identity matrix);
11: end if
12: if q = 1 then, . IRTV-L1
13: L = Wf

TWf = diag(Hu(k−1) − φ)
14: end if
15: k = k + 1
16: end while

III. PHANTOM EXPERIMENTS

First, we evaluate the proposed method through phantom
experiments conducted on four realistic human heart-torso
models derived from CT scans. We focus on the ability
of the proposed method to outline the steep gradient of
action potential along the border of ischemic myocardium
that separates the region of inactive and active tissue during
the ST-segment of an ECG cycle. Ischemic myocardium of
different sizes and locations are considered. Throughout all
experiments, the accuracy of the proposed method is pri-
marily measured by the consistency metric: CoM = S1∩S2

S1∪S2

where S1 represents region of steep gradients (in terms of
the number of meshfree nodes) in the reconstructed action
potentials and S2 is the region of steep gradients in the



Figure 2. Examples (A) and statistic analysis (B) in reconstructing the steep action potentials gradient along ischemic border

Table I
Consistency metric BETWEEN THE RECONSTRUCTED AND TRUE REGIONS OF STEEP ACTION POTENTIAL GRADIENTS, WITH RESPECT TO LOCATIONS

(TOP) AND SIZES (BOTTOM) OF THE ISCHEMIC REGION.

Segment/Method Anterior Inferior Lateral Septal Apex
(n=26) (n=21) (n=40) (n=29) (n=4)

IRTV(q=2) CoM 0.5153± 0.10 0.4889± 0.07 0.5375± 0.11 0.3423± 0.09 0.6146± 0.13
1-order CoM 0.3624± 0.07 0.3169± 0.07 0.3995± 0.10 0.2675± 0.12 0.4677± 0.17
0-order CoM 0.2419± 0.06 0.2431± 0.05 0.2909± 0.08 0.2325± 0.07 0.1845± 0.09
Size/Method 0 ∼ 5% 5% ∼ 10% 10% ∼ 20% ≥ 20% Total

(n=29) (n=31) (n=49) (n=28) (n=137)
IRTV (q=2) 0.5134± 0.10 0.4739± 0.14 0.4775± 0.13 0.4281± 0.11 0.4742± 0.13

1-order 0.3268± 0.12 0.3383± 0.11 0.3524± 0.11 0.3502± 0.09 0.3433± 0.11
0-order 0.2225± 0.07 0.2706± 0.09 0.2643± 0.07 0.2552± 0.04 0.2551± 0.07

ground truth. In the current study, region of steep gradients
is outlined using a threshold value that is automatically
calculated from the mean and standard deviation of the
calculated gradients. According to electrophysiology, action
potentials during the ST-segment are set to be −20mV for
the ischemia region, and 20mV for the health region [13].
370-lead body-surface ECG are simulated and corrupted
with Gaussian noise as inputs.

A. IRTV vs. Existing Quadratic-regularization:

Here, we consider 137 cases of ischemic region with
different locations and with size ranging from 0.5% to 50%
of LV. On average the IRTV takes 26 iterations to converge.

Fig. 2A shows two examples of ground truth where the
steep spatial gradients of action potentials is distributed
along the border of ischemic myocardium, respectively,
located at anterior and apical regions of the LV. This
spatial structure of the steep gradient is well preserved in
action potentials reconstructed by the presented IRTV-L2
(q = 2) method. In comparison, gradient of the action
potential reconstructed by the 0-order quadratic method
is diffused and does not reveal the location or the shape
of the underlying ischemic region. The 1-order quadratic
regularization shows improved accuracy over its 0-order
counterpart but the reconstructed gradient is still blurred
and loses the structure/topolgy of the ischemic border. Fig.
2B lists the consistency metric for results obtained on all

137 cases by the three methods, where paired student’s t-
test shows that the accuracy of IRTV is significantly higher
than the other two method based on quadratic regularization
(p < 0.0001).

In addition, Table 1 lists the consistency metric of all
results with respect to the locations and sizes of the ischemic
region. Student’s t-tests and one-way ANOVA tests are used
to compare how the results from IRTV differ, respectively,
between all size groups and all location groups, except
that of apical region. As shown, it is more difficult to
correctly capture the gradient of action potentials using
IRTV when ischemia happens at the septal region of the LV
(0.3423±0.09) compared to the anterior region (0.5153±0.1,
p < 0.0001), inferior region ( 0.4889±0.07, p < 0.0001), or
lateral region (0.5375 ± 0.11, p < 0.0001) of the LV. This
is because the septum is most hidden from body-surface
observations [23]. In comparison, there is no significant
difference in the accuracy of IRTV (ANOVA p = 0.19)
in outlining the gradient along ischemic region of different
sizes.

B. Discrete TV-prior vs Variational TV-prior

A set of 72 studies are conducted to compare the per-
formance of IRTV-L2 using the proposed variational defin-
ination (9) versus traditional discrete definition of TV (10).
During the IR algorithm, the difference between these two
TV definitions is exhibited as the way the re-weighting



Figure 3. Comparison study between the discrete TV and variational TV: (a) the accuracy in preserving the steep gradient along ischemic
border based on two different TV prior. (b) time consumption of each method under the same operation system.

Figure 4. IRTV-L1 and IRTV-L2 reconstruction analysis. Examples (a) at 25dB and 10dB noise. The color bars indicate the value of action potential
(top) and its gradient (bottom) change,respectively. The accuracy (b) and average iterations (c) at different noises.

matrix is calculated in each iteration: WTW as defined in
(6) for variational TV, versus DTWdD in (10) for discrete
TV.

Fig.3 (a) shows the accuracy (consistency metric) of
discrete TV and variational TV in preserving the steep
gradient under different mesh resolution (3 ∼ 6mm). As
shown, variational TV delivers a more consistent accuracy
among different resolution than discrete TV, demonstrating
a higher robustness to mesh resolution as hypothesized.

Fig.3 (b) shows the averaged computation cost per itera-
tion for minimizing (3) using variational TV and discrete TV
under different mesh resolution (total number of iterations
for average are similar). The computation time is reported
using MATLAB with Dual 2.66-GJz Intel cores. As the mesh
resolution increases, the discrete TV shows a substantially
increasing demand in computation time as the dimension of
the directional gradient operator D in (10) increases dramat-
ically. In comparison, the computation cost of variational
remains stable, little affected by the mesh resolution and
substantially lower than that of discrete TV for a dense mesh.

C. IRTV-L2 Vs IRTV-L1
The comparison study between IRTV-L2 and IRTV-L1 is

conducted on 15 cases for each different levels of signal-to-

noise ratio (6dB, 10dB, 15dB, 20dB 25dB, 30dB) Gaussian
noises added on body-surface ECGs and in total 90 cases
for each method.

Fig.4 (b) shows the accuracy (consistency metric) of
IRTV-L1 and IRTV-L2 in preserving the steep gradient of
reconstructed action potential under different noise levels.
As shown, IRTV-L1 is more robust to large measurement
noises, while IRTV-L2 sees a much faster deterioration of
accuracy as the measurement noise increases. As an exam-
ple, Fig.4 (a) compares the results of IRTV-L2 and IRTV-L1
in reconstructing the spatial distribution of action potential
and preserving its steep spatial gradient along the border of
an ischemic region at anterior LV. With 25dB measurement
noises, the spatial structure of the steep gradient is well
preserved by both IRTV-L2 and IRTV-L1, although IRTV-
L2 shows a higher consistency with the ground truth. When
noise level is increased (i.e. 10dB), the performance of
IRTV-L2 drastically decreased while the IRTV-L1 is still
able to preserve the structure of the ischemic border with
reasonable accuracy.

Fig.4 (c) shows the averaged convergence speed (in terms
of the number of iterations taken to convergence) of the two
methods at different noise levels. As shown, IRTV-L1 takes



Figure 5. Input data (A) and result (B) of case 1. Input data contains (A.a) an ECG cycle and the red line labels the selected time frame (573
ms) of body surface mapping in (A.b). Result shows spatial gradients of 3D action potentials reconstructed from IRTV-L1 and -L2 and quadratic
methods on post-infarction human hearts. The red cycles represent the core of the MRI-delineated infarcts.

Figure 6. Results of case 2, which include the IRTV-L2 and -L1 and 0-order quadratic method.

a similar number of iterations to converge in the presence of
different measurement noises, while IRTV-L2 takes longer
to converge as the noise level increases. As a result, with
moderate to high level of measurement noises, IRTV-L1
shows faster convergence than IRTV-L2. Nevertheless, under
the same computing environment, IRTV-L1 engages slightly
more computation time (12.07s) per iteration compare to
IRTV-L2 (11.03s).

IV. HUMAN STUDY

Real-data experiments are further performed on two is-
chemic patients with MRI and body-surface ECG data made
available to this study by the 2007 PhysioNet / Computers
in Cardiology Challenges [6]. Cardiac MRI data are used
to construct the patient-specific heart-torso model. Body-
surface ECGs were recorded by Dalhousie University pro-
tocol [18]; each body-surface ECG recording (Fig.5A(a))
consists of a single QRST complex and we select a time
frame within the ST interval as input. Fig.5 A(b) illustrate
the selected input body-surface potential map at 573 ms for
case 1. Gold standards of infarct quantification were ob-
tained form LGE MRI by cardiologists blinded to this study.

Unlike phantom experiments, the gold standards provided
quantify the location and size of the infarct according to the
AHA 17-segment model of LV [3] (Fig.7), revealing core
regions of the infarct as labeled by the red cycle in Fig.5.

The patient of case 1 has one ischemic region with its
core located at middle septal-inferior LV (segment 9 and
segment 10). As shown in Fig.5, spatial distribution of
action potential reconstructed by IRTV-L2 exhibits a steep
gradient that are localized and distributed along ischemic
core. Similar result is obtained with IRTV-L1. In compari-
son, action potential reconstructed from neither of the other
two quadratic methods reveal any physiological meaningful
information regarding the existence, location, or structure of
the ischemic myocardium.

The patient of case 2 has two separated ischemic regions
(Fig.6), one at basal-anterior of LV (segment 1) and the other
at apical-inferior of LV (segment 15). In existing works, this
has been shown to pose additional challenges on ischemic
region detection [20]. As shown in Fig.6, the spatial gradient
of action potential reconstructed by IRTV-L2 are correctly
localized around both ischemic region, revealing the location
and extent of both ischemic cores. IRTV-L1, in comparison,



partially misses the localization of one ischemic region.
0-order quadratic method only reveals certain information
in inferior ventricular wall (right) without revealing any
physiological meaningful structure, and it misses all the
information in anterior wall (left). 1-order quadratic method
fails to coverage under all the possible parameters using the
cvx software mentioned in [19]. These observations in real
data study are consistent with the findings in our phantom
experiments.

Table 2 lists quantification comparison with the gold
standard. As shown, the ischemic centers are correctly
identified in both patients and the accuracy is comparable
to the best result available [20]. In particular, in case 2, our
method shows much higher accuracy in localizing the two
separated ischemic region with SO = 71.4%, while the best
available SO = 33.33% in literature [20]).

V. CONCLUSION

This paper presents a novel approach to reconstruct
3D ischemic region based on a new variational TV-prior,
physiologically motivated by the unique spatial property of
electrophysiology of the heart that is in line with the role of
TV penalty. In comparison, existing works using TV-prior
for epicardium potential reconstruction [5] are restricted to
the heart surface and are not tied to the unique electric
property of ischemic region, more important, the present
work can extend TV-minimization to a border range of
application that involve physical domain of complex shape
and unstructured volumetric mesh. In the future, we will
investigate the incorporation of temporal constraints into
proposed algorithm.

VI. ACKNOWLEDGEMENT

This work is in part supported by the National Science
Foundation CAREER Award ACI-1350374.

REFERENCES

[1] R. J. Bing. Myocardial ischemia and infarction: growth of
ideas. Cardiovascular research, 51(1):13–20, 2001.

[2] J. E. Burnes, B. Taccardi, R. S. MacLeod, and Y. Rudy.
Noninvasive ecg imaging of electrophysiologically abnormal
substrates in infarcted hearts a model study. Circulation,
101(5):533–540, 2000.

[3] M. D. Cerqueira, N. J. Weissman, et al. Standardized
myocardial segmentation and nomenclature for tomographic
imaging of the heart. Circulation, 105(4):539–542, 2002.

[4] T. Chan and C. K. Wong. Total variation blind deconvolution.
IEEE Trans. Image Process., 7(3):370–375, 1998.

[5] S. Ghosh and Y. Rudy. Application of L1-norm regularization
to epicardial potential solutions of the inverse electrocardio-
graphy problem. Ann. Biomed. Eng., 37(5):902–912, 2009.

[6] A. L. Goldberger et al. Physiobank, physiotoolkit, and phy-
sionet: Components of a new research resource for complex
physiological signals. Circulation, 101:e215–e220, 2000.

[7] P. Hansen and D. O’Leary. The use of the l-curve in the
regularization of discrete ill-posed problems. SIAM Journal
on Scientific Computing, 14(6):1487–1503, 1993.

[8] R. Jennings, C. Steenbergen Jr, and K. Reimer. Myocardial
ischemia and reperfusion. Monographs in pathology, 37:47–
80, 1994.

[9] Y. Jiang, C. Qian, R. Hanna, D. Farina, and O. Dössel.
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