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Abstract

Interactive segmentation, in which a user provides a
bounding box to an object of interest for image segmenta-
tion, has been applied to a variety of applications in im-
age editing, crowdsourcing, computer vision, and medical
imaging. The challenge of this semi-automatic image seg-
mentation task lies in dealing with the uncertainty of the
foreground object within a bounding box. Here, we for-
mulate the interactive segmentation problem as a multiple
instance learning (MIL) task by generating positive bags
from pixels of sweeping lines within a bounding box. We
name this approach MILCut. We provide a justification to
our formulation and develop an algorithm with significant
performance and efficiency gain over existing state-of-the-
art systems. Extensive experiments demonstrate the evident
advantage of our approach.

1. Introduction

Image segmentation is one of the most fundamental
problems in computer vision. While fully automated seg-
mentation is arguably an intrinsically ambiguous problem
[5] and manual segmentation is time-consuming to obtain,
semi-automated (user-interactive) segmentation has demon-
strated great practical importance and popularity [10, 32,

,9,22,29,19, 8, 35, 27, 20]. Given a moderate level
of user input, the goal of interactive segmentation is to seg-
ment a foreground object from background based on user
input. The system should also be ideally fast enough to have
a smooth user interface experience.

Previous interactive segmentation systems including
GrabCut [32] and Lazy Snapping [22] have been adopted
in multiple domains. However, despite the successes of ex-
isting approaches, they all have a noticeable level of lim-
itations. For example, GrabCut [32] and Lazy Snapping
[22] are quite efficient but there is still large space for them
to improve in accuracy [20, 39]; the pinpointing algorithm

* indicates equal contributions.

[20] combines GrabCut [32] with some heavily engineered
initialization priority maps to achieve competitive perfor-
mances, and their use of approximating algorithms to tackle
an NP-hard optimization problem also makes the frame-
work much slower than the Graph Cut algorithm. Appar-
ently both effectiveness and efficiency are essential for a
practical interactive image segmentation system.

The type of user input in the current interactive seg-
mentation paradigms can be roughly divided into two cat-
egories: scribble based and bounding box based. In gen-
eral, bounding-box-based interaction gains more popularity
because it is more natural for users to provide a bounding
box [20]. Also, some methods designed for bounding box
interaction can also handle scribbles for refinements [32].

From a different angle, weakly-supervised learning, or
specifically multiple instance learning (MIL) [13], has at-
tracted increasing attention in machine learning and many
other areas for solving problems with data that contains
latent class labels. It tackles the fundamental problem of
learning from noisy data by simultaneously learning a clas-
sification model and estimating the hidden instance labels.
MIL can even be applied to fully-supervised settings due to
the intrinsic ambiguity in human annotations. In MIL, in-
stances (data samples) appear in the form of positive and
negative bags. The multiple instance constraints request
that within each positive bag, there is at least one positive
instance; and within the negative bags, all instances are neg-
atives. Therefore, we view MIL as a general formulation for
dealing with the hidden class labels in noisy input.

In this paper, we propose a multiple instance learning so-
lution to the interactive image segmentation problem where
the property of tight bounding box is explored. An unknown
object of interest is supposed to appear within the bound-
ing box at an unknown location; we also know that image
pixels outside the bounding box are background. There-
fore, we view the image with the bounding box as “noisy
input” and our task is to discover the object under weak su-
pervision with the data in company of outliers. Here, we
provide a sweeping-line strategy to convert the interactive
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image segmentation into a multiple instance learning prob-
lem. We prove that, under mild conditions, each horizontal
or vertical sweeping line of the bounded region must con-
tain at least one pixel from the foreground object, which
naturally corresponds to the multiple instance constraints
described in the beginning of the section. Therefore, for the
task of interactive segmentation with a bounding box, we
propose MILCut, a sweeping line multiple instance learn-
ing paradigm which uses pixels on the sweeping lines inside
the bounding box as positive bags and pixels outside the
box as negative bags. Figure 1 provides an overview of our
framework. To enforce the topological constraints of fore-
ground objects, we further propose two variants of MILCut
in which structural information is explicitly involved.

Our contributions in this paper include: (1) we convert
the interactive image segmentation task with bounding box
interaction into a multiple instance learning scenario; (2) we
propose MILCut, a sweeping line multiple instance learning
paradigm, to solve the problem with structural constraints;
(3) we exploit local information of superpixels and power of
discriminative classifiers, resulting in significant improve-
ment over existing methods in both accuracy and efficiency.

2. Related Work

Interactive image segmentation has attracted numer-
ous interests in the computer vision community [10].
Rother et al. proposed GrabCut [32] which iteratively es-
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timates Gaussian mixture models [9] and then refines re-
sults using Graph Cut. Li et al. proposed Lazy Snapping
[22] which separates the segmentation into an object mark-
ing step and a boundary editing step. Later a large num-
ber of interactive segmentation algorithms emerged. Some
representative works include geodesic approaches [28, &],
random walk approaches [39, 18], discriminative learning
approaches [ 14, 43], and those methods using various kinds
of priors [35, 15].

Different from all these systems, in this paper, we present
a multiple instance learning scenario to classify the fore-
ground object inside the box using the bounding box as
a weak label. Probably the most relevant work to ours is
[20], which proposes to model the task as an integer pro-
gramming problem using bounding box prior. Our method
differs from theirs in two aspects: 1) we propose to con-
vert the task to a weakly supervised learning problem, and
solve it discriminatively using sweeping line multiple in-
stance learning, while they focus on approximating the NP-
hard integer programming; 2) we make use of superpixels
and local informative features in the MIL framework, which
improve our results in both accuracy and efficiency.

Multiple instance learning was first introduced by Di-
etterich et al. [13] for drug activity prediction. Since then,
a large number of methods, e.g., DD [23], EM-DD [42],
citation-kNN [37], MI-SVM and mi-SVM [4], and IQH [6],
have been proposed to solve the multiple instance learning
problem. Viola et al. proposed MIL-Boost [36] which ap-



plied boosting to multiple instance setting and showed that
MIL-Boost could achieve good performance for object de-
tection. In this paper, we propose MILCut, a sweeping line
multiple instance learning paradigm which solves interac-
tive segmentation with MIL. When optimizing the likeli-
hood function, MILCut adopts steps in MIL-Boost but ex-
tends them to explicitly incorporate structural information.
Structured prediction models like latent structural
SVM [40] or hidden CRF [30] have demonstrated their wide
applicability in various tasks. There are also several at-
tempts to combine multiple instance learning with structural
data. In 2009, Zhou et al. [44] proposed mi-Graph which
models instances in the data as non-i.i.d. samples. Later,
Deselaers [ 12] proposed MI-CREF, in which they model bags
as nodes and instances as states in CRF. The most recent
work is the MILSD formulation from Zhang et al. [41],
which adds global smoothness as a graph regularization
term to the objective function. Different from all these ap-
proaches, in MILCut, we consider the structure of the im-
age from two perspectives: 1) we exploit the tightness of
bounding boxes to formulate the multiple instance learning
problem using slices as bags; 2) we explicitly enforce struc-
tural relations among instances within the formulation.

3. From Bounding Boxes to MIL

A bounding box helps algorithms to focus only on its in-
terior because we assume that the foreground object com-
pletely lies in the bounding box. However, most exist-
ing frameworks fail to exploit tightness information given
by the bounding box, i.e., they did not realize that object
boundaries should be close to the user-provided bounding
box in all four directions. Recently, Lempitsky et al. [20] in-
corporated the notion of tightness into their framework, and
proposed the pinpointing algorithm for optimization. Their
formulation is an NP-hard integer programming and the ap-
proximating pinpointing algorithm is not efficient enough
for a real-time interaction image segmentation system.

Here we demonstrate that there exists a natural relation
between tightness and the multiple instance constraints.

Definition 1. For an image I, a bounding box B is valid if
the foreground object O completely lies inside the box, i.c.,
the intersection of the foreground object and the exterior of
the bounding box is an empty set, or (I\B) N O = ().

Definition 2. For an image I, a bounding box B is tight if
the foreground object O intersects the left, right, top, and
bottom border of the bounding box. If we define Br, Bp,
By, and Bp as the top, bottom, left, and right border of the
bounding box, respectively, then we know that B is tight is
equivalent to O N By # 0,0 N Bg # 0,0 N By, # 0, and
ONBr#0.

Assuming validity and tightness of the bounding box, we

may then convert the image segmentation task into a mul-
tiple instance learning problem. Specifically, we treat the
horizontal and vertical slices in the bounding box as posi-
tive bags and other slices outside the box as negative bags.
Either pixels or superpixels could be used as instances. The
part (c) and (d) of Figure 1 illustrate the linkage between
the bounding box and multiple instance learning.

Lemma 1. If a bounding box B is valid and tight and the
object O inside the bounding box is connected, then the con-
structed positive and negative bags satisfy multiple instance
constraints.

A proof can be found in supplementary material.

4. Formulation

In this section, we formulate the interactive image seg-
mentation problem in the multiple instance learning frame-
work. As shown in Figure 1, the first step of MILCut is to
construct positive and negative bags for multiple instance
learning from the user-provided bounding box. We use
SLIC superpixels [ 1] as instances in multiple instance learn-
ing. Superpixels [31] have been proved effective in multiple
vision tasks [22, 31]. In our setting, using superpixels not
only allows us to incorporate a variety of local informative
features, but also offers a dramatic speedup.

4.1. Appearance Model

After constructing positive and negative bags, we then
apply MIL-Boost [36] to train an appearance likelihood
model for distinguishing foreground object from the clut-
ter background. Specifically, the negative log-likelihood of
a set of bags is defined as

L1(h) = —log Hpi"(l —pi)(l—?ﬁ) )
= Z(yi logp; + (1 —y;)log(1 —pi)), (2)

where y; € {0, 1} is the label of bag i and p; is the proba-
bility that bag i is positive in the current model. With a soft-
max model like generalized mean, p; can be derived from
instance-level probability p;; as p; = (3_; pi;)t/", where
pij = [1+ exp(—y;;)]~" is the output of a sigmoid func-
tion of instance level classification score y;;. Here y;; is
computed as a weighted sum of the outputs of the weak
classifiers: y;; = >, peh'(245), where x;; is the feature
vector of the instance, and h! : X — ) is a weak classifier,
and i is the weight of the ¢-th classifier.

We then optimize the log-likelihood in the AnyBoost
framework [25]. Specifically, when training a new weak
classifier, it assigns derivatives of the cost function with re-
spect to changes in the scores as weights on instances, i.e.,

Wi — 9L, (h) _ 9Ly (h) Op;i Opy;
Y Ay Oopi  Opij Oyij

3)



4.2. Structured Prediction Model

Directly using MIL-Boost fails to incorporate the topo-
logical structure of objects. Following CCMIL [38], we ex-
plicitly model the structural information in the likelihood
function in training and testing in a formulation named
MILCut-Struct.

In MILCut-Struct, structural information is explicitly in-
corporated in the formulation, and the log-likelihood is de-
fined as

L(h) = Li(h) + AL (R), 4)

where £ (h) is the log-likelihood defined in Eqn (1) for the
appearance model, and £5(h) is the structural constraint.
We define Lo(h) as

La(h)=>" > wijilpi; — parll, )

=1 (j,k)€E;

where E; is the set of all neighboring pairs in the ¢-th bag,
and v, 1, is the weight of the pair (4, k). Here we define v;;x
as the shared boundary length of the j-th and k-th instances
in the ¢-th bag.

Similar to MIL-Boost, the formulation of MILCut-Struct
can also be optimized using gradient descent in the Any-
Boost framework [25, 38]. In each iteration, the weight w;;
of instance j in bag 7 can be computed as follows (with gen-
eralized mean softmax model):

_OL(h) _ 0L(h) Op; Opi;

Wi = = 5 6
T Oy Opi  Opij Oyij ©
oL(h)  IOLy1(h) 0Ly (h)
= +A @)
ayij ayij 3%]'
_ 8£1(h) 8]),‘ 8pij aﬁg(h) apij (8)
Opi 3]%‘ 3%;‘ 319113' ayij ’
where
oL, (h) —, y=1
o = ©)
bi ify=—1,
1—p;
Ipi (i) Ipij
= p; , =2p;i;(1 — pij),
Opij > (pig)” Oyij i i)
(10)
and 0Lo(h)
2 = Z 2055 (Pij — Pik)- (11)
3pij

(J,k)EE;

The structural constraints enforce the piecewise smooth-
ness in the resulting segments. An alternative way of
incorporating structural information without changing the
likelihood function (1) is to apply Graph Cut as a post-
processing step. Specifically, for each image, we define data

terms based on the probability map given by MILCut, and
smoothness terms in the same way as GrabCut [32]. We call
this variant MILCut-Graph.

S. Experiments
5.1. Setup

Datasets: We conduct experiments on three popular
datasets. The first is the well-known GrabCut dataset [32],
which contains 50 natural images with ground truth seg-
mentations. The GrabCut dataset has been used as a bench-
mark in multiple previous works [9, 20, 28, 39]. We use the
same bounding boxes as those in [20].

Recently, McGuinness [26] compiled a new bench-
mark for evaluating interactive segmentation algorithms.
The dataset contains 100 distinct objects from the popular
Berkeley dataset [24]. These images are selected to repre-
sent various segmentation challenges including texture and
lighting conditions, and to ensure accuracy, all ground truth
segmentations are manually labeled.

The third dataset we used is the Weizmann segmentation
database, which is divided into a single object dataset and
a double object dataset. Either of them contains 100 gray
level images along with ground truth segmentations. Here
we use the Weizmann single object dataset.

All the datasets we used are available online.

Superpixels and Features: As mentioned in Section 4,
we use SLIC superpixels [ ] to generate about 2,400 super-
pixels per image. For a typical 400 <600 image, each super-
pixel is about 10x 10 pixels large. We use average color of
all pixels in both RGB color space and L*a*b* color space,
and Leung-Malik (LM) Filter Bank [21] as features for su-
perpixels. The number of dimensions of feature vectors for
each superpixel is 39 (three for RGB color space, three for
L*a*b* color space, and 33 for LM Filter Bank). Generat-
ing superpixels and computing all the features take one to
three seconds for each image. Note that in practice, we may
treat this process as a pre-processing step which can be done
before the entire segmentation framework actually starts.

Implementation Details: When generating bags, we
shrink the bounding box by 5% to ensure its tightness (see
Definition 2), and collect slices inside as positive bags; we
then expand the original bounding box by 10% to ensure
its validity (see Definition 1), and sample slices outside but
close to the expanded bounding box as negative bags. With
respect to MILCut-Struct and MILCut-Graph, we use Gaus-
sian weak classifiers and set the maximum number of weak
classifiers 7' to 200. Note that typically the optimization
scheme converges with a much smaller number of classi-
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Uhttp://research.microsoft.com/en-us/um/cambridge/projects/vision-
imagevideoediting/segmentation/grabcut.htm

Zhttp://kspace.cdvp.dcu.ie/public/interactive-segmentation/

3http://www.wisdom.weizmann.ac.il/"vision/Seg_Evaluation_DB/
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Figure 2: Results of different approaches on the GrabCut dataset. From left to right: (a) original image with the bounding
box as input to our formulations and [32, 20], (b) GrabCut [32] (c) GrabCut-GC (InitThirds) [20], (d) GrabCut-Pinpoint
(InitThirds) [20], (e) Constrained Random Walker [39], (f) Geodesic Segmentation [8], (g) MILCut without structural infor-
mation, (h) MILCut-Struct, and (i) MILCut-Graph. As (e) and (f) take scribbles as input, we use yellow scribbles to indicate
the user input for foreground and blue ones for background.

Algorithm Error (%) Algorithm Jaccard Index (%)
MILCut-Struct (ours) 4.2 MILCut-Struct (ours) 84
MILCut-Graph (ours) 3.6 MILCut-Graph (ours) 83
MILCut (ours) 6.3 MILCut (ours) 8
Baseline 8.5 Baseline 76

. GrabCut [32] 77
LP-Pinpoint [20], 5 3.0 Binary Partition Trees [33] 71
GrabCut-GC (In%tFul.lBox) [20] 8.9 Interactive Graph Cut [10] 64
GrabCut-GC (IllntTthds) [20] 5.9 Seeded Region Growing [2] 59
GrabCut-Pinpoint (InitFullBox) [20] 8.2 Simple Interactive Object Extraction [16] 63
GrabCut-Pinpoint (InitThirds) [20] 3.7
Simple Interactive Object Extraction [16] 9.1 Table 2: Jaccard Indices on the Berkeley dataset. The last
GMMREF [9] 7.9 four methods take scribbles as input.
Graph Cut [10] 6.7
Lazy Snapping [22] 6.7 Algorithm  ours  [7] [31 [17]1 [34] [11]
Geodesic Segmentation [§8] 6.8 .
Random Walker [15] 54 F-score (%) 0.89 087 086 0.83 0.72 0.57
Transduction [14] 5.4 ) . . .
Geodesic Graph Cut [28] 48 Table 3: F-scores on the Weizmann single object dataset.
Constrained Random Walker [39] 4.1

fiers. Generalized mean is used as the softmax model, and
the exponent r is set to 1.5. In MILCut-Struct, we set A to
0.05. Following [32], we finally apply border matting on
the probability map produced by MILCut in order to refine
the results by deriving smooth object boundaries.

Table 1: Error rates of different approaches on the Grab-
Cut dataset. The first nine algorithms take a single bound-
ing box as input, while the others use a “Lasso” form of
trimaps which contain richer information. InitFullBox and

10Qe 1 Q
InitThirds are two ways of initialization used in [20]. Metrics: Following [28, 20, 39], we use error rates as the



Figure 3: Results of different approaches on the Berkeley dataset. From left to right: (a) original image with the bounding
box as input to our formulations, (b) Seeded Region Growing [2], (c) Simple Interactive Object Extraction [16], (d) MILCut
without structural information, (e¢) MILCut-Struct, and (f) MILCut-Graph. As (b) and (c) take scribbles as input, we use
yellow scribbles to indicate the user input for foreground and blue ones for background.

metric for measuring accuracy of the output on the GrabCut
dataset. The error rate is defined as the ratio of number
of misclassified pixels to number of pixels in unclassified
region. For Berkeley dataset, we follow [26], which uses
binary Jaccard index to measure the object accuracy. The
measure is given by J = |GN M|/|G U M|, where G is the
ground truth and M is the output.

5.2. Results and Discussions

GrabCut: The results for the GrabCut dataset are shown
in Table 1, and Figure 2 illustrates some of the outputs of
different algorithms. Some results are reported by previous
works [20, 28, 39, 9]. For comparison, we also conduct ex-
periments using MILCut without considering structural in-
formation, and a baseline approach which uses all superpix-
els inside the bounding box as a single positive bag in MIL
without applying the sweeping line paradigm. We observe

that although purely using MIL does not guarantee promis-
ing performances (8.5% Baseline), exploiting the relation-
ship between multiple instance learning and the tightness
of the bounding boxes provides competitive results (6.3%,
MILCut), and adding structural constraints further reduces
the error rate to 4.2% (MILCut-Struct) or 3.6% (MILCut-
Graph). We can see that the sweeping line paradigm and
the explicitly enforced structural constraints help our algo-
rithm outperform the other state-of-the art methods. The
only algorithms which are barely comparable with ours in-
clude GrabCut-Pinpoint (InitThirds) [20] and Constrained
Random Walker [39]. However, they either employ heav-
ily engineered initializations which make their approach at
least ten times slower than ours, or use trimaps as input, in
which most of the pixels are already labeled and only a strip
of pixels along boundaries are left for inference.

Berkeley: For the Berkeley dataset, we can see from



Table 2 and Figure 3 that, again, all of our approaches out-
perform the other reported algorithms. The results of the
other methods first appeared in [26]. Note that our ap-
proach uses bounding boxes as input while four others use
more time-consuming scribbles. Specifically, Seeded Re-
gion Growing [2] requires time-consuming parameter tun-
ing and generates unsatisfactory segments due to its lack of
use of background scribbles. Simple Interactive Object Ex-
traction [16], without exploiting the structural information
of objects, fails to produce coherent foreground objects.

To fairly compare all algorithms, we invited four exter-
nal graduate students to provide scribbles and for each im-
age, we use input (bounding boxes or scribbles) provided
by them within 10 seconds. In [26], it is reported that if an
user could spend on each image about 60 seconds to provide
additional scribbles, then the performances of the other al-
gorithms can be boosted to about 90%. For our framework,
it is also natural to incorporate additional user input: we
could simply assign superpixels related to positive/negative
scribbles as positive/negative instances. We experimented
and found that if we could spend about 10 more seconds
to provide about three scribbles to each image, the Jaccard
Index of our framework quickly increases to over 90%. In
this case, we set the maximum number of weak classifiers
to T' = 15 to provide real-time feedback.

Weizmann: On the Weizmann single object dataset, as
shown in Table 3, MILCut-Graph also consistently ourper-
forms all other widely-used segmentation algorithms [7, 3,

, 34]. The results of others are taken from the website of
the Weizmann segmentation database.

In general, MILCut explicitly embeds the bounding box
prior in the model, and is able to stretch the foreground
segment towards all sides of the bounding box. This is
illustrated by the heads in the second and fourth rows of
images in Figure 2. The two variants of our approach,
MILCut-Struct and MILCut-Graph, are generally compa-
rable as shown in both Figure 2 and 3. On one hand, the
Graph Cut algorithm in MILCut-Graph performs global op-
timization while MILCut-Struct uses gradient descent in the
feature space which might fall in local minima. On the other
side, MILCut-Struct naturally embraces the MIL learning
paradigm, strengthening the appearance model in training.

Running Time: For each image, after superpixels are
generated and features are computed in one to three seconds
altogether, both MILCut-Struct and MILCut-Graph take
only one to two seconds to segment a foreground object.
Also, it takes only five to ten seconds for either MILCut-
Struct or MILCut-Graph to segment an image based on
pixels instead of superpixels. Comparatively, the systems
whose accuracies are competitive to ours, GrabCut-Pinpoint
[20] and Constrained Random Walker [39], both have cer-
tain limitations. GrabCut-Pinpoint [20] needs to model
Gaussian mixture models as an initialization, and then iter-

MILCut-Graph  GrabCut [32]

No noise 0.89 0.88
Human noise 0.89 0.86
Machine noise 0.86 0.85

Table 4: F-scores on the Weizmann single object dataset
with noisy input.

Algorithm  ours  [3] [17] [11] [34]
F-score (%) 0.71 0.68 0.66 0.61 0.58

Table 5: F-scores on the Weizmann double object dataset.

atively solve an integer programming using pinpointing for
five times. The whole system takes several minutes to seg-
ment an image, and even with GPU acceleration, it is one
or two orders of magnitude slower than our method. Con-
strained Random Walker [39] has comparative accuracy and
running time with our approach, but takes trimaps as input,
which are harder to obtain and contain much richer infor-
mation than bounding boxes.

5.3. Experiments with Noisy Input

In real cases, the assumptions we made for MILCut can-
not always be satisfied. In this section, we consider two dis-
tinct situations where multiple instance constraints are not
met: 1) The bounding box is not tight; 2) The object is not
connected. Experiments show that MILCut can still obtain
better performance than other approaches in these cases.

Inaccurate Bounding Boxes: We consider two types of
inaccurate bounding boxes. In one case, we invite graduate
students to label each image within five seconds, leading
to noisy and inaccurate boxes (named human noise). In a
second experiment, for each image, we scale the distances
between the center of the box and each of its four sides with
coefficients randomly sampled in [0.8, 1.4] (named machine
noise). In both cases, the MIL constraints are no longer
strictly satisfied. We can see from Table 4 that MILCut-
Graph can do better than GrabCut [32] consistently.

Unconnected Objects: We then apply our algorithm on
the Weizmann double object dataset, where in each image,
there are two unconnected objects. We use a single bound-
ing box containing both objects as input to our approach.
The results are shown in Table 5. Our approach MILCut-
Graph achieves a higher F-score than all other listed meth-
ods. Here the results of others are taken from the website of
the Weizmann segmentation database.

6. Conclusion

In this paper, we propose MILCut, a novel sweeping line
multiple instance learning paradigm to segment the fore-
ground object inside a user-provided bounding box. We



theoretically justify that the sweeping line strategy for MIL
bagging naturally embraces the user’s intention carried by a
bounding box. The algorithm is simple, easy to implement,
and shown to be a powerful tool with superior accuracy and
efficiency. We believe our observation of modeling inter-
active image segmentation in a multiple instance learning
setting would encourage future research in both areas.
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