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Abstract

This paper presents a novel introduction of online target-
specific metric learning in track fragment (tracklet) asso-
ciation by network flow optimization for long-term multi-
person tracking. Different from other network flow for-
mulation, each node in our network represents a track-
let, and each edge represents the likelihood of neighbor-
ing tracklets belonging to the same trajectory as measured
by our proposed affinity score. In our method, target-
specific similarity metrics are learned, which give rise to
the appearance-based models used in the tracklet affinity
estimation. Trajectory-based tracklets are refined by using
the learned metrics to account for appearance consistency
and to identify reliable tracklets. The metrics are then re-
learned using reliable tracklets for computing tracklet affin-
ity scores. Long-term trajectories are then obtained through
network flow optimization. Occlusions and missed detec-
tions are handled by a trajectory completion step. Our
method is effective for long-term tracking even when the
targets are spatially close or completely occluded by oth-
ers. We validate our proposed framework on several public
datasets and show that it outperforms several state of art
methods.

1. Introduction
In this paper, we address the challenging problems in

long-term tracking of multiple persons in a complex scene
captured by a single, uncalibrated camera. The challenging
problems are due to many sources of uncertainty, such as
clutter, serious occlusions, targets interactions, and camera
motion.

Recently, significant progress has been reported in hu-
man detection [6, 8, 7, 10, 21, 22, 23], and this pro-
motes the popular tracking paradigm: detect-then-track
[11, 13, 24, 28, 3, 19, 4, 2, 5]. The main idea is that a human
detector is run on each frame to detect targets of interest,
and then detection responses are linked across multi-frames
to obtain target trajectories. In [28, 3, 19, 5], the authors
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Figure 1. Frames from ”BAHNHOF” sequence of ETH dataset
with target identities labeled by our method. The ID labels 2, 40,
42 in the top row and ID label 16 in the bottom row remain un-
changed after many occlusions and interactions over more than
180 frame intervals.

formulate the multi-frame, multi-target data association as a
network flow problem. Zhang et al. [28] use a push-relabel
method [9] to solve the min-cost flow problem. Berclaz et
al. [3] and Pirsiavash et al. [19] propose to use more effi-
cient successive shortest path algorithms, which can provide
roughly the same globally optimal tracking results with less
running time. In a more recent paper, Butt et al. [5] incor-
porate higher-order track smoothness constraints, such as
constant velocity, for multi-target tracking. However, due to
the limitation of the deployed appearance cues, such meth-
ods usually cannot deal with long-term tracking to obtain
a complete trajectory of a target. This is because frequent
prolonged occlusions and target interactions will result in
track fragments of a trajectory. If we make full use of the in-
formation from the whole sequence (previous, current, and
subsequent frames), trajectory can be recovered and track-
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Figure 2. Our proposed framework. In the cost-flow network, each node denotes a reliable tracklet; The flow costs of edges are defined by
negative log of the affinity scores, which are obtained through a two-step target-specific metric learning and metric refinement processes
on segments of short-time sequences known as local segments.

ing errors such as missed tracks or identity switches can be
corrected. Then, similarity measurement between two track
fragments (tracklets) to determine whether they belong to
the same person becomes very critical in this tracklet asso-
ciation problem. Some of the state of art methods [20, 11]
fuse several features such as motion, time, position, size
and appearance to improve similarity measurement. How-
ever, their appearance models are still not adequate to han-
dle large appearance variations, adversely affecting tracking
performance.

As in [12], we advocate a discriminative target-specific
appearance-based affinity model to reinforce the appear-
ance cues for multi-person tracking. Unlike [12], we for-
mulate the appearance model learning problem as a metric
learning problem, which can provide reliable target-specific
affinity scores between tracklets. Our target-specific met-
rics are online learned while the PIRMPT system proposed
by [12] needs off-line learned local descriptors. Further-
more, our target-specific metrics are learned within each
short-time segment known as a local segment instead of the
entire sequence. This avoids the variability and complexity
of learning metrics on a long-term sequence so that the addi-
tional computation due to learning can be greatly reduced.
Due to less variability and complexity within a short-time
segment, better metrics adaptive to the local segment can
be learned more efficiently.

The framework proposed in this paper is shown in Figure
2. The target-specific metric learning process incorporates
multi-person tracking cues, such as motion, spatio-temporal

constraint and exit state. In contrast to conventional metric
learning applications [14, 29, 15, 16], our proposed frame-
work does not need off-line training. Moreover, we formu-
late the trajectory recovery by tracklet association problem
as a min-cost flow network optimization. Each node in the
network represents a reliable tracklet. The flow cost of a
connected node pair is defined by a novel affinity score ob-
tained through a two-step target-specific metric learning and
metric refinement processes.

The main contribution of this paper is that a target-
specific metric with strong discriminative power is online
learned in two steps. The first step is to identify reliable
tracklets. The second step estimates the affinity scores. The
metrics are learned within each local segment for reduced
computation and locally adaptive metrics.

The rest of this paper is organized as follows. Section
2 describes the cost-flow network formulation. Section 3
presents the online target-specific metric learning. Trajec-
tory completion for full trajectory recovery is presented in
section 4 . Experimental results and comparisons are shown
in section 5. Section 6 concludes the paper.

2. Cost-flow Network Formulation for Trajec-
tory Recovery by Tracklets Association

The cost-flow network has been shown to be effec-
tive for estimating the trajectories in the previous stud-
ies [28, 3, 19, 5]. However, in these works, the nodes
are defined by the detection responses. In recent works
[12, 25, 27, 26], tracklets were generated based on associa-



tion of detection responses. We generate tracklets based on
motion trajectory using successive shortest path algorithm.
We can construct a smaller graph based on such tracklets
which are of a higher order of abstraction than those based
on detection responses. The problems in long-term tracking
can be solved by directly linking tracklets instead of detec-
tion responses.

Given a video input, we first detect pedestrians in each
frame by an existing detector, such as the DPM detector
[7]. Similar to [20], we run the successive shortest path
algorithm as in [19] which optimizes over trajectory to gen-
erate initial tracklets (track fragments). However, the ini-
tial tracklets may be unreliable because the detection re-
sponses in one tracklet may come from more than one per-
son. Therefore, we use the online learned target-specific
metrics to refine these initial tracklets for reliable tracklets.
The cost-flow network formulation is based on the reliable
tracklets and network flow optimization yields the trajecto-
ries of multiple persons.

We define an objective function for tracklet association
which takes a similar form as detection association in [28].
Let X = {Fi} be the collection of all the tracklets. A sin-
gle trajectory hypothesis is defined as an ordered list of N
tracklets: Tk = {Fk1 , Fk2 , ..., Fkl

}, where Fki ∈ X , and
i = 1, ..., l; 1 ≤ l < N . A tracklet association hypoth-
esis T is defined as a set of single trajectory hypotheses:
T = {Tk}.

The objective of tracking association is to maximize the
posteriori probability of T given X:

T ∗ = arg max
T

P (T |X)

= arg max
T

P (X|T )P (T )

= arg max
T

∏
i

P (Fi|T )P (T ) (1)

assuming that the likelihood probabilities of Fi are condi-
tionally independent.

If we assume that the motion of each tracklet is indepen-
dent and one tracklet can only belong to one trajectory, we
can further decompose the above equation into:

T ∗ = arg max
T

∏
i

P (Fi|T )
∏

Tk∈T
P (Tk) (2)

s.t. Tk
⋂
Tl = Φ,∀k 6= l (3)

We define the second term in Equ. (2) as follows:

P (Tk) = P ({Fk1
, Fk2

, ..., Fkl
})

= Ps(Fk1)(

l−1∏
n=1

P (Fn+1|Fn))Pt(Fkl
) (4)

P (Fi|T ) is the likelihood function of tracklet Fi. Here
we assume that there are no false alarms from the reliable

tracklets, so P (Fi|T ) = 1. Then Equ. (2) can be further
simplified as follows:

T ∗ = arg max
T

∏
i

P (Fi|T )
∏

Tk∈T
P (Tk)

= arg max
T

∏
Tk∈T

P (Tk) (5)

P (Tk) is modeled as a Markov chain, which in-
cludes starting probability Ps(Fk1

), termination probability
Pt(Fkl

), and transition probability P (Fn+1|Fn) between
temporarily adjacent tracklets. Finding the optimal asso-
ciation hypothesis T ∗ is equivalent to minimizing the cost
of flow from source s to sink t in a network flow graph. A
network graph can be constructed as follows:

Given an observation set X: for every tracklet Fi ∈ X ,
we create a node vi, an edge from source s to a node,(s, vi),
with cost c(s, vi) = csi and flow f(s, vi) = fsi , and an edge
from a node to sink t, (vi, t) with cost c(vi, t) = cti and
flow f(vi, t) = f ti . For every transition P (Fj |Fi) 6= 0, cre-
ate an edge (vi, vj) , i 6= j, with cost c(vi, vj) = cij and
flow f(vi, vj) = fij . We take the logarithm of the objec-
tive function to simplify the expression while preserving the
maximum a posteriori probability (MAP) solution. Then,
Equ. (5) can be re-written as follows:

T = arg min
T

∑
i

csif
s
i +

∑
ij

cijfij +
∑
i

ctif
t
i

 (6)

s.t. fij , f
s
i , f

t
i ∈ {0, 1},

and fsi +
∑
j

fji = f ti +
∑
j

fij (7)

subject to Equ. (6), where

csi = − logPs(Fi), cti = − logPt(Fi),

cij = − logP (Fj |Fi).

Equ. (7) ensures that the tracklet association hypothe-
sis T is non-overlapping. The above formulation can be
mapped into a cost-flow network with source s and sink
t. Estimating the transition costs cij is the key factor in
solving this min-cost network flow problem. Previous net-
work flow approaches [28, 3, 19, 5] only utilize motion cues
and simple appearance features such as RGB histograms
to calculate cij . However, these cues are not very reliable
when interactions and occlusions between targets with simi-
lar color appearance occur. Simple appearance models can-
not handle large appearance variations. In this paper, we
propose to learn target-specific segment-wise appearance-
based model online for estimating cij .



3. Online Target-Specific Metric Learning for
Tracklets Association

In this section, we introduce an online target-specific
metric learning approach to obtain the affinity scores of ad-
jacent tracklets, which can be used as the transition prob-
abilities between two corresponding nodes in the cost-flow
network. We perform local transition probabilities estima-
tion within S frames (S = 50 in our implementation).

A novel target-specific appearance-based model is pro-
posed to obtain effective appearance cues for reliable tran-
sition probabilities estimation. We formulate the appear-
ance model learning problem as a metric learning problem,
which can enhance the features with strong discriminative
power and suppress the features with weak discriminative
power. As a result, the learned models can better represent
the appearance cues locally and provide reliable transition
probabilities estimation. We learn target-specific metrics so
that target-specific properties can be efficiently explored for
more discriminative models. Contrasting to the work in [12]
in which local descriptors are learned offline, our learning is
online throughout and our target-specific metrics are adap-
tive to local segments.

3.1. Online Target-Specific Appearance-based
Model Learning

We aim to online learn discriminative target-specific
appearance-based models while keeping the computational
complexity low. We learn the appearance model by formu-
lating it as a metric learning problem. For each tracklet Fi,
we learn a distance metric function.

The learning involves feature representation, online
training sample collection and online training. To create
a strong appearance-based model, we start from a rich set
of basic features, which includes color, shape and texture,
to describe a person’s appearance. All the training images
are normalized to 128 × 64 pixels. For the color feature,
RGB, YCbCr and HSV color histograms are extracted with
16 bins for each channel respectively and concatenated into
a 144-element vector. To capture shape information, we
adopt the Histogram of Gradients (HOG) feature [6] by set-
ting the cell size to be 8 to form a 3968-element vector.
Two types of texture features are extracted by Schmid and
Gabor filters. In total, 13 Schmid channel features and 8
Gabor channel features are obtained to form a 336-element
vector by using a 16-bin histogram vector to represent each
channel. Each person image is thus represented by a feature
vector in a 4448-dimensional feature space.

Given a training dataset Z = {(zt, li)}ni=1, where zt is
a 4448-dimensional feature vector representing the appear-
ance of a detection response at frame t, and li is the tracklet
label which the detection response belongs to. We define
a positive difference vector xpi computed between a pair of

relevant samples (detection responses belonging to the same
person) and a negative difference vector xni computed from
a pair of irrelevant samples (detection responses belonging
to different persons). Here, we assume the firstM frames of
each initial tracklets are reliable and the detection responses
are from the same person. Training samples are therefore
collected from these frames.

The difference vectors xpi and xni are defined as follows:

xpi = d(zi, z
′
i) = |zi − z′i|

xni = d(zi, z
′
j) = |zi − z′j |, i 6= j (8)

where d is an absolute difference function, zi and z′i are two
samples from the same tracklet Fi, z′j is a sample from a
different tracklet Fj .

Given the difference vectors xpi and xni , a distance func-
tion Di for tracklet Fi can be learned based on relative
distance comparison so that Di(x

p
i ) < Di(x

n
i ). This dis-

tance function Di is parameterized as a Mahalanobis dis-
tance function:

Di(x) = xTMix, Mi � 0 (9)

We adopt the logistic function as in [29] to learn Di to
force Di(x

p
i ) to be small, and Di(x

n
i ) to be big:

min
Di

r(Di) = − log
(

(1 + exp (Di(x
p
i )−Di(x

n
i )))

−1
)

(10)

The term Mi in the distance function Di can be decom-
posed by eigendecomposition:

Mi = AiΛiA
T
i = WiW

T
i , Wi = AiΛ

1
2
i (11)

where Ai is the orthonormal eigenvector matrix of Mi and
the diagonal of Λi are the corresponding eigenvalues.

Hence, learning a distance function Di is equivalent to
learning the matrix Wi as follows:

min
Wi

r(Wi), s.t. wT
i wj = 0,∀i 6= j, wi, wj ∈Wi

r(Wi) = log(1 + exp{‖WT
i x

p
i ‖

2 − ‖WT
i x

n
i ‖2}) (12)

Online training sample collection is an important issue
in online learning. We use the q strongest (q = 4 in this
work) detection responses in each tracklet as training sam-
ples. For xpi , we collect relevant sample pairs from the same
tracklet. However, for xni , we collect irrelevant sample pairs
from different persons. To determine the relevance of sam-
ple pairs, two constraints are used: spatio-temporal and exit
constraints. The first constraint is based on the fact that one
person cannot appear at two or more different locations at
the same time. The second constraint is based on the ob-
servation that the person who has already exited the view



cannot be the person who is still within the view. We on-
line collect irrelevant samples, which satisfy the above two
constraints, from Fi and Fj respectively to form irrelevant
pairs.

Once online training sample collection is finished, we
adopt the gradient descent method to learn Wi for each
tracklet Fi. Finally, we calculate the target-specific trans-
form matrices for all the tracklets:

W = {Wi}, i = 1, ..., N (13)

3.2. Tracklet Refinement

To solve Equ. 6, we need to identify reliable tracklets for
the nodes in the network. The initial tracklets are produced
by the successive shortest path algorithm as in [19]. This
method uses spatio-temporal information such as distance
between corresponding observations in adjacent frames to
link the detections into tracklets. Without effective use of
appearance cues, the initial tracklets may be not consistent
in appearance and hence unreliable when there is a lot of
interactions or occlusions between targets. A typical error
is that there are some detection responses belonging to dif-
ferent persons in one tracklet. Hence, tracklet refinement is
needed to separate tracklets into multiple short but reliable
ones.

We use the online learned target-specific metrics to re-
fine the initial tracklets. To construct the probe set, the de-
tection with the strongest detection response, gi, is selected
from the first M frames of an initial tracklet, Fi, which
are assumed to be reliable. It is defined as G = {gi},
i = 1, ..., Ns, where Ns are the number of tracklets in a
local segment. And, each tracklet Fi has only one selected
gi in G.

We learn the target-specific transform matrixWi for each
initial tracklet after collecting training samples as described
in previous sub-section. Then the identity test is carried out
within a local segment frame by frame to obtain the relative
distance between detection response at frame t of Fi and the
corresponding gi in the probe set:

xti = d(zti − gi) = |zti − gi|; i = 1, ..., Ns

dti = ‖WT
i x

t
i‖2 (14)

where zti is one instance from tracklet Fi at frame t, gi is
the corresponding detection response of Fi in G, and dti is
the relative distance between zti and gi.

The relative distance between the current detection re-
sponse zti and the probe gi for a reliable tracklet should be
small; otherwise, it is an unreliable tracklet.

A distance threshold ω is used to determine reliable
tracklets. In a tracklet Fi, if K (K = 5 in our implemen-
tation) consecutive detection responses having relative dis-
tance values (from gi) above ω, we split Fi into two parts

from the first consecutive detection response. We repeat the
above process at multiple times until there are no unreliable
tracklets.

3.3. Computing Tracklet Affinities

In this section, we present the calculation of the affin-
ity score between Fi and Fj , or equivalently, the transition
probability, Pij , in the network between node i and node
j. We first calculate the relative distances dtij between each
detection response in Fi and the probe gj , and dt

′

ji between
each detection response in Fj and the probe gi,

xtij = |zti − gj |, xt
′

ji = |zt
′

j − gi|; i, j = 1, ..., Ns

dtij = ‖WT
i x

t
ij‖2, dt

′

ji = ‖WT
j x

t′

ji‖2 (15)

where zti denotes the feature vector of a detection response
in tracklet Fi at frame t, zt

′

j denotes the feature vector of a
detection response in tracklet Fj at frame t′, and gi, gj ∈ G,
m, n are the number of frames of Fi and Fj respectively.

Then we calculate the mean values of the relative dis-
tances and use them to define affinity score, Sij , and hence
equivalently, Pij , as follows:

dij = (
∑
t

dtij)/m, dji = (
∑
t′

dt
′

ji)/n (16)

Sij = (dijdji)
−1Cij (17)

where Cij is a limiting function as explained below.
We do not have to apply Equ. (17) to every pair, because

there are a lot of obviously non-related tracklet pairs which
do not belong to the same person. To leave them out, a limit-
ing function is proposed based on motion, spatio-temporal,
and exit constraints:

Cij = Cm(Fi, Fj)Ct(Fi, Fj)Ce(Fi, Fj) (18)

The motion constraint is defined by:

Cm(Fi, Fj) =

{
1, if |(pt

s
i
i − p

tej
j )/∆t| < σWzi

0, otherwise

(19)

where ∆t is the time gap between the ending frame of Fj

and the starting frame of Fi. Wzi is the width of the in-
stance zi’s detection window. σ is a threshold (σ=0.5 in our
implementation).

This motion constraint Cm is based on the observation
that if two tracklets belong to the same person, the velocity
between the gap of the two tracklets is less than the width
of either’s detection window.

The spatio-temporal constraint is defined as follows:

Ct(Fi, Fj) =

{
1, if Fi ∩ Fj = φ
0, otherwise

(20)



where ∩ is an intersection operator that is used to find the
overlap over time between two tacklets.

The exit constraint is defined as:

Ce(Fi, Fj) =

{
1, if tsi > tej & p

tej
j /∈ E

0, otherwise
(21)

where tsi is the starting frame of tracklet Fi, tej is the end-

ing frame of tracklet Fj , p
tej
j is the position of the detection

response of tracklet Fj at time tej and E is the exit area
which is near image borders. For static cameras, we adopt
the incremental learning algorithm for exit map as in [26]
to obtain E.
Ct(Fi, Fj) andCe(Fi, Fj) make the association between

Fi and Fj becomes possible if they have no overlap in time
and Fj does not exit the screen when Fi appears.

We obtain the transition costs of the adjacent nodes in
the cost-flow network by taking negative logarithm of the
affinity scores between corresponding tracklets:

cij = − logSij (22)

Then we estimate the best tracklet association hypothesis
T ∗ in Equ. (6) based on cij .

4. Trajectory Completion
After tracklet association, there are still some gaps be-

tween adjacent tracklets in each trajectory due to missed
detections and occlusions. Hence, by imposing velocity
continuity constraint over the gaps between tracklets, the
trajectory over the gaps are estimated based on a linear mo-
tion model. The trajectory interpolation is also subject to
the following two constraints: (1) the gaps is less than θf
frames(θf = 50 in our implementation); and, (2) the corre-
sponding affinity scores should be higher than a threshold
θc.

5. Experiments
We present our experimental results in two sub-sections:

comparison between our approach and several network flow
based multi-tracking methods; and, comparison with other
state-of-the-art methods on benchmark video sequences.

5.1. Comparison with other Network Flow Methods

The comparison is performed on the popular TUD
Crossing sequence and ETH BAHNHOF sequence as in [5].
We use ID switches or the number of mismatches as the
quantitative measures of performance, which is the same
as in [5]. Table 1 shows ID switches and the total num-
ber of correct observations for the TUD Crossing sequence,
and the first 350 frames of the ETH BAHNHOF sequence.
We also show the tracking results of our approach without

Algorithm TUD Crossing ETH ETH (GT)
DP [19] 32/768 37/1387 25/1648

LRMCNF [5] 14/819 23/1514 14/1783
MCNF [28] 9/433 11/1057 5/922
Baseline 1 10/845 5/1728 3/1786

Ours 7/862 1/1790 0/1820

Table 1. Comparison of tracking results with other network
flow methods on TUD Crossing and ETH BAHNHOF (first
350 frames) sequences. The tracking results of the above
three network flow based tracking methods are from [5]. The
entries in the table are (ID switches)/(total number of cor-
rect observations used in the trajectories). Columns 1 and 2
use the pre-trained human detector of [7]. Column 3 shows
the results when ground truth detections are used to gen-
erate the initial tracklets. The ground truth detections are
from [19]. DP algorithm of [19] is our baseline work without
adding the online metric learning framework. By comparison
with [19], we can find that our approach improves a lot for both
two metrics. Baseline 1 is our approach using the common metric
learning instead of the target-specific metric learning. From the
results, we can see that our target-specific metric is more reliable
than the common metric.

using the target-specific metric learning. We learn a com-
mon class metric for all the tracklets. This method is indi-
cated as baseline 1. Note that our approach provides better
results in all cases when compared with the three network
flow methods [28, 19, 5]. Moreover, the obvious improve-
ment in ID switches indicates that our approach can better
deal with long-term tracking, where the traditional motion
models are less reliable. Figure 3 shows the superiority of
our approach.

5.2. Comparison with state-of-the-art methods

We evaluate our approach on three public sequences:
TUD Stadtmitte sequence, ETH BAHNHOF sequence and
ETH SUNNY DAY sequence. To make fair comparisons,
we use the same offline learned human detector [7] to detect
person instances as in the compared methods. The quanti-
tative comparisons are presented based on the widely used
evaluation metrics [13] in this subsection. We use the eval-
uation codes downloaded from [17]. We also present the
tracking results of our approach without using the target-
specific metric learning as baseline 1. The superiority of
our target-specific metric learning can be observed in these
results.

For fair comparison, the experiments are conducted us-
ing the same TUD Stadtmitte dataset with groundtruth as
defined in [27]. This video sequence, which contains 179
frames, is captured on a street at a relative low viewpoint
and there are frequent occlusions and interactions among
the pedestrians.

The tracking evaluation results are shown in Table 2.



Method Recall Precision FAF GT MT PT ML Frag IDS
Energy Minimization [1] - - - 9 60.0% 30.0% 0.0% 4 7
DC Tracking [2] 74.7% 84.2% 0.870 10 50.0% 50.0% 0.0% 8 10
PRIMPT [12] 81.0% 99.5% 0.028 10 60.0% 30.0% 10.0% 0 1
Online CRF Tracking [27] 87.0% 96.7% 0.184 10 70.0% 30.0% 0.0% 1 0
Baseline 1 95.1% 99.4% 0.030 10 100% 0.0% 0.0% 2 1
Ours 98.0% 99.3% 0.040 10 100% 0.0% 0.0% 3 0

Table 2. Comparison of tracking results between the state-of-art methods and ours on the TUD Stadtmitte dataset.

Note that our results are much better than those in [1, 2, 19].
Compared with [12, 27], the improvement is also obvious
for some metrics. Our approach achieves the highest re-
call and the mostly tracked score (MT) among all the meth-
ods. It also achieves the lowest ID switches. Meanwhile,
our approach achieves competitive performance on preci-
sion, false alarms per frame and fragments compared with
[12, 27].

To show the effectiveness of our approach,we further
evaluate our approach on the challenging ETH dataset [12],
which is captured by a stereo pair of cameras mounted on
a moving child stroller in a busy street scene. Because
of the low view angle and forward moving cameras, oc-
clusions and interactions of the targets frequently occur in
these video sequences, which makes the dataset rather chal-
lenging.

We select the ”BAHNHOF” and ”SUNNY DAY” video
sequences from ETH dataset used in [12, 19, 27] for exper-
iments. The two sequences are both from the left camera
and contain 999 and 354 frames respectively. For fair com-
parison with [12, 27, 18], we use the same groundtruth from
[27] and no depth, structure-from-motion localization, and
ground plane information is used.

The quantitative tracking results are shown in Table 3.
We can see that our approach can achieve better or competi-
tive performance on all the commonly used evaluation mea-
sures. Compared with [12], the most related work, the recall
and precision are improved by 4.1% and 7.6% respectively;
the MT is improved by 7.2%; false alarms per frame are
reduced by 41.6%; and ID switches are reduced by 54.5%.
The significant reduction in ID switches and false alarms
indicates that our target-specific appearance-based model is
superior to the method by [12].

5.3. Computation Speed

The computation speed depends on the number of targets
in a video sequence. Our approach is implemented using
MATLAB on a 3.3GHz PC with 8 GB memory. The av-
erage speed of our method is around 100 milli-seconds per
frame for TUD and ETH datasets, respectively (excluding
the detection and HOG feature extraction time). The codes
can be further optimized.
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Figure 3. Columns 1 and 2 compare the tracking results of LRM-
CNF [5] (left) and our approach (right) respectively on the ETH
BAHNHOF sequence (frames 104 - first row, 130 -second row,
187- third row). Note the detection windows pointed by red ar-
rows. We can see that our approach maintains ID labels more reli-
ably.

6. Conclusion

We have proposed a novel introduction of online target-
specific metric learning for trajectory recovery by track-
lets association using network flow optimization for multi-
person tracking. Instead of detection responses, tracklets
are used as the nodes in the network graph, with edges
defined by a cost computed from a novel tracklet affinity
scores. The experimental results on four public sequences
have shown significant improvements compared with state-
of-art methods.



Method Recall Precision FAF GT MT PT ML Frag IDS
PRIMPT [12] 76.8% 86.6% 0.891 125 58.4% 33.6% 8.0% 23 11
Online CRF Tracking [27] 79.0% 90.4% 0.637 125 68.0% 24.8% 7.2% 19 11
DTLE Tracking [18] 77.3% 87.2% - 125 66.4% 25.4% 8.2% 69 57
Baseline 1 78.7% 92.0% 0.710 125 60.0% 29.6% 10.4% 77 19
Ours 80.9% 94.2% 0.520 125 65.6% 24.0% 10.4% 26 5

Table 3. Comparison of tracking results between the state-of-art methods and ours on the ”BAHNHOF” and ”SUNNY DAY” sequences.
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