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Abstract

We investigate an inhomogeneous version of the FRAME
(Filters, Random field, And Maximum Entropy) model and
apply it to modeling object patterns. The inhomogeneous
FRAME is a non-stationary Markov random field model
that reproduces the observed marginal distributions or
statistics of filter responses at all the different locations,
scales and orientations. Our experiments show that the
inhomogeneous FRAME model is capable of generating
a wide variety of object patterns in natural images. We
then propose a sparsified version of the inhomogeneous
FRAME model where the model reproduces observed sta-
tistical properties of filter responses at a small number of
selected locations, scales and orientations. We propose to
select these locations, scales and orientations by a shared
sparse coding scheme, and we explore the connection be-
tween the sparse FRAME model and the linear additive
sparse coding model. Our experiments show that it is possi-
ble to learn sparse FRAME models in unsupervised fashion
and the learned models are useful for object classification.

1. Introduction
Generative models. Developing generative models for

image patterns is one of the most fundamental problems
in vision. Although the past decade has witnessed tremen-
dous advance in developing discriminative methods for ob-
ject recognition, the progress in developing generative mod-
els has been lagging behind. The goal of this paper is to
develop generative models for object patterns and explore
their connections with existing theories in image represen-
tation and modeling.

The foundation of our work is the FRAME (Filters, Ran-
dom field, And Maximum Entropy) model that Zhu, Wu,
and Mumford (1997) [24] proposed for texture patterns.
Being a texture model, FRAME is a spatially stationary
Markov random field model, and it is the maximum en-

tropy distribution that reproduces the observed marginal
histograms of responses from a band of filters, where for
each filter tuned to a specific scale and orientation, the
marginal histogram is spatially pooled over all the pixels
in the image domain.

Inhomogeneous FRAME. In this article, we investigate
an inhomogeneous version of the FRAME model for repre-
senting object patterns instead of texture patterns. The in-
homogeneous FRAME model is a spatially non-stationary
random field, and is the maximum entropy distribution that
reproduces distributions or statistics of filter responses at
individual locations, scales and orientations without spatial
pooling. We call this model the dense FRAME model be-
cause it seeks to reproduce statistical properties of filter re-
sponses over all the locations, scales and orientations. An
inhomogeneous model has also been proposed by Liu, Zhu
and Shum [10] for face shape data.

Sparse FRAME. The dense FRAME model can be com-
putationally and inferentially demanding with its large num-
ber of parameters. We then investigate a sparsified ver-
sion of the inhomogenous FRAME model which we call
the sparse FRAME model. Instead of reproducing statisti-
cal properties of filter responses at all the locations, scales
and orientations, the model seeks to reproduce statistical
properties of filter responses at a relatively small number
of selected locations, scales and orientations. We explore
the connection between the sparse FRAME model and the
linear additive sparse coding model [14], and we propose to
select the locations, scales and orientations of the filter re-
sponses within the linear additive framework using a shared
sparse coding scheme. This connects two major frame-
works for image representation and modeling, namely the
sparse coding framework with its root in harmonic analy-
sis and the Markov random field framework with its root in
statistical physics.

Our experiments show that both the dense and sparse
versions of the inhomogeneous FRAME model are capable
of generating realistic object patterns observed in images of
natural scenes. Our experiments also show that it is possible
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to learn sparse FRAME models in unsupervised manner and
the learned models can be useful for image classification.

Related work. (1) Energy-based model. The FRAME
model is an energy-based model. Other examples include
field of experts [16], product of experts [5], restricted Boltz-
mann machine and its various extensions [6]. Compared
to these models, the sparse FRAME performs feature se-
lection via a linear additive model and it can reconstruct
the training images. (2) Sparse coding model. The sparse
FRAME selects the features via a shared sparse coding
scheme. Compared to existing methods based on sparse
coding [18, 13, 23], the sparse FRAME defines an explicit
probability distribution on image intensities and can synthe-
size images by sampling from the distribution.

In this paper, we assume that the bank of filters are given,
such as Gabor filters and difference of Gaussian (DoG) fil-
ters as in the original FRAME model. They can be learned
if the training data are abundant.

2. Inhomogeneous FRAME model

Figure 1: The inhomogeneous FRAME is a generative model that
seeks to represent and generate object patterns shown above.

Notation. We start from modeling roughly aligned im-
ages of object patterns from the same category, such as im-
ages in each row of Fig. 1. Let {Im,m = 1, ...,M} be a
set of training images defined on a common image domain
D. We use the notation Bx,s,α to denote a basis function
such as a Gabor wavelet centered at pixel x (which is a two-
dimensional vector), and tuned to scale s and orientation α.
We assume that s and α take values within a finite and prop-
erly discretized range. The inner product 〈I, Bx,s,α〉 can be
considered the filter response of I at pixel x to a filter tuned
to scale s and orientation α. Let us assume that the basis
functions are all normalized to have unit `2 norm.

Model. The inhomogeneous FRAME model is a proba-
bility distribution defined on I,

p(I;λ) =
1

Z(λ)
exp

(∑
x,s,α

λx,s,α(〈I, Bx,s,α〉)

)
q(I), (1)

where q(I) is a known reference distribution such as a Gaus-
sian white noise model, λx,s,α() are one-dimensional func-
tions that depend on (x, s, α), λ = {λx,s,α,∀x, s, α}, and

Z(λ) = Eq

[
exp

(∑
x,s,α λx,s,α(〈I, Bx,s,α〉)

)]
is the nor-

malizing constant. p(I;λ) is said to be an exponential tilting
of q(I).

In the original FRAME model for stochastic texture pat-
terns, q(I) is assumed to be a uniform measure, and λx,s,α()
is assumed to be independent of x (but dependent of s and
α), so the model is spatially stationary. For modeling ob-
ject patterns that are not spatially stationary, λx,s,α() must
depend on x, in addition to s and α.

In the original homogeneous FRAME, the potential
functions λs,α() are estimated non-parametrically as step
functions. In the inhomogeneous FRAME model, we have
to estimate λx,s,α() for each individual x. With small set of
training images, we may not afford estimating λx,s,α() non-
parametrically. We therefore have to parametrize λx,s,α. In
this article, we choose to use the parametrization

λx,s,α(r) = λx,s,α|r|, (2)

where r = 〈I, Bx,s,α〉 is the filter response, and with slight
abuse of notation, λx,s,α on the right hand side of (2) be-
comes a coefficient of the absolute value of the response.

Maximum likelihood learning. The FRAME model is a
special case of the exponential family model, and the pa-
rameter λ = (λx,s,α,∀x, s, α) can be estimated from the
training images {Im,m = 1, ...,M} by MLE, which leads
to the estimating equation

Eλ (|〈I, Bx,s,α〉|) =
1

M

M∑
m=1

|〈Im, Bx,s,α〉|, ∀x, s, α. (3)

The MLE can be obtained by the stochastic gradient al-
gorithm analyzed by Younes (1999) [22]. Let λ(t) be the
current estimate of λ, and let {Ĩm,m = 1, ..., M̃} be a sam-
ple of synthesized images drawn from p(I;λ(t)). Then we
can update λ by

λ(t+1)
x,s,α = λ(t)

x,s,α + γt

(
1

M

M∑
m=1

|〈Im, Bx,s,α〉| −

1

M̃

M̃∑
m=1

|〈Ĩm, Bx,s,α〉|

)
,

where γt is the step size. The synthesized im-
ages {Ĩm} can be drawn from p(I;λ) by Hamilto-
nian Monte Carlo (HMC) [12], where a key step is to
compute the gradient of the energy function, which is∑
x,s,α λx,s,αsign(〈I, Bx,s,α〉)Bx,s,α. The computation in-

volves two rounds of convolutions (a bottom-up convolu-
tion followed by a top-down deconvolution), which can be
efficiently implemented in Matlab by GPU. With HMC and
warm start, {Ĩm} are produced by M̃ parallel chains.



The ratio of the normalizing constants

Z(λ(t+1))

Z(λ(t))
= Eλ(t)

[
exp

( ∑
x,s,α

(λ(t+1)
x,s,α − λ(t)

x,s,α)

×|〈I, Bx,s,α〉|
)]

(4)

can be approximated by averaging over the sampled images
{Ĩm}. Starting from λ(0) = 0 and logZ(λ(0)) = 0, we can
compute logZ(λ(t)) along the learning process.

Figure 2: Synthesized images generated by the inhomogeneous
FRAME model. The sizes of the images are 70 × 70. We work
with grey-level images in this work.

Fig. 2 displays the synthesized images {Ĩm} generated
by the models learned from training images in Fig. 1 (a
separate model is learned from each training set).

3. Sparse FRAME model
Sparsification. In model (1), the (x, s, α) in

∑
x,s,α (as

well as ∀(x, s, α) in (3)) is over all the pixels x and all the
scales s and orientations α. We call such a model the dense
FRAME. It is possible to sparsify the model by selecting
only a small set of (x, s, α) so that

∑
x,s,α is restricted to

this selected subset. More explicitly, we can write the spar-
sified model as

p(I;λ) =
1

Z(λ)
exp

(
n∑
i=1

λi|〈I, Bxi,si,αi〉|

)
q(I), (5)

where λ = (λi, i = 1, ..., n). The model can still be
trained by maximum likelihood as in the previous section,
and properties such as maximum entropy still hold. The
sparsification makes the computation faster and the infer-
ence more reliable.

In order to select the set of basis functions (Bxi,si,αi
, i =

1, ..., n), we may use a sequential procedure such as fil-
ter pursuit [24] or projection pursuit [1]. In this work, we
choose to follow a different strategy by exploiting the con-
nection between sparse FRAME model and shared sparse
coding model.

3.1. Connection with sparse coding

From sparse FRAME to shared sparse coding. Let us
assume that the reference distribution q(I) in the sparse

FRAME model (5) is a Gaussian white noise model so that
the pixel intensities follow N(0, σ2) independently. For
sparse FRAME, it is natural to assume that the number
of selected basis functions n is much less than the num-
ber of pixels in I, i.e., n � |D|, where D is the image
domain. For notational convenience, we can make I and
Bi = Bxi,si,αi , i = 1, ..., n into |D|-dimensional vectors,
and let B = (B1, ..., Bn) be the resulting |D| × n matrix.

The connection between sparse FRAME and shared
sparse coding is most evident if we temporarily assume that
the selected basis functions (Bi, i = 1, ..., n) are orthogonal
(with unit `2 norm as assumed before). Extension to non-
orthogonal B is straightforward but requires tedious nota-
tion (such as (BTB)−1). For B, we can construct n̄ =
|D|−n basis vectors of unit norm B̄1, ..., B̄n̄ that are orthog-
onal to each other and that are also orthogonal to (Bi, i =
1, ..., n). Thus each image I =

∑n
i=1 riBi +

∑n̄
i=1 r̄iB̄i,

where ri = 〈I, Bi〉, and r̄i = 〈I, B̄i〉. So we have the linear
additive model I =

∑n
i=1 riBi + ε, with ε =

∑n̄
i=1 r̄iB̄i

being the least squares residual image.
Under the Gaussian white noise q(I), ri and r̄i are all

independent N(0, σ2) random variables because of the or-
thogonality of (B, B̄). Let R be the column vector whose
elements are ri, and R̄ be the column vector whose elements
are r̄i. Then under the sparse FRAME model (5), only the
distribution of R is modified by exponential tilting, which
changes the distribution of R from Gaussian white noise
q(R) to p(R;λ) = exp (

∑n
i=1 λi|ri|) q(R)/Z(λ), while

the distribution of the residual coordinates R̄ remains Gaus-
sian white noise, and R and R̄ remain independent. That is,
p(R, R̄;λ) = p(R;λ)q(R̄).

Thus the sparse FRAME model implies a linear addi-
tive model I =

∑n
i=1 riBi + ε, where R ∼ p(R;λ) and

ε is a Gaussian white noise in the n̄-dimensional residual
space, and ε is independent of R. If we observe indepen-
dent training images {Im,m = 1, ...,M} from the model,
then Im =

∑n
i=1 rm,iBi + εm, i.e., {Im} share a common

set of basis functions B = (Bi, i = 1, ..., n) that provide
sparse coding for multiple images simultaneously.

From shared sparse coding to sparse FRAME. Con-
versely, suppose we are given a shared sparse coding model
of the form I =

∑n
i=1 ciBi+ε = BC+ε, whereC is a col-

umn vector whose components are ci. Assume C ∼ p(C)
and ε ∼ N(0, Iσ2), where I is the |D|-dimensional iden-
tity matrix, and ε and C are independent. Let δ = BT ε,
each component of which δi = 〈ε, Bi〉 ∼ N(0, σ2) indepen-
dently. Then we can write I = BR+B̄R̄, whereR = C+δ,
and ε̄ = B̄R̄ is the projection of ε onto the space of B̄.
Let p̃(R) be the density of R = C + δ, which is obtained
by convolving p(C) with Gaussian white noise density.
Then p(I) = p̃(R)q(R̄) = q(I)p̃(R)/q(R) since q(I) =
q(R)q(R̄) under Gaussian white noise model (dI = dRdR̄
under orthogonality so there is no Jacobian term). If we



choose to model p̃(R)/q(R) = exp (
∑n
i=1 λi|ri|) /Z(λ)

by exponential tilting, we arrive at the sparse FRAME
model.

Selection of basis functions. For orthogonal B, as shown
above, the probability density p(I;λ) = q(R̄)p(R;λ) =
q(R̄)q(R) exp (

∑n
i=1 λi|ri|) /Z(λ). Given a set of train-

ing images {Im,m = 1, ...,M}, and for a candidate set of
basis functions B = (Bi, i = 1, ..., n), we can estimate
λ = (λi, i = 1, ..., n) by MLE λ?, and the resulting log-
likelihood is

M∑
m=1

log p(Im;λ?) =

M∑
m=1

[
log q(R̄m) + log p(Rm;λ?)

]
= − 1

2σ2

M∑
m=1

||Im −BRm||2 −
Mn̄

2
log(2πσ2) (6)

+

M∑
m=1

log p(Rm;λ?). (7)

Suppose we are to choose an optimal B, ideally we should
maximize the sum of (6) and (7). We may interpret (6) as
the negative coding length of the residual image ε by the
Gaussian white noise model, and interpret (7) as the nega-
tive coding length of the coefficients R by the fitted model
p(R;λ?). If σ2 is small, (6) can be more important, while
the coding length of R for different B may not differ too
much in comparison. So we choose to seek a B to maximize
only (6) or equivalently minimize the overall reconstruction
error

∑M
m=1 ||Im −BRm||2. This reflects a two-step strat-

egy in modeling {Im}. First, we find a set of basis functions
B to reconstruct {Im} as best as possible. Then we fit a sta-
tistical model for the reconstruction coefficients.

Non-orthogonality. If B is not orthogonal, which is
the case in our work, the connection between the sparse
FRAME and shared sparse coding still holds nonetheless.
The responsesR = BT I, but the reconstruction coefficients
C = (BTB)−1R. The projection of I onto the subspace
spanned by B is BC. We can continue to assume the im-
plicit B̄ = (B̄i, i = 1, ..., n̄) to be orthonormal, and that
they are orthogonal to the columns of B. We can also con-
tinue to let R̄ = B̄T I. In this setting, R and R̄ are still
independent under the Gaussian white noise model q(I)
because B and B̄ are still orthogonal to each other. Un-
der the sparse FRAME model (5), it is still the case that
only the distribution of R is modified by exponential tilt-
ing, while the distribution of R̄ remains white noise and is
independent of R. The distribution of R implies a distri-
bution of the reconstruction coefficients C because they are
linked by a linear transformation. We choose to model R
instead of C by exponential tilting because the former is
more convenient. Now the distributions of R and C involve
the Jacobian terms such that dRdR̄ = |det(BTB)|1/2dI =
|det(BTB)|dCdR̄. By the same logic as in (6) and (7), we

still want to find B to minimize the overall reconstruction
error

∑M
m=1 ‖Im −BCm‖2.

3.2. The learning algorithm

Figure 3: Reconstruction and synthesis. The images are 100 ×
100. The number of selected wavelets is 300. The first row are
symbolic sketches of selected Gabor wavelets at different scales,
where each selected Gabor wavelet is symbolized by a bar. The
first 4 sketches correspond to 4 different scales. The last one is the
superposition of the 4 scales, where smaller scales appear darker.
The second and third rows display two examples of the observed
images, the deformed sketches, the reconstructed images, and the
residual images. The last row displays examples of synthesized
images generated by the learned model.

Figure 4: The images are 100 × 100. The number of selected
Gabor wavelets is 400.

This subsection describes the learning algorithm, which
consists of two stages. (1) Selecting B = (Bxi,si,αi

, i =
1, ..., n) by shared sparse coding. (2) Estimating λ =
(λi, i = 1, ..., n) given selected B.

Deformable shared sparse coding. For training images
{Im,m = 1, ...,M}, the shared sparse coding is of the form



Im =
∑n
i=1 cm,iBxi,si,αi +εm.We may allow these shared

basis functions to perturb their locations and orientations
to account for shape deformations, so we may extend the
representation to deformable shared sparse coding first pro-
posed by [20]

Im =

n∑
i=1

cm,iBxi+∆xm,i,si,αi+∆αm,i
+ εm, (8)

where (∆xm,i,∆αm,i) are the perturbations of the lo-
cation and orientation of the i-th basis function. Both
∆xm,i and ∆αm,i are assumed to vary within limited
ranges (default setting: ∆xm,i ∈ [−3, 3] pixels alone
the normal direction of the Gabor wavelet, and ∆αm,i ∈
{−1, 0, 1} × π/16). We want to select the basis func-
tions {Bxisi,αi , i = 1, ..., n} by minimizing

∑M
m=1 ‖Im −∑n

i=1 cm,iBxi+∆xm,i,si,αi+∆αm,i
‖2.

Deformable shared matching pursuit algorithm . We can
extend the matching pursuit algorithm [11] to select basis
functions to code multiple images simultaneously, while in-
ferring local perturbations by local max pooling [15]:

[0] Initialize i ← 0. For m = 1, ...,M , initialize the
residual image εm ← Im.

[1] Let i ← i + 1. Then we select (xi, si, αi) =

arg maxx,s,α
∑M
m=1 max∆x,∆α |〈εm, Bx+∆x,s,α+∆α〉|2,

where max∆x,∆α is local maximum pooling within the
small ranges of ∆xm,i and ∆αm,i.

[2] For each m, given (xi, si, αi), infer the perturbations
in location and orientation by retrieving the arg-max in the
local maximum pooling of step [1]: (∆xm,i,∆αm,i) =
arg max∆x,∆α |〈εm, Bxi+∆x,si,αi+∆α〉|2. Let the coeffi-
cient cm,i ← 〈εm, Bxi+∆xm,i,si,αi+∆αm,i

〉, and update
the residual image by explaining away: εm ← εm −
cm,iBxi+∆xm,i,si,αi+∆αm,i

.
[3] Stop if i = n, else go back to step [1].
Such a deformable shared matching pursuit algorithm

was first proposed by [20], but it implemented a modified
version that enforces approximated orthogonality of the se-
lected basis functions.

Sparse FRAME as deformable template. After selecting
B = {Bi = Bxi,si,αi

, i = 1, ..., n}, we can then model
{Im} by the sparse FRAME model (5), by estimating λ at
MLE. p(I;λ) in (5) now serves as the deformable template
in that the log-likelihood ratio of the Im is

n∑
i=1

λi max
∆x,∆α

|〈Im, Bxi+∆x,si,αi+∆α〉| − logZ(λ), (9)

which serves as the template matching score, where we al-
low each selected Bi to perturb its location and orientation
in view of (8), with the perturbations inferred by local max
pooling. In the learning algorithm, again, let λ(t) be the
current estimate of λ, let {Ĩm,m = 1, ..., M̃} be the syn-
thesized images drawn from p(I;λ(t)) by M̃ parallel chains.

Then we update λ by

λ
(t+1)
i = λ

(t)
i + γt

(
1

M

M∑
m=1

max
∆x,∆α

|〈Im, Bxi+∆x,si,αi+∆α〉|

− 1

M̃

M̃∑
m=1

|〈Ĩm, Bi〉|

)
.

The learned p(I;λ) models the appearance of the unde-
formed template. So there is an explicit separation be-
tween appearance and shape variations. For HMC compu-
tation, the gradient of the energy function is of the form∑n
i=1 λisign(〈I, Bi〉)Bi, so HMC is like a generative pro-

cess based on linear superpositions of (Bi, i = 1, ..., n).
After we learn λ and compute Z(λ) as in (4), we can use

the learned model as a deformable template to be matched
to the testing image, where the template matching score at
each location can be computed like (9).

Fig. 3 illustrates the basic idea. The training images
are scaled to 100 × 100. The number of selected basis
functions (Gabor and big DoG wavelets) n is set at 300.
In principle it can be automatically determined by criteria
like BIC. We normalize the images to have zero mean and
unit variance, and we fix σ2 of q(I) to be .1. The first row
displays the selected Gabor wavelets Bi, where each Bi is
symbolized by a bar. The first four plots in the first row dis-
play the selected Bi at 4 different scales, from the largest
to the smallest. The last plot in the first row is the super-
position of the 4 scales, with smaller scales appear darker.
The second and third rows display two training images Im
for two different m, the symbolic sketches of the deformed
templates (Bxi+∆xm,i,si,αi+∆αm,i

, i = 1, ..., n), the recon-
structed images

∑n
i=1 cm,iBxi+∆xm,i,si,αi+∆αm,i

, and the
residual image εm. For the synthesized images Ĩm gener-
ated from the learned p(I;λ), we project them onto the sub-
space spanned by B. The last row displays projections of
the four synthesized images. Fig. 4 shows another example.

4. Experiments
Project page: The code and more results and details can

be found at http://www.stat.ucla.edu/˜jxie/
iFRAME.html.

1. Dense FRAME. Fig. 5 displays some images gen-
erated by the dense models learned from roughly aligned
training images. We run a single chain in the learning pro-
cess, i.e., M̃ = 1 in this experiment.

2. Sparse FRAME. Fig. 6 displays some images gen-
erated by the sparse models learned from roughly aligned
images. Experiment setting is the same as that in Fig. 3
except that the image sizes are typically 80 × 80, and the
allowed displacement of a Gabor wavelet is up to 2 pixels.
Number of wavelets is 300. We run M̃ = 36 parallel chains
in the learning algorithm.

http://www.stat.ucla.edu/~jxie/iFRAME.html
http://www.stat.ucla.edu/~jxie/iFRAME.html


Figure 5: Images generated by the learned dense FRAME model.
Typical sizes of the images are 70× 70.

Figure 6: Images generated by the learned sparse FRAME mod-
els. Typical sizes of the images are 80 × 80. Number of selected
wavelets is 300.

3. Detection by template matching. The learned model
can be used for detection. Fig. 7 shows one example. The
template is 100× 100. The first image is a synthesized im-
age generated by the model trained on 6 roughly aligned
images with 250 wavelets. The other two images are test-
ing images where the objects are located by the bounding
boxes. We allow the change of the overall scale and orien-
tation of the template. M̃ = 36.

Figure 7: Detection. The first image (100 × 100) is generated
by the learned model (with 250 wavelets). The rest are the testing
images.

Figure 8: Clustering. Each row illustrates one clustering experi-
ment by displaying a synthesized image (100× 100) and a training
example from each cluster. Number of wavelets in each model is
300. Each cluster has 15 images.

4. Clustering by mixture models. Model-based cluster-
ing can be accomplished by EM-type algorithm that fits
mixtures of sparse FRAME models. Fig. 8 illustrates 4
experiments. The EM-type algorithm usually converges
within 3-5 iterations. For each cluster, we generate M̃ =
144 parallel chains in learning.

To evaluate the clustering accuracies, we use two mea-
sures: conditional purity and conditional entropy [19]. For
a random training image, let x be its true category (un-
known to the algorithm) and y be the inferred category. The
conditional purity is defined as

∑
y p(y) maxx p(x|y) (the

larger the better), and the conditional entropy is defined as∑
y p(y)

∑
x p(x|y) log(1/p(x|y)) (the smaller the better),

where both p(y) and p(x|y) can be estimated from the train-
ing data. We perform 7 clustering experiments. The num-
bers of clusters vary from 2 to 5 and are assumed known
in these experiments. The number of images in each clus-
ter is typically 15 except in one experiment. We compare
the performance of the sparse FRAME with that of k-mean
based on HoG features. Table 1 displays the clustering ac-
curacies and standard errors based on 10 repetitions of each
experiment.

5. Unsupervised learning of codebooks. We can learn a
codebook of sparse FRAME models from non-aligned im-



Table 1: Comparison of conditional purity (the first two rows) and conditional entropy (the last two rows) between sparse
FRAME and k-mean for clustering

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7

k-mean (purity) 0.623±0.016 0.870±0.043 0.933±0.141 0.825±0.121 0.911±0.086 0.888±0.091 0.687±0.110
FRAME (purity) 0.943±0.063 0.990±0.016 0.938±0.131 0.895±0.132 1.000±0.000 0.879±0.141 0.741±0.111

k-mean (entropy) 0.652±0.009 0.376±0.086 0.092±0.195 0.243±0.167 0.226±0.084 0.199±0.126 0.639±0.161
FRAME (entropy) 0.145±0.157 0.037±0.060 0.090±0.191 0.155±0.189 0.000±0.000 0.179±0.208 0.497±0.192

Figure 9: Codebook learning. A codebook of 4 models (each has
250 wavelets) are learned from 20 images. The first row displays
the synthesized images (100 × 100) from the 4 models. The sec-
ond row displays two training images and their reconstructions by
the 4 models.

Figure 10: In each experiment, synthesized images (100 × 100)
from the models of the learned codebook are displayed together
with the training images and their sketches by the learned models,
where each Gabor wavelet is illustrated by a bar. Lotus experi-
ment: each model has 30 wavelets, learned from 7 images. Cat
experiment: each model has 40 wavelets, learned from 20 images.

ages without annotation, by adopting the method of [7]. The
learning algorithm iterates the following two steps: (1) Im-
age encoding: given the current codebook, encode the train-
ing images by spatially translated, rotated, scaled versions
of the models (templates) in the codebook. (2) Codebook
re-learning: re-learn each model in the codebook from the
image patches currently covered by this template. Figs. 9
and 10 illustrate experiments of codebook learning. For the
experiments in Fig. 10, we select a small number (30 and
40) wavelets of a single scale, so the synthesized images

mainly capture the edge patterns. We choose the number of
codewords by hand, although it can in principle be chosen
by BIC-like criterion [7].

6. Object classification on domain adaptation data sets.
We test the sparse FRAME model by image classification
on domain adaptation tasks, and compare with published
results [17, 3, 2, 21, 8]. The 4 datasets are: Amazon, Web-
cam, DSLR and Caltech-256 [4]. Each dataset is regarded
as a domain. For the experiment with single source training,
10 classes common to all 4 datasets are extracted. For the
experiment with multiple sources training, all 31 classes in
Amazon, Webcam and DSLR are used. We use the evalua-
tion protocol in [2]. We randomly sample labeled data in the
source domain as training examples, and unlabeled data in
the target domain as testing examples. We learn a codebook
of 3 sparse FRAME models for each category in unsuper-
vised way, under the same setting as experiments in Fig. 10.
We then combine the codebooks of all the categories. The
maps of the template matching scores from the models in
the combined codebook are computed for each image, and
they are then fed into spatial pyramid matching [9], which
equally divides an image into 1, 4, 16 areas, and concate-
nates the maximum scores within different image areas into
a feature vector. We use multi-class SVM to train image
classifiers based on the feature vectors, and then evaluate
the classification accuracies of these classifiers on the test-
ing domain. For each pair of source and target domains,
we report averaged accuracies on target domains as well as
standard errors. Table 2 show the comparisons of recogni-
tion accuracies on target domains for single source training
and multiple source training. It can be seen that the learned
codebooks perform well even though we do not make use
of any domain adaptation techniques.

5. Conclusion

The sparse FRAME model has the following properties.
(1) It can reconstruct the training images. (2) It can synthe-
size new images. (3) It separates shape deformations and
appearance variations. (4) It gives interpretable sketches.
(5) Dictionaries or codebooks of models can be learned
in unsupervised manner. (6) It combines rich traditions of
harmonic analysis and Markov random field models.



Table 2: Classification accuracies on single source four domains benchmark (the first table, C: caltech, A: amazon, D: DSLR,
W: webcam) and multiple sources three domains benchmark (the second table)

Method C→A C→D A→C A→W W→C W→A D→A D→W

Metric [17] 33.7±0.8 35.0±1.1 27.3±0.7 36.0±1.0 21.7±0.5 32.3±0.8 30.3±0.8 55.6±0.7
SGF [3] 40.2±0.7 36.6±0.8 37.7±0.5 37.9±0.7 29.2±0.7 38.2±0.6 39.2±0.7 69.5±0.9
GFK [2] 46.1±0.6 55.0±0.9 39.6±0.4 56.9±1.0 32.8±0.7 46.2±0.7 46.2±0.6 80.2±0.4

FDDL [21] 39.3±2.9 55.0±2.8 24.3±2.2 50.4±3.5 22.9±2.6 41.1±2.6 36.7±2.5 65.9±4.9
Our method 62.2±1.6 52.2±4.0 46.7±2.5 53.2±4.9 39.1±3.0 53.2±4.4 55.3±2.9 72.4±3.1

Source Target SGF [3] RDALR [8] FDDL [21] Our method

DLSR, amazon webcam 52±2.5 36.9±1.1 41.0±2.4 52.2±1.4
amazon, webcam DSLR 39±1.1 31.2±1.3 38.4±3.4 54.5±3.3
webcam, DSLR amazon 28±0.8 20.9±0.9 19.0±1.2 32.1±1.6
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