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Abstract

We present a robust model to locate facial landmarks
under different views and possibly severe occlusions. To
build reliable relationships between face appearance and
shape with large view variations, we propose to formu-
late face alignment as an `1-induced Stagewise Relational
Dictionary (SRD) learning problem. During each training
stage, the SRD model learns a relational dictionary to cap-
ture consistent relationships between face appearance and
shape, which are respectively modeled by the pose-indexed
image features and the shape displacements for current es-
timated landmarks. During testing, the SRD model auto-
matically selects a sparse set of the most related shape dis-
placements for the testing face and uses them to refine its
shape iteratively. To locate facial landmarks under occlu-
sions, we further propose to learn an occlusion dictionary to
model different kinds of partial face occlusions. By deploy-
ing the occlusion dictionary into the SRD model, the align-
ment performance for occluded faces can be further im-
proved. Our algorithm is simple, effective, and easy to im-
plement. Extensive experiments on two benchmark datasets
and two newly built datasets have demonstrated its superior
performances over the state-of-the-art methods, especially
for faces with large view variations and/or occlusions.

1. Introduction
Face alignment, i.e., locating the facial landmark points

of a face image, is an important computer vision task and
essential for many other applications, e.g., face recogni-
tion [29], face synthesis [24], and 3D face modeling [13].
Although many efforts are devoted in solving this task
and great progress has been made during the past decades
[5, 28, 9, 3, 4, 30, 27], face alignment still remains a very
challenging task, especially when the face images are taken
from different views and/or undergo severe occlusions.

Traditional approaches addressing the face alignment
problem employ parameterized models to describe the face
appearance and shape. The Active Shape Model (ASM) [7]
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represents the face shapes by conducting principal compo-
nent analysis on the manually labeled training samples and
iteratively fitting the face instance in a test image using the
learned face shape. The Active Appearance Model (AAM)
[5, 15] further reconstructs the entire face using an appear-
ance model and estimates the face shape by minimizing the
texture residual. The AAM approach, together with ASM,
provides a general framework for solving the face align-
ment problem. Following studies [28, 6, 4, 27], however,
have found that the classic AAM approach is computation-
ally expensive and sensitive to the initialization due to the
involved gradient descent based optimization.

To deal with these problems, there are two main kinds of
models to improve the classic ASM and AAM framework.
The first kind is the part based models [9, 19, 3, 30, 6].
These models perform face alignment by maximizing a pos-
terior probability of part locations given the image and then
fuse the probabilities of all the parts together enforced by
a global shape model, e.g. enhanced ASM [9, 19] or pic-
torial structures [30], to generate the final result. Unlike
AAM which tries to approximate the raw image pixels di-
rectly, the constrained local models [9] employ an extended
appearance model to generate the feature templates of the
parts, which obtains improved robustness and accuracy.

The other kind of models is the regression based face
alignment approaches [8, 18, 11, 22, 4, 6, 27], which di-
rectly learn a mapping function from the image appearance
to the face shape. The distinctions among these methods
mainly lie in the employed learning algorithm (e.g. boosting
[8], random forest [6], or non-linear least squares [27]) and
the adopted features (e.g. Haar wavelets [8], random ferns
[11], or SIFT [27]). The pose-indexed features [11], which
are obtained by re-computing the features every time when
a new face landmark estimation is updated, proves to be
important for learning a robust alignment model [11, 4, 27].
Moreover, with an initial shape provided by the face detec-
tor [23], mapping from pose-indexed features to face land-
mark displacements provides a natural and effective way
to iteratively update the estimated face landmarks towards
their true positions. Since the mapping functions are usu-
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ally non-linear [8, 18, 11, 22, 6], training them needs many
annotated samples and usually takes hours of time to learn
the complex mapping relationships.

For nearly frontal faces, most of the existing face align-
ment algorithms can work considerably well. For faces with
large view variations, however, their performances often
degrade significantly. This is mainly due to the complex
appearance-shape relations exhibited in multi-view faces.
For faces with severe occlusions, the situation becomes
even worse, since most of existing face alignment algo-
rithms do not explicitly model the occlusions. Even though
some algorithms are claimed to be robust to occlusions,
the underlying mechanism on how to model occlusions and
why it works is not clear. Therefore, if a face alignment
model can inherently or explicitly address the face view
variation and occlusion problems simultaneously, it will be
very useful to improve alignment performance.

To obtain such a model for multi-view and partially-
occluded face alignment, we propose an `1-induced Stage-
wise Relational Dictionary (SRD) model to learn consistent
and coherent relationships between face appearance and
shape for face images with large view variations. The SRD
model jointly learns at each training stage two relational
dictionaries, one for face shape using landmark displace-
ment and one for object appearance using pose-indexed fea-
tures. The learned dictionaries automatically capture dis-
tinct modes of face shape and related modes in appearance,
which directly characterize faces from different views and
thus form a multi-view face model. The relations between
shape and appearance are naturally embedded in the re-
lational dictionaries and can be obtained quite efficiently.
Given a test face image, the SRD model iteratively selects
a small subset of related appearance modes from the dictio-
nary via sparse representation, and then predicts the shape
displacement towards the true face shape.

To perform robust face alignment under occlusions, we
further propose to learn an occlusion dictionary, whose el-
ements form different elemental occlusion patterns and a
sparse combination of them simulates different kinds of face
occlusions. By deploying the occlusion dictionary into the
original SRD model with a modified joint learning method,
its robustness is further improved, especially for faces with
occlusions. We conduct extensive experiments to evaluate
and analyze the proposed SRD model for face alignment un-
der different experimental settings and over several bench-
mark datasets. The results demonstrate state-of-the-art per-
formance of the proposed algorithm, especially on multi-
view and partially-occluded face alignment tasks.

2. Stagewise Relational Dictionary Learning
Face alignment is essentially an appearance-shape mod-

eling process. One of the main challenges comes from large
face view variations which cause very complex appearance-

shape relationships. To learn robust face appearance and
shape models for multi-view faces and to capture consistent
appearance-shape relations, we propose to formulate face
alignment as an `1-induced relational dictionary learning
problem and develop a stagewise optimization procedure to
learn multiple relational dictionaries.

2.1. Model Formulation
Denote a training set with N training samples as X =

{(xi,pi)}Ni=1, where each sample (xi,pi) contains one
face image xi and the labeled landmark positions pi. A
face alignment modelM need capture the relationships be-
tween face appearance and shape by abstracting X into a
compact representation Θ, e.g., a set of model parameters.
This can be achieved by minimizing a loss function over the
training set. Generally, the loss function can be represented
as l(a, s,Θ), where a ∈ Rna and s ∈ Rns express the face
appearance and shape features from one training sample re-
spectively. The loss function measures the incompatibilities
between them. Note that here the face appearance a is not
necessarily to be the face image x, more expressive image
features can be used to represent face appearance. Similarly,
the face shape s is not restricted to be landmark locations p,
and can be other more effective face shape representations,
e.g., landmark displacement [4, 27]. With the loss function,
learning the model is equivalent to solving

Θ̂ = argmin
Θ

N∑
i=1

l(si,ai,Θ). (1)

The definition of the loss function, therefore, has a fun-
damental impact on the final face alignment model. Previ-
ous methods define this loss function either solely based on
face appearance [5, 9, 6, 27] or on face shape [7, 8, 11, 3, 4].
For multi-view face alignment, since both the face appear-
ance and shape exhibit huge variations, the appearance-
shape relationship becomes very complex. It therefore re-
quires the loss function not only to guide the learning pro-
cess to automatically find reliable modes of the face ap-
pearance and shape, but also to ensure the learned model
captures consistent face shape-appearance relationships. To
this end, we propose to define the loss function as

l(s,a,D) , min
c∈Rm

‖[s;a]−Dc‖22 + λ‖c‖1. (2)

As an instantiation of Θ in Eqn. (1), D ∈ Rn×m is a dic-
tionary used to simultaneously represent the face shape and
appearance, n=na+ns, and m is the dictionary size. The
underlying shape-appearance relationship is enforced to be
consistent by sharing the same representation coefficients
c. Note that c is encouraged to be sparse (controlled by λ).
The sparsity ensures a face appearance-shape instance to be
represented by only a few elements in the dictionary. The
sparsity assumption has been proved to be very effective for
many vision problems [20, 25]. In our problem, this spar-
sity regularization will benefit both the model training and



testing. For model training, since the dictionary can rep-
resent one sample using only a few of its elements, it will
be forced to learn distinct shape-appearance modes so as
to well represent all the samples with different shapes and
appearances. For model testing, since a testing face is rep-
resented using only a few modes, it provides a mechanism
to automatically select the most related modes to the testing
face and thus generate more robust and accurate estimation.

In practice, it usually constrains D’s columns d1,. . . ,dm

to have `2-norms less than or equal to 1 to avoid trivial so-
lutions. The constraint set of D is thus denoted as
Dn×m,{D∈Rn×m, s.t. ∀j∈{1, . . . ,m}, ‖dj‖2≤1}. (3)

Now, by minimizing the loss function in Eqn. (2) over the
training set X , the dictionary model can be learned by

D̂ = argmin
D∈Dn×m

1

N

N∑
i=1

{
min
c∈Rm

‖[si;ai]−Dc‖22+λ‖c‖1
}
. (4)

2.2. Model Learning
Before learning the model in Eqn. (4), we provide some

discussions on how to represent the face shape and appear-
ance. For the face shape, since the groundtruth landmarks
are not accessible during testing, we cannot directly use
the groundtruth landmark positions as the shape feature in
training, but instead use the displacements between the true
landmark locations and the estimated landmark locations,
e.g., those provided by a face detector [23]. For the face
appearance, we can use the pose-indexed features to build
a robust representation [11, 4, 27]. The original training
set, therefore, can be transformed to a new one which can
be directly used for learning the model. Formally, this new
training set can be denoted as X 0 = {(s0

i ,a
0
i )}Ni=1, where

s0
i =pi−p0

i , and a0
i =h(xi,p

0
i ). Here p0

i denotes the es-
timated landmark locations and h(xi,p

0
i ) denotes a pose-

indexed feature extraction function.
With the new training set, a local minimum solution of

the problem in Eqn. (4) can be obtained using a widely used
two-step optimization process [2, 14, 21]: in the first step D
is fixed to minimize the loss function with respect to the c;
and in the second step c is fixed to perform gradient descent
method to minimize the loss function with respect to D.
The obtained dictionary in this way, however, is not com-
patible to the testing setting of the model, because during
testing we can only obtain the representation coefficients
from the appearance part of dictionary D. To fit the test-
ing settings of the model, we propose a stagewise rational
dictionary learning process to learn the model.

Mathematically, the loss function in Eqn. (2) can be
equivalently written as
l(a, s,D)= min

c∈Rm
‖s−Dsc‖22+‖a−Dac‖22+λ‖c‖1, (5)

where we split the original dictionary D into two parts, i.e.,
D=[Ds;Da], Ds∈Rns×m and Da∈Rna×m correspond-
ing to the shape and appearance dictionary respectively.

Note that these two dictionaries are related to each other
and their underlying relationships are controlled by the co-
efficients c, which ensures the two dictionaries to represent
a face shape-appearance instance consistently. We refer to
these two dictionaries together as a relational dictionary.
With this substitution, the problem in Eqn. (4) becomes

{D̂s, D̂a} = argmin
Ds,Da

1

N

N∑
i=1

l(si,ai,Ds,Da)

s.t. l (si,ai,Ds,Da) = min
c
‖si −Dsc‖22

+‖ai −Dac‖22 + λ‖c‖1
c ∈ Rm, Ds ∈ Dns×m, Da ∈ Dna×m.

(6)

To fit model testing settings, we propose a four-step iterative
procedure to solve the above problem: in Step 1, we fix the
Da to learn Ds and c; in Step 2 we update Da using Ds

and c; in Step 3 we fix Ds and learn Da and c, and in
Step 4 we updates Ds using Da and c. These four steps
are summarized in Line 3-10 in Algorithm 1, where a batch
training mode is used for speeding up convergence.

The underlying oracles for this optimization procedure
hide behind the starting steps (i.e. Step 1 and Step 2) and
exiting steps (i.e. Step 3 and Step 4) in the iteration. In
Step 1, in order to capture different modes from multi-view
face shapes, the face shape dictionary is firstly learned and
then used to initialize the face appearance dictionary in Step
2. In Step 4, since we have no access to the face shapes
during testing, the representation coefficients can only be
obtained from the face appearance dictionary. Therefore,
the coefficients used to update the face shape dictionary are
updated only from the face appearance dictionary in Step
3. Like the two-step optimization procedure in [2, 14, 21],
the proposed four-step optimization procedure may also not
find the global optimal solution of the problem in Eqn. (4),
but it can guarantee a compatible setting for the testing of
the model and thus produce a more effective model.

2.3. Stagewise Optimization
Denoting the learned relational dictionary model using

the four-step optimization procedure from training set X 0

as D0 = [D0
s;D0

a], we can use this relational dictionary to
update the initially estimated face shape and appearance in
the training set. For example, given the i-th training sample,
we first represent its initial appearance a0

i sparsely using the
learned appearance dictionary D0

a, i.e.,

ĉi = argmin
c∈Rm

‖a0
i −D0

ac‖22 + λ‖c‖1. (7)

Then the estimated face shape of the i-th training sample
can be updated by a linear combination of the learned shape
displacements indicated by representation coefficients ĉ:

s1
i = s0

i + D0
sĉi. (8)

Based on the updated face shapes {s1
i }Ni=1, we can continue

to rebuild a new training set X 1 = {(s1
i ,a

1
i )}Ni=1 from the

original training set X = {(xi,pi)}Ni=1, by extracting the



Algorithm 1 SRD model learning
Input: training set X = {(xi,pi)}Ni=1, m (dictionary size), λ

(regularization parameter), T (maximal stage number).
Output: learned SRD modelM.

1: Initialization: Initialize elements ofM randomly.
2: for t = 0→ T do
3: Build training set X t={(sti,at

i)}Ni=1 from X .
4: At ← [at

1, . . . ,a
t
N ], St ← [st1, . . . , s

t
N ].

5: while not converged do
6: Step 1: fix Dt

a to learn Dt
s and C on X t:

argmin
Dt

s,C

{
min
C
‖St −Dt

sC‖22 + λ‖C‖1
}
.

7: Step 2: update Dt
a using At and C: Dt

a=At/C.
8: Step 3: fix Dt

s to learn Dt
a and C on X t:

argmin
Dt

a,C

{
min
C
‖At −Dt

aC‖22 + λ‖C‖1
}
.

9: Step 4: update Dt
s using Dt

a and C: Dt
s = St/C.

10: end while
11: Update(si,ai): st+1i =sti+Dt

sci, get at+1
i from st+1i in X .

12: end for
13: Generate the learned SRD modelM = {[Dt

s;D
t
a]}Tt=0.

pose-indexed features of the training samples from the up-
dated face landmarks, i.e. a1

i = h(xi,pi+s1
i ). Then again

we can use this new training setX 1 to learn a new relational
dictionary D1 = [D1

s;D1
a] at a new stage. This process can

be repeated until the rebuilt dataset converges. The final
model will contain multiple relational dictionaries trained
at different stages, i.e.M={[Dt

s;D
t
a]}Tt=0, which we refer

to as Stagewise Relational Dictionary (SRD) model. In Al-
gorithm 1, we summarize the complete learning process of
the SRD model. In all our experiments, the rebuilt training
set quickly converges in only 2 or 3 stages.

Given a test image, we first estimate an initial shape of
the landmarks from the face detection result and extract the
pose-indexed features to form the initial face appearance
around the estimated landmarks. Then we use the learned
SRD model to iteratively update the estimated face shape
and re-extract the pose-indexed features to build the face
appearance. This process is exactly the same as the face
shape and appearance updating process during training the
model, which will guide the updated face shape and appear-
ance towards the true value in the test image.

3. SRD with Occlusion Learning
The SRD model proposed in Section 2 can naturally deal

with face view variations via simultaneously appearance-
shape modeling. To deal with face occlusions, we further
propose to simulate the occlusion via jointly learning an oc-
clusion dictionary within the rational dictionary. It enables
the SRD to model explicitly the occlusion.

The most popular approach of modeling occlusion in
sparse representation is to add an identity matrix in the
learned dictionary [26, 16]. The identity matrix explains
the occluded image pixels which cannot be well represented
solely by the learned dictionary. This occlusion model-

(a) (b)
Figure 1. Definitions of the Elemental Occlusion Patterns (EOPs)
and the Partial Occlusion Patterns (POPs). (a). A set of 16 EOPs
defined for the 68 landmarks drawn on a mean face shape. (b).
Three different POPs by combining a few EOPs.

ing approach, however, is very computationally expensive
for high dimensional identity matrix. For example, when
adopting a 100-dimensional appearance feature for one
landmark, the dimension of the identity matrix to account
for occlusions of 100 landmarks will be 10, 000×10, 000.
This extremely high dimension prohibits the `1 minimiza-
tion process in the SRD model for face alignment.

To address the occlusion problem effectively and effi-
ciently, we propose to learn a more compact and representa-
tive occlusion dictionary. In our SRD model, the occlusion
dictionary can be added to the appearance dictionary and,
consequently, the loss function in Eqn. (5) becomes

l(a, s,D) = min
c,e
{‖s−Dsc‖22+

‖a− [Da,Do][c; e]|22 + λ‖[c; e]‖1},
(9)

where Do∈Rna×k denotes the occlusion dictionary with k
columns, e ∈ Rk is the representation coefficients of Do,
and D = [Ds;Da,Do]. We denote this occlusion handling
SRD model as OSRD. One main problem is how to build
suitable training set to guide the model learning procedure
to achieve desired occlusion modeling effects: Do models
the appearance of the occluded face part, Da models face
appearance without occlusions, and Ds models the true face
shape regardless of occlusions.

The most direct way to build such a training set is to
collect many occluded face images and manually label the
occlusion groundtruth in pixel level. This is obviously very
difficult and too time-consuming. We therefore design an
automatic procedure to build a training set which provides
similar effects. We do not try to restrict the explicit form of
the face occluder (e.g. glasses or hair), but let it be any ob-
ject in the wild. What we restrict is that the occluder appear-
ance must satisfy the face shape constraint when building
face appearance from it, which can thus well simulate the
appearance of occluded faces when performing alignment
on it. We also restrict the occluder appearance to follow the
common patterns in occluded faces from nature images.

To generate occluded training samples satisfying these
restrictions, we first build a training set that simulates the
original training with full occlusions. Based on the assump-
tion that occlusions can be any form of natural objects, we
build a full occlusion training set by copying all the im-



Algorithm 2 OSRD model learning
Input: training set X = {(xi,pi)}Ni=1, m (dictionary size), k

(full occlusion dictionary size), λ (regularization parameter),
T (maximal stage number), EOPs and POPs.

Output: learned OSRD modelM.
1: Initialization: Initialize elements ofM randomly.
2: for t = 0→ T do
3: Build training set X t, Yt, Zt from X .
4: At ← [at

1, . . . ,a
t
N ], St ← [st1, . . . , s

t
N ],

Bt ← [bt
1, . . . ,b

t
N ], Ãt ← [ãt

1, . . . , ã
t
N ].

5: while not converged do
6: Step 1: fix Dt

a to learn Dt
s and C on X t:

argmin
Dt

s,C

{
min
C
‖St −Dt

sC‖22 + λ‖C‖1
}
.

7: Step 2: update Dt
a using At and C: Dt

a=At/C.
8: Step 3: fix Dt

s to learn Dt
a and C on X t:

argmin
Dt

a,C

{
min
C
‖At −Dt

aC‖22 + λ‖C‖1
}
.

9: Step 4: fix Dt
a to learn Dt

b on Y:

argmin
Dt

b

{
min
C,E
‖Bt−[Dt

a,D
t
b][C;E]‖22+λ‖[C;E]‖1

}
.

10: Step 5: Expend Dt
b to the block dialog form to get Dt

o.
11: Step 6: fix Dt

a and Dt
o on Z to find best C and E:

min
C,E
‖Ãt − [Dt

a,D
t
o][C;E]‖22 + λ‖[C;E]‖1.

12: Step 7: fix Dt
a and C to update Dt

s: Dt
s = St/C.

13: end while
14: Update (si,ai): st+1

i = sti+Dt
sci, extract at+1

i from st+1
i

in X , extract bt+1
i from st+1

i in Y .
15: end for
16: Generate learned OSRD modelM =

{
[Dt

s;D
t
a,D

t
o]
}T
t=0

.

ages from the original training set but shifting the face an-
notations and corresponding face detection bounding box
to another random place in the same image where no face
exists. Note that during the shifting process, the face shape
constraint of the landmark annotations and detection bound-
ing box stay unchanged. Then we extract training samples
for the occlusion dictionary from this new dataset just the
same as in the original training set. These samples can well
approximate the shapes and appearances of fully occluded
face images. This training set simulates full face occlusions,
therefore we call it the full occlusion training set and de-
note it as Yt ={(sti,bt

i)}Ni=1. From this training set, we can
extract appearances features of possible face occluders and
later use them to train an initial occlusion dictionary.

Compared with face alignment under full face occlu-
sions, face alignment for partially-occluded faces is more
important in practice. Therefore, we further generate an-
other training set to simulate partial face occlusions. To
this end, we first define a set of Elemental Occlusion Pat-
terns (EOPs) based on observations of real world face oc-
clusion patterns. Take a face with 68 labeled landmarks as
an example, 16 EOPs are defined in this work as shown
in Figure 1(a). Each EOP covers several landmarks and
the combinations of these EOPs can approximate almost all
kinds of face occlusion patterns in realistic ways. Based

on the defined EOPs, we further generate a set of Par-
tial Occlusion Patterns (POPs) by different sparse combi-
nations of the EOPs (Figure 1(b)). By randomly applying
one POP on each corresponding sample pair in the train-
ing set X 0 and full occlusion training set Y , we can gener-
ate the third partial occlusion training set and denote it as
Zt ={(sti, ãti)}Ni=1. This dataset can be used to simulate the
appearance from partially-occluded faces.

Based on the three training sets X , Y , and Z , now we
can learn the OSRD model. We propose a similar proce-
dure as Algorithm 1 to solve the OSRD learning problem.
The main idea is as follows. First, we learn the appearance
dictionary Da on X t (Step 1-3) as in Algorithm 1. Then,
fixing Da, we learn a full occlusion dictionary Db using Da

on Y . Thirdly, we extend Db to a block dialog form based
on the EOPs to generate the partial occlusion dictionary Do.
Formally, denote l EOPs together as Oe =[oe

1, . . . ,o
e
l ], and

Db = [db
1, . . . ,d

b
k], where oe

l ∈ {0, 1}na is the l-th EOP,
whose j-th entry indicates whether the corresponding land-
mark is occluded, k is the size of Db. Then the partial occlu-
sion dictionary can be represented as Do = [do

1, . . . ,d
o
k×l],

where do
i×l+j = db

i ⊗ oe
j , and ⊗ is the element-wise multi-

plication. In the next step, upon fixing Da and Do, it min-
imizes the representation errors on Z . With the best repre-
sentation coefficients, the shape dictionary Ds is updated by
least square fitting. Algorithm 2, summarizes the complete
OSRD learning process.

4. Experiments
The main objective of this work is for multi-view and

partially-occluded face alignment. We therefore design ex-
periments particularly for this objective to perform evalua-
tions and analyses. For completeness, we also conduct ex-
periments for general face alignment and compare with pre-
vious reported results. In all the conducted experiments, our
algorithm achieves the best performance, although the im-
provement in general face alignment is not so obvious due
to its performance saturation. We first introduce the imple-
mentation details and then conduct experiments for general
face alignment, multi-view face alignment, and partially-
occluded face alignment tasks, respectively.

4.1. Implementation Details
Features. We explore two feature descriptors, HoG [10]

and SIFT [12], around the landmarks to represent the face
appearance. It is observed that HoG is more computation-
ally efficient and performs comparably or even better, espe-
cially for landmarks located around edges. However, SIFT
is more robust for locating a relative small number of inner
face landmarks. To make a fair comparison with the SDM
method [27], the performances reported in the experiments
are all based on the 128-dimensional SIFT descriptor [27].

Parameters. The testing process of SRD is parameter-
free, as it only requires the same parameter settings as in the
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Figure 2. Different definitions of facial landmark annotations and
their corresponding mean shapes estimated from a face detector:
(a) 17 points, (b) 29 points, and (c) 68 points.

model training. In particular, we tune the regularizer λ via
cross validation over the training set, and throughout exper-
iments we find that setting its value within [0.01, 0.1] gener-
ates stably good performances. Therefore, we set λ= 0.05
throughout the experiments. As for the dictionary size, we
find that a larger size will consistently improve the perfor-
mance, but will also increase the computationally cost. We
take a trade-off and set the size of the shape and appearance
dictionary size as m=100 and the size of the full occlusion
dictionary k = 5 in all the experiments.

Speed. In current unoptimized MATLAB implementa-
tion, it takes about 30 minutes to train the SRD model from
2000 samples. In testing, provided with the face detection
results, it only costs about 0.1 seconds to align one face.
Since about half of the testing time is cost by feature ex-
traction, the testing speed of the SRD model can be further
improved if more efficient features are adopted.

4.2. General Face Alignment Evaluation
We evaluate the proposed SRD model on two widely

used benchmark datasets, BioID [1] and LFPW [3], and
compare it with the state-of-the-art algorithms ever reported
on them. The BioID dataset contains 1521 face images an-
notated with 17 landmarks (Figure 2(a)). The LFPW dataset
contains 1132 training images and 300 testing images, an-
notated with 29 landmarks (Figure 2(b)). Since its original
version is no longer available from its URLs, we use its aug-
mented version provided by [4] in the experiments. For fair
comparisons, we follow the same settings as in [3, 4] and
measure the alignment error by the average Euclidean dis-
tance between predicted landmarks and labeled landmarks,
which is normalized by the inter-ocular distance.

In Figure 3, we plot the cumulative error distribution
(CED) curves of our methods on the BioID dataset as in [4],
which are calculated from the normalized mean errors over
each point. The six baseline methods are the explicit shape
regression method (ESR) [4], the supervised descent model
(SDM) [27], the consensus exemplar method (CEM) [3],
the constrained local models (CLE) [9], the extended ASM
method (EASM) [17], and the boosted regression method
(BRM) [22]. The SDM method is a very simple yet effec-
tive face alignment algorithm developed recently. Because
its CED curve on BioID is not reported in [27], we imple-
ment it based on the partially released testing code in [27]
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Figure 3. CED curves over the BioID dataset.

and train the model with the same settings as for our model.
The CED curves for other five methods are all directly ob-
tained from their authors. As shown in Figure 3, our OSRD
and SRD models are the two best ones among these algo-
rithms. However, since this dataset is quite easy, the perfor-
mance gaps among different algorithms are not so obvious,
especially for the most recent methods.

Table 1. Mean alignment errors on the LFPW dataset.
Algorithm CEM[3] OSDM[27] SDM ESR[4] SRD OSRD

ME (×10−2) 3.99 3.47 3.49 3.43 3.24 3.19

In Table 1, we report the performance of our algorithm
on LFPW in terms of mean alignment error, and compare
it with other state-of-the-art methods on this dataset. The
mean error of OSDM is from the reported results in [27].
Again, our proposed two methods achieve the best perfor-
mances on this more challenging dataset, with about 7%
and 5% improvements respectively over the best baseline.
From Table 1, it can be observed that the SDM model im-
plemented by ourselves has comparable performance to the
one reported in [27]. The slight performance difference may
be caused by the different constitutions of the training sets.
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Figure 4. Face view distributions of (a) the BioID dataset, (b) the
LFPW dataset, and (c) our MVFW dataset. MVFW has much
larger view variations and is more well-proportioned.

4.3. Multi-view Face Alignment Evaluation
As we can see from previous experiments, most existing

algorithms perform quite well on the BioID dataset, since
all the faces in this dataset are captured from near-frontal
views. The LFPW dataset, although more challenging than
BioID, is still dominated by faces with small view varia-
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Figure 5. Evaluation and analysis of multi-view face alignment on
our MVFW dataset.

tions. In Figure 4, we verify these claims by plotting the
view distributions of these datasets. Here we represent the
face view using its three angles of in-plane roll, out-plane
pitch, and out-plane yaw, which is obtained from a face ges-
ture estimator using the labeled landmarks as inputs. Figure
4 shows that the face views from both BioID and LFPW
distribute in a very small range and very few samples have
large view angles. These two datasets, therefore, are not
suitable for evaluating multi-view face alignment.

To build a suitable dataset for multi-view face align-
ment, we assemble a large “face in the wild” dataset from
many existing datasets collected by 300-W1and select sam-
ples with different view angles uniformly to construct a new
multi-view face dataset in the wild. The obtained dataset,
denoted as MVFW, contains 2050 training samples and 450
testing samples, annotated with 68 landmarks (Figure 2(c)).
Figure 4(c) plots its view distribution, from which we can
see that it is well-proportioned for different view angles.

We train the SDM model (implemented by ourselves)
and our SRD model on MVFW. We then calculate the indi-
vidual alignment errors for each landmark. Figure 5(a) plots
the relative improvement brought by SRD over SDM on the
testing set. The SRD model, on average, gives an over 10%
improvement for multi-view face alignment. This owes to
its ability of simultaneously appearance and shape model-
ing. Figure 5(b) shows the 100 learned face shapes from the
first stage of SRD, which exhibits very typical face view
modes from in-plane roll, out-plane pitch and yaw.

1http://ibug.doc.ic.ac.uk/resources

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Normlized Location Error (68 points)

F
ra

ct
io

ns
 o

f L
an

dm
ar

ks

 

 

OSRD
SRD
SDM

Normalized Location Error (68 points)

(a) CED curves over OCFW.

9.65

6.37

4.98

0

1

2

3

4

5

6

7

8

9

10

SDM SRD OSRD

x10-2

(b) Mean errors on OCFW.

Initial Shape s51
o1

o13o14 Final Shape

Initial Shape s87 o4o16o15 Final Shape
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Figure 6. Evaluation and analysis of partially-occluded face align-
ment on our OCFW dataset.

To better understand the effectiveness of the stagewise
optimization process of SRD, we plot in Figure 5(c) the
intermediate results of three stages for one testing sample.
The SRD quickly converges to the groundtruth landmarks
from a mean face shape provided by face detector. In each
stage, the SRD model automatically selects a sparse combi-
nation of the most related shape bases to estimate the dis-
placement of the testing face. In Figure 5(d), we visualize
the sparse representation in the first stage by drawing the
three shape bases with the largest coefficients. They are
very relevant to the shape of the testing face.

4.4. Partially-occluded Face Alignment Evaluation
Since the testing set of LFPW contains only a few oc-

cluded faces, it is also not suitable for evaluating partially-
occluded face alignment. We therefore design a similar
procedure to build a new dataset to evaluate the ability of
handling occlusion for a face alignment algorithm. The ob-
jective of building the dataset is to evaluate the generaliza-
tion ability of a face alignment model to deal with occlu-
sions when trained on samples without occlusions. To this
end, we manually label the occlusion state of all the col-
lected samples and split them into two parts: samples with-
out occlusions and with occlusions. The former one is used
for training and the latter is used for testing. The obtained
dataset, denoted as OCFW, contains 2591 training samples
and 1246 testing samples. To facilitate further studies on
multi-view and occluded face alignment, the MVFW and
OCFW datasets will be made publicly available online2.

In Figure 6(a) and 6(b), we respectively plot the CED
curves and mean errors of different models over the OCFW
dataset. Our OSRD model obtains the best performance
among the three models, which demonstrates its good gen-
eralization ability to deal with occlusions. To illustrate how

2https://sites.google.com/site/junliangxing/codes



Figure 7. Exemplar face alignment results. Top row: general face alignment on the BioID dataset and the LFPW dataset. Middle row:
multi-view face alignment on the MVFW dataset. Bottom row: partially-occluded face alignment on the OCFW dataset.

occlusion is handled by the OSRD model, Figure 6(c) plots
the automatically selected face shape bases and the corre-
sponding EOPs in the occlusion dictionary for two typical
occluded face images. It can be seen that most of the oc-
cluded landmarks are successfully detected by the occlusion
dictionary using its bases. In Figure 7, some alignment re-
sults obtained by the OSRD model are plotted on challeng-
ing examples with large variations in face view, expression,
illumination, scale, and occlusion.

5. Conclusions and Future Work
We present a novel algorithm for multi-view and

partially-occluded face alignment. By simultaneously mod-
eling face shape and appearance, the proposed SRD model
captures consistent shape-appearance relationships for faces
with huge view variations. By a learning based occlusion
modeling procedure, the OSRD model deals with partial
face occlusions quite robustly. Extensive experiments have
demonstrated the state-of-the-art alignment performance,
especially for multi-view and partially-occluded faces. In
future work, we plan to perform deeper analyses on the SRD
and OSRD models, e.g., its theoretical convergence proper-
ties and comparison of different optimization procedures.
We also plan to apply the proposed model to other vision
problems like human pose estimation and object tracking.
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