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Abstract

In this paper, we study the configurations of motion and
structure that lead to inherent ambiguities in radial distor-
tion estimation (or 3D reconstruction with unknown radial
distortions). By analyzing the motion field of radially dis-
torted images, we solve for critical surface pairs that can
lead to the same motion field under different radial dis-
tortions and possibly different camera motions. We study
the properties of the discovered critical configurations and
discuss the practically important configurations that often
occur in real applications. We demonstrate the impact of
the radial distortion ambiguity on multi-view reconstruction
with synthetic experiments and real experiments.

1. Introduction
Structure from motion (SfM) and self-calibration have

become commonplace, as recent systems demonstrate
automatic 3D reconstructions from large-scale uncalibrated
photo collections [1, 3, 20]. These systems show that the
self-calibration of unknown radial distortions normally
works well. However, it has not been well understood when
the self-calibration of radial distortion could fail.

This work was initially motivated by the application
of SfM in geographic survey, where Unmanned Aerial
Vehicles (UAVs) are used to capture the images. These
capture systems typically use wide-angle cameras (e.g.
GoPro) in order to cover large areas, and the images may
contain significant radial distortions. The captured images
are then processed by SfM tools, for example, Bundler [15]
and VisualSFM [21, 19], to reconstruct the ground models.
While these UAV reconstructions usually work, we find for
certain captures that the SfM softwares produce incorrectly
distorted 3D models along with incorrect estimations of
radial distortions (See Figure 1). These failures in radial
distortion estimation inspired this paper.

3D reconstruction is well known to have ambiguities
for certain configurations of motion and structure. These
so called critical configurations have been extensively
studied, for example, for Euclidean reconstruction with

calibrated cameras [5, 12, 9, 7] and self-calibration of linear
cameras [17, 18, 6, 10]. In real applications, cameras often
have significant radial distortions that need to be explicitly
modeled. However, we find little previous study on the
critical configurations for radial distortion. In this paper,
we will study the configurations that can lead to ambiguous
reconstructions due to the ambiguity of radial distortion.
Our main contributions are the following:

• A motion field based framework for solving ambiguous
configurations under a general radial distortion model;

• We solve for the critical surfaces and motions for radial
distortion self-calibration using the new framework;

• We present an important critical configuration that often
occurs in practical applications.

Our findings can guide image capture to better avoid am-
biguous radial distortion estimation, and correspondingly
show when pre-calibration of radial distortion is necessary.

The remainder is organized as follows: Section 2 dis-
cusses the background of the critical configuration study.
Section 3 introduces our framework for analyzing the ambi-
guities for radial distortion self-calibration. We investigate
the critical configurations and their properties in Section 4
and 5, and then discuss in Section 6 a practically important
configuration that exists under known motion directions.
Conclusions and future work are given in Section 7.

2. Background
In the past several decades, researchers have investi-

gated the critical configurations for many different 3D
reconstruction problems. Given any camera motion, there
may exist a family of possible critical surfaces for which
3D reconstruction is ambiguous (regardless of the scale).
Ruled quadrics or their degenerate forms are critical sur-
faces for two view reconstruction and image velocity based
reconstruction [11, 13, 5, 12]. For three views or more,
critical elliptic quartics may exist for Euclidean recon-
struction and projective reconstruction [9, 4, 8, 7]. For the
self-calibration of linear cameras, there exist a set of critical
motions under which 3D reconstruction is ambiguous re-
gardless of the structures. A complete study of such critical
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(a) A critical configuration that leads to a significantly distorted reconstruction (of the roughly flat ground). As verified by the undistorted
images, the radial distortion is not correctly estimated. See Figure 3 where we re-produce the same problem using a synthetic dataset.

(b) A typical successful reconstruction example, where radial distortions are well estimated. Notice one of the flat ground surface.

Figure 1. Reconstruction of two GoPro UAV sequences using VisualSFM [19] (similar results are produced by Bundler [15]). No radial
distortion calibration is specified to the software. As shown by the blue pyramids, the camera points straight downward and moves parallel
to the ground in the first capture. In the second capture, the camera has more variations in moving directions and viewing directions.

motions for monocular self-calibration has been presented
by Sturm [17], and further study for varying intrinsics can
be found in [18, 10]. However, no prior work has examined
the critical configurations for radial distortion. In this paper,
we will study this new critical configuration problem.

A few special degenerate configurations for radial dis-
tortion self-calibration have been reported previously. For
example, Mičušı́k et al. [14] and Brito et al. [2] recognize
forward motion as a degenerate case for recovering radial
distortion parameters. Additionally, Mičušı́k et al. [14] find
pure translation to be ambiguous if all point displacements
are parallel to the camera’s translation in XY plane. These
are in fact special cases. This paper will present a full
analysis of the critical configurations for arbitrary motions.

Although modern reconstruction algorithms use discrete
point correspondences instead of motion fields, we find
the latter more convenient for analyzing radial distortions.
Unlike the complicated non-linear relationship between
the radial distortions in discrete camera frames, the radial
distortion in a continuous motion can be conveniently
modeled with derivatives, which allows to solve for the
critical configurations without any explicit parametrization.
In this paper, we opt for the differential approach, in
particular, on top of the motion field study by Horn [5].
As deferential motions correspond to small discrete camera

motions, our findings are valuable for the reconstruction
of video sequences, where the relative ambiguities can
accumulate to large reconstruction errors.

3. Problem formulation
The question we want to answer is the following: given

two cameras with different radial distortions and possibly
different motions, what surfaces could lead to the same
motion field? Such surfaces would be critical for radial dis-
tortion self-calibration. Accordingly, the family of ambigu-
ous motion fields is given by the possible configurations of
camera pairs and their corresponding critical surfaces.

To focus on the ambiguity caused by radial distortions
alone, we assume the two cameras to have the same linear
intrinsics. As reviewed earlier, the ambiguity of the linear
intrinsics has already been well studied. If the analysis
includes more varying parameters, such as focal length,
the ambiguity would be a larger super-set of the radial
distortion related ambiguity, the study of which is beyond
the scope of this paper.

3.1. Linear projection

First, we briefly review the motion field of linear cameras
using notations similar to [5]. Without loss of generality, we

2



consider the image of an identity camera. The projection
p = (x, y, 1)T of a 3D point P = (X,Y, Z)T is

p =
1

P · ẑ P,
where ẑ = (0, 0, 1)T is the viewing direction. Given a
relative moving speed P ′, the velocity of its observation is

p′ =
1

P · ẑ (P ′ − (P ′ · ẑ)p) .
Suppose the camera moves with an instantaneous transla-
tional velocity t and an instantaneous rotational velocity ω,
the velocity of the 3D point relative to the camera is

P ′ = −t+ P × ω = −t+ (P · ẑ) p× ω.
By substituting P ′, we obtain the image velocity

p′ =
1

Z
((t · ẑ) p− t) + [p, ω, ẑ] p− p× ω, (1)

where [p, ω, ẑ] = p · (ω × ẑ) denotes the triple product.

3.2. General radial distortion

Now we consider the images with radial distortion. With
a typical assumption of the radial distortion being central
and centered around the principal point, each image cir-
cle around the principal point corresponds to another re-
scaled image circle in the undistorted image. With this
simple mechanism in mind, we use a parameter-free radial
distortion model based on the scaling of the image circles.
Let f(r2) be the scaling factor for the image circle r2 =
x2 + y2 = (pT p − 1), the coordinate mapping from the
distorted image to the undistorted image can be written as:

undistort(p) = diag
(
f(r2), f(r2), 1

)
p.

We will refer to f(r2) as the radial distortion function. For
convenience, we define two helper matrix functions

F (r2) = diag(f, f, 1) and F ′(r2) = diag(f ′, f ′, 0).

In general, we have f ′(r2) 6= 0 because f(r2) should not
be a constant. From now on, we will omit the argument
(r2) for f , f ′, F , and F ′ to simplify the equations, so the
undistorted coordinate can be simply written as Fp.

This parameter-free radial distortion model avoids
the possible limitations and complexities of explicit
parametrization. As a result, our findings will not be
limited to any specific radial distortion parametrization,
and can be applied to both typical near-linear cameras and
central omni-directional cameras.

It is worth pointing out that f(0) would correspond to
the reciprocal of focal length if we also model the variation
of focal length. Although real radial distortions have
f(0) = 1, this paper will solve the critical configurations
without explicit assumptions on f(0). While our analysis
focuses on just radial distortion, the discovered configura-
tions may be applied to additional variations of focal length.

3.3. Projection under radial distortion

Given a point p in a distorted image, we can obtain the
velocity of the undistorted image point Fp by substituting
p with Fp into Equation 1:

(Fp)′ =
1

Z
((t · ẑ)Fp− t) + [Fp, ω, ẑ] (Fp)− (Fp)× ω.

In addition, we know the relationship between the velocity
p′ in the distorted image and the velocity (Fp)′ in the
undistorted image from differentiation:

(Fp)′ = Fp′ + F ′(pT p)′p =
(
F + 2F ′ppT

)
p′.

The above two forms of (Fp)′ must be equal to each other.

3.4. Ambiguous radial distortion

Suppose a distortion-free camera with motion {t1, ω1}
along with depth Z1(x, y) produces the same motion field
as does a motion {t2, ω2} along with depth Z2(x, y) under
a radial distortion function f , the following holds true:

(t2 · ẑ)Fp− t2
Z2

+ [Fp, ω2, ẑ] (Fp)− (Fp)× ω2 =

(
F + 2F ′ppT

)( (t1 · ẑ) p− t1
Z1

+ [p, ω1, ẑ] p− p× ω1

)
.

(2)

Since the Z-component of the image velocity is always
0, the vector equality gives two scalar constraints, which
are usually sufficient for solving Z1(x, y) and Z2(x, y).
Such a configuration of {t1, t2, ω1, ω2, f, Z1, Z2} is called
a critical configuration, where Z1p and Z2Fp are the
critical surface pair for {t1, t2, ω1, ω2, f}. In the next
Section, we will use this constraint to solve for the critical
surfaces and derive critical motions.

The configuration with one distortion-free camera does
not lose any generality in terms of critical surfaces. We
can apply the undistortion transformation of the second
camera to produce the undistorted image, for which the first
camera can be seen as the distorted one. Similarly, given
two cameras that have different radial distortion functions,
we can apply one of the undistortion transformations and
produce the configuration of one distortion-free camera and
another camera with a relative distortion.

4. Critical configurations
In this section, we solve for the critical surfaces and then

derive the critical motions where any surface is critical.

4.1. Critical surfaces

For a moment we will assume t2 6= 0. By taking
the dot-product of the Equation 2 with t2 × Fp, we can
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eliminate Z2 and obtain the constraint for solving the first
critical surface Z1 as follows

0 = ((Fp)× ω2 − F (p× ω1)) · (t2 × Fp)
+

2

Z1

(
(t1 · ẑ)(pT p)− pT t1) (F ′p) · (t2 × Fp)

+
1

Z1
[t2, F t1, Fp] + 2(pT p) [p, ω1, ẑ] (F ′p) · (t2 × Fp).

Given Fp = (f/f ′) (F ′p)+ ẑ, we find (F ′p) · (t2×Fp) =
(F ′p) · (t2 × ẑ) = f ′(t2 × ẑ)T p. By further expanding the
triple products, we can rewrite the above equation as

0 = ((Fp)× ω2 − F (p× ω1)) · (t2 × Fp) (3)

+
2f ′

Z1
(t1 · ẑ)(pT p)(t2 × ẑ)T p− 2f ′

Z1
pT t1(t2 × ẑ)T p

+
1

Z1
(t2 × Ft1)TFp+ 2f ′ (pT p) pT (ω1 × ẑ)(t2 × ẑ)T p,

which defines the first critical surface Z1p. Another way to
view this critical surface is a depthmap:

Z1 =

(
−2f ′(t1 · ẑ)(pT p)(t2 × ẑ)T p+

2f ′pT t1(t2 × ẑ)T p− (t2 × Ft1)TFp

)
(

((Fp)× ω2 − F (p× ω1)) · (t2 × Fp)
+ 2f ′ (pT p) pT (ω1 × ẑ)(t2 × ẑ)T p

) . (4)

The depth from such a division is obviously valid only
when the denominator is non-zero. If both the numerator
and the denominator are zero, any depth satisfies Equa-
tion 3, so the viewing ray would lie on the critical surface.
In case only the denominator is zero, the resulting depth
would be infinite, where the image point is a vanishing
point of the critical surface.

By taking the dot-product of Equation 2 with ẑ × p, we
find a simple relationship between the critical surface pair:

1

Z2
t2 · (ẑ × p)− 1

Z1
(Ft1) · (ẑ × p) = (5)

− ((Fp)× ω2 − F (p× ω1)) · (ẑ × p),
which allows us to obtain Z2 from Z1 when t2× ẑ 6= 0. The
depthmap of the second critical surface can be obtained as:

Z2 =
Z1 t2 · (ẑ × p)(

Ft1 −
(
(Fp)× ω2 − F (p× ω1)

)
Z1

) · (ẑ × p) .
(6)

The second critical surface is then given by Z2 F p. Note
when t2 × ẑ = 0, we can still solve for Z2 by taking
dot-product with p instead, which this paper will skip.

Figure 2 demonstrates some interesting critical surfaces
and their motion fields. The critical surfaces yield the
motion fields that are ambiguous for radial distortion self-
calibration. Despite the difference of using image velocity
here, the degenerate case found by [14] is apparently only a
special case. We will discuss more properties of the critical
configurations in Section 5.

4.2. Critical motions

There exist critical motions under which any surface is
ambiguous for recovering radial distortions. For any critical
motion, Equation 2 and 3 must hold true for any depth
Z1 and Z2, any image point p, and any radial distortion,
therefore the following two constraints must be satisfied:

0 =
(
(Fp)× ω2 − F (p× ω1)

) · (t2 × Fp)
+ 2f ′ (pT p) pT (ω1 × ẑ)(t2 × ẑ)T p, (7)

0 = 2f ′(t1 · ẑ)(pT p) (t2 × ẑ)T p
− 2f ′pT t1(t2 × ẑ)T p + (t2 × Ft1)TFp. (8)

The two equations can be viewed as polynomial functions
of p, f , and f ′, where the coefficient for each term of
different order must be zero.

Consider firstly the general case of t1 6= 0 and t2 6= 0,
Equation 8 requires t1×ẑ = t2×ẑ = 0, and Equation 7 then
requires ω1 × ẑ = ω2 × ẑ = 0 and ω1 = ω2. That is, trans-
lation along the optical axis and rotation around the opti-
cal axis are critical motions for recovering radial distortion.
Note the critical motion includes the combination of them.

When t1 = 0 or t2 = 0, we find no real critical surfaces,
except for the critical motion of rotation around the optical
axis. If t1 = 0 and t2 6= 0, we are still able to obtain Equa-
tion 7 from Equation 3, which leads to ω1× ẑ = ω2× ẑ = 0
and ω1 = ω2. By applying these conditions in Equation 2,
we find (t2 · ẑ)Fp − t2 = 0, which can be satisfied for all
p only when t2 = 0. Similarly we must have t1 = 0 when
t2 = 0. Therefore, radial distortion is not ambiguous for
pure rotations unless the rotation is around the optical axis.

In summary, for the self-calibration of radial distortion,
we find the following critical motions:

t× ẑ = ω × ẑ = 0. (9)

The ambiguity is not surprising since such motions are
symmetric around the optical axis. The forward motion
degeneracy reported in [14, 2] is a special case when ω = 0.
On the other hand, these critical motions is a subset of the
critical motions for the linear camera self-calibration [17].
In further analysis of critical surfaces, we will exclude the
critical motions and any pure rotation cameras.

5. Properties of the critical configurations
This section discusses a few properties of the critical

configurations for radial distortion self-calibration.

5.1. Comparison with the distortion-free case

It can be seen from Equation 3 and 4 that the critical
surfaces for radial distortion self-calibration have high
degrees depending on the radial distortion function f . In
comparison, the critical surfaces for the distortion-free
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Z1 Z2 p′ Z1p Z2Fp
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(a) t1 = t2 = (1, 0, 0)T , ω1 = (0,−0.1, 0)T , ω2 = (0,−0.3, 0)T . The critical surfaces are rotationally symmetric. Note the convexity/concavity.
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(b) t1 = t2 = (−0.683853,−0.72962, 0.0)T , ω1 = (0.695244,−0.6516340,−0.0766849)T , ω2 = (0.692557,−0.649115,−0.0766849)T .
The critical surfaces are rotationally symmetric. The motion field is similar to a magnetic field instead of being roughly parallel.
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(c) t1 = t2 = (−0.01, 0,−1)T , ω1 = (0, 0.01, 0.05)T , ω2 = (0, 0.099, 0.05)T . The translations are close to being forward in this example.
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(d) t1 = (0.850138,−0.526560, 0)T , t2 = (0.992789,−0.119871, 0)T , ω1 = (0.600179, 0.419835, 0)T , ω2 = (0.080059, 0.179102, 0)T .

 

 

−1.0 −0.5 0.00 0.50 1.00

−1.0

−0.5

0.00

0.50

1.00
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

−1.0 −0.5 0.00 0.50 1.00

−1.0

−0.5

0.00

0.50

1.00
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 0.00 0.50

−0.5

0.00

0.50

(e) t1 = t2 = ω1 = ω2 = (1, 0, 0)T . Instead of being perpendicular, the translation and rotation are parallel in this example.
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(f) t1 = (1, 0, 0)T , t2 = (0, 0, 1)T , ω1 = ω2 = (0, 1, 0)T . The second camera has forward motion, and the first surface is rotationally symmetric.

Figure 2. Critical surface examples created with identity cameras and a radial distortion function: f(r2) = 1 + 0.1r2 + 0.012r4. From
left to right are 1) the first depthmap, 2) the second depthmap, 3) motion field direction, 4) first critical surface, 5) second critical surface.
Note only the sub-portion of the critical surface corresponding to the [−1, 1]× [−1, 1] image region is visualized.
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problem can be obtained by setting f = 1 and f ′ = 0,
which become the well-known simpler ruled quadrics:

(P × (ω2 − ω1)) · (t2 × P ) + (t2 × t1)TP = 0. (10)

For many camera configurations, the critical surface for
radial distortion self-calibration is in fact similar to the
corresponding ruled quadrics, and can be seen as a distorted
version of the counterpart. An example configuration with
such critical surfaces can be found in Figure 2(d).

When the camera motion is known to be pure translation
ω1 = ω2 = 0 or pure rotation t1 = t2 = 0, critical surfaces
do not exist in the distortion-free case. When radial dis-
tortion is considered, there exist the previously discussed
critical motions but no additional critical surfaces. It is
already shown that radial distortion is not ambiguous for
pure rotation except for rotations around the optical axis.
Similarly, radial distortion is found not ambiguous for pure
translation except when it is along the optical axis.

The biggest difference regards the case of known
rotation ω1 = ω2 6= 0 and known translation t1 = t2 6= 0
(ignoring scale). Under such conditions, it is known that
critical surfaces do not exist for the distortion-free prob-
lem [5]. In contrast for radial distortion self-calibration,
critical surfaces still exist, even when both rotation and
translation are known: t1 − t2 = ω1 − ω2 = 0. This can
be seen from Equation 4 because f ′ 6= 0. See Figure 2 for
examples of such critical surfaces.

The new kind of critical surfaces are particularly interest-
ing. It shows that 3D reconstruction with unknown radial
distortion may still be ambiguous even when translation
and (or) rotation are correctly estimated.

5.2. Additional rotation around the optical axis

For any configuration of motion and surface that satisfies
Equation 2, let us consider an additional rotation velocity
around the optical axis such that ωδ1 = ω1 + δẑ and
ωδ2 = ω2 + δẑ. The addition to the left side of Equation 2 is
(Fp)× (δẑ) = fδ(p× ẑ), and is equal to the addition to the
right side F (p× (δẑ)) = fδ(p× ẑ). Therefore, Equation 2
still holds for {t1, ωδ1, t2, ωδ2} with the same Z1 and Z2.
That is, equal additions to the rotation velocities around the
optical axis does not change the critical surfaces, despite
the changes in the motion fields.

6. An interesting degenerate case
As shown by the polynomial terms of different degrees

in Equation 3, critical surfaces are complicated in general.
We are interested in possible common divisors for those
terms, so that the depth in Equation 4 can be simplified.

6.1. A common polynomial divisor

An interesting configuration arises during our analysis.
We find Equation 3 of the first critical surface has a second

order polynomial factor as follows:

Φ = pT t1 (t2 × ẑ)T p, (11)

when the following conditions are met:

t1 · ẑ = t2 · ẑ = 0, t1 × t2 = 0, and t1 · t2 6= 0;

(ω1 − ω2) · ẑ = 0 and t1 ·ω1 = t2 ·ω2 = 0. (12)

The camera motions can be viewed as the differential mode
of one of the following well known cases:

• Moving on a sphere while pointing to center [16]. Orbital
motion with additional rotation around the optical axis.

• Moving on a plane that is perpendicular to the viewing
direction. This can be seen as moving on an infinite
sphere (ω × ẑ = 0) in the above case.

It can be seen that t1, t2, (ω1× ẑ), and (ω2× ẑ) are parallel.
Note critical surfaces will not exist for the distortion-free
problem due to the known translation t1 × t2 = 0.

We first try to simplify the cross products that involve
Fp, that is, (Fp)×ω2−F (p×ω1). Using the invariance dis-
cussed in Section 5.2, we can assume ω1 · ẑ = ω2 · ẑ = 0
from (ω1 − ω2) · ẑ = 0 without changing the critical
surfaces. By using the fact p = (p− ẑ) + ẑ, we find

(Fp)× ω2 − F (p× ω1)

= f (p− ẑ)× ω2 + ẑ × ω2 − (p− ẑ)× ω1 − f (ẑ × ω1)

= (p− ẑ)× (fω2 − ω1) + ẑ × (ω2 − fω1), (13)

Under the proposed conditions, we can prove the terms in
the numerator and the denominator of Equation 4 divisible
by Φ. By removing the dot-products of the perpendicular
terms that produce zeros and by expanding the quadruple
product, we can transform as follows:(

(Fp)× ω2 − F (p× ω1)
) · (t2 × Fp)

=

(
(p− ẑ)× (fω2 − ω1)

+ ẑ × (ω2 − fω1)

)
·
(
f t2 × (p− ẑ)

+ t2 × ẑ

)
=

(
(p− ẑ)× (fω2 − ω1)

)
·
(
f t2 × (p− ẑ)

)
=

(
(p− ẑ) · t2) (

(p− ẑ) · (f2ω2 − fω1)
)

= − pT
(
(f2ω2 − fω1)× ẑ

) (
t2 × ẑ

)T
p,

which can be divided by Φ because t1 ‖ (ω1×ẑ) ‖ (ω2×ẑ).
Similarly, the term 2f ′ (pT p) pT (ω1 × ẑ)(t2 × ẑ)T p in the
denominator can be divided by Φ because t1 ‖ (ω1× ẑ). As
for the terms in the numerator, both (t1 · ẑ)(pT p)(t2× ẑ)T p
and (t2 × Ft1)TFp become zero, and the only left term is
2f ′ pT t1(t2 × ẑ)T p = 2f ′ Φ.

The common divisor Φ itself defines two critical planes
tT1 p = 0 and (t2 × ẑ)T p = 0. The two planes are not too
interesting because the camera center is on the planes and
they are also perpendicular to the image plane. We will
leave the planes here and focus on the simplified depth.
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6.2. Rotationally symmetric surfaces

By using the common divisor Φ, the first critical surface
becomes much simplified

Z1 =
2f ′ pT t1(t2 × ẑ)T p(

− pT
(
(f2ω2 − fω1)× ẑ

) (
t2 × ẑ

)T
p

+ 2 f ′ (pT p) pT (ω1 × ẑ) (t2 × ẑ)T p

)
=

2 (t1 · t2)f ′(
−(t2 · (ω2 × ẑ))f2 + (t2 · (ω1 × ẑ))f

+ 2 (t2 · (ω1 × ẑ))(pT p)f ′
) , (14)

which gives a single depth value for each image circle
r2 = x2 + y2 = pT p − 1. The resulting critical surface is
rotationally symmetric around the optical axis.

The second critical surface can be solved correspond-
ingly using the relationship between the two depthmaps.
Equation 13 allows the the following simplification:

((Fp)× ω2 − F (p× ω1)) · (ẑ × p)
= (ẑ × (ω2 − f ω1)) · (ẑ × p).

Accordingly, the second critical surface is simplified to

Z2 =
Z1 t2 · (ẑ × p)

(Ft1 − Z1 (ẑ × (ω2 − f ω1))) · (ẑ × p)
=

(t1 · t2) Z1

(t1 · t1) f − t1 · (ẑ × (ω2 − f ω1))Z1
, (15)

which is again rotationally symmetric.1 Two examples of
such critical surface are given in Figure 2(a) and 2(b). The
pair of critical surfaces are both rotationally symmetric, but
have different curvatures and even different curvature signs.

For a limited camera viewing angle, the portion of visible
critical surfaces can be near-spherical, near-planar, or even
a perfect plane depending on the motion and radial distor-
tion function. For example, when f(r2) = 1/(1−λr2) and
ω1 × ẑ = 0, we are given a constant depth Z1 = 4λ (t1·t2)

t2·(ẑ×ω2)
.

Let us revisit the UAV capture in Figure 1(a), where the
camera moves parallel to the ground and the camera points
to the ground. The visible surface relative to each camera
is near-planar and thus have caused the ambiguity in radial
distortion estimation.

6.3. Experiments

We devise two synthetic image sequences to verify the
radial distortion ambiguity and demonstrate its impact on
multi-view 3D reconstruction. We feed noise-free feature

1There exist other configurations where only one critical surface is
rotationally symmetric. For example, when t1 · ẑ = (ω1 − ω2) · ẑ =
t1 ·ω1 = t1 ·ω2 = 0 and the second camera moves forward
t2 × ẑ = 0, only the first critical surface is rotationally symmetric

Z1 =
t1 · t1

t1 · (ẑ × (ω2 − f ω1))
. See Figure 2(f) for an example.

coordinates and perfect matches to VisualSFM [19], and
compare the automatically reconstructed models to the
ground-truth models. Although the reconstruction method
is not velocity-based, we expect the same ambiguity with
densely sampled image sequences.

First, as shown in Figure 3, we move a camera above a
planar point grid at a constant height and keep the camera
pointing to the plane. The distorted images are generated
for the radial distortion f(r2) = 1 + λr2, where λ = 0.2.
This can be seen as an ideal version of the capture in
Figure 1(a). Similar to the real capture, the automatic re-
construction of the synthetic dataset produces an incorrect
distorted 3D model due to the ambiguity of radial distortion.

Second, we use a point grid on a perfect sphere. The
camera moves on a co-centered outer sphere and points to
the sphere center. The distorted images are generated for
the radial distortion f(r2) = 1+λr2, where λ = −0.2. The
spherical surface is rotationally symmetric and ambiguous
for the reconstruction. As shown in Figure 4, the automatic
reconstruction produces a concave surface instead.

The experiments show that multi-view reconstruction
can fail to self-calibrate radial distortions under certain crit-
ical configurations. The distortion of the reconstruction is
caused locally by the curvature difference between the crit-
ical surface pairs and globally by the curvature error accu-
mulation from the persistent ambiguity in the entire capture.

Typical SfM systems initialize the radial distortions
of new cameras to zero and rely on bundle adjustments
to optimize the parameters. We observe a tendency to
under-estimate the radial distortions in near-degenerate
configurations, which can be partially explained by the
zero initialization. The ambiguity of radial distortion
is likely to cause significant inaccuracy when the radial
distortions are sever or when the initial estimations are
too inaccurate. Also note there would be more ambiguity
when using more radial distortion parameters, for example,
f(r2) = 1 + λ1r

2 + λ2r
4 compared to f(r2) = 1 + λ1r

2.

7. Conclusions and future work
This paper presents the critical configurations for radial

distortion self-calibration under a general radial distortion
model. It is shown that radial distortion introduces a new
kind of ambiguity into SfM. Unlike the pure linear camera
parametrization, critical surfaces exist even for known
translations and known rotations due to radial distortion. In
particular, this paper demonstrates the practically important
critical configurations that should be avoided in real capture
for radial distortion self-calibration.

This paper is not meant to be a complete study of all
possible ambiguities related to radial distortion. The author
wishes to conduct a numerical stability study on near-
degenerate congurations and extend the investigation from
continuous motion to discrete viewpoints in the future.
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(a) The automatic reconstruction estimates an incorrect λ′ = 0.02 (b) The ground-truth reconstruction using the known λ = 0.2

Figure 3. Reconstruction of a planar point grid. The blue pyramids are the cameras and the black dots are the reconstructed points.

(a) The automatic reconstruction estimates an incorrect λ′ = 0.025 (b) The ground-truth reconstruction using the known λ = −0.2

Figure 4. Reconstruction of a point grid on a sphere. The blue pyramids are the cameras and the black dots are the reconstructed points.

Acknowledgements The author sincerely thanks Thomas
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