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Abstract

Tractography refers to the process of tracing out the
nerve fiber bundles from diffusion Magnetic Resonance Im-
ages (dMRI) data acquired either in vivo or ex-vivo. Trac-
tography is a mature research topic within the field of diffu-
sion MRI analysis, nevertheless, several new methods are
being proposed on a regular basis thereby justifying the
need, as the problem is not fully solved. Tractography is
usually applied to the model (used to represent the diffusion
MR signal or a derived quantity) reconstructed from the
acquired data. Separating shape and orientation of these
models was previously shown to approximately preserve dif-
fusion anisotropy (a useful bio-marker) in the ubiquitous
problem of interpolation. However, no further intrinsic ge-
ometric properties of this framework were exploited to date
in literature. In this paper, we propose a new intrinsic recur-
sive filter on the product manifold of shape and orientation.
The recursive filter, dubbed IUKFPro, is a generalization
of the unscented Kalman filter (UKF) to this product mani-
fold. The salient contributions of this work are: (1) A new
intrinsic UKF for the product manifold of shape and orien-
tation. (2) Derivation of the Riemannian geometry of the
product manifold. (3) IUKFPro is tested on synthetic and
real data sets from various tractography challenge com-
petitions. From the experimental results, it is evident that
IUKFPro performs better than several competing schemes
in literature with regards to some of the error measures used
in the competitions and is competitive with respect to oth-
ers.

1. Introduction
Diffusion Weighted Magnetic Resonance Imaging

(DWMRI) is a relatively nascent Magnetic Resonance
imaging technique that allows one to non-invasively probe
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the neuronal pathways in the central nervous system. Nu-
merous algorithms published in the literature attempt to re-
veal the fibrous structures in the brain, spinal cord and other
parts of the anatomy. The process of inferring and tracing
out the neuronal fiber bundles is called tractography. The
tractography methods in literature primarily fall in two main
categories, deterministic and probabilistic. However, the
probabilistic methods are far more computationally expen-
sive than the aforementioned deterministic techniques, thus
in this paper we limit ourselves to the deterministic meth-
ods, and refer the reader to [3] and the references therein for
the probabilistic methods.

The streamline algorithm is one of the most popular de-
terministic tractography technique, where at each voxel the
direction of the underlying neuronal fiber is estimated and
tracked [15]. For instance, in the Diffusion Tensor Imag-
ing (DTI) where the DWMR signal S(g) decay along the
magnetic field gradient direction g is modeled by a single
zero mean Gaussian, i.e., S(g) = S0 exp(−gtDg), where
S0 is the DWMR signal with zero diffusion weighting and
D is the diffusion tensor which is the inverse covariance
matrix of the Gaussian, the fibers would be oriented along
the largest eigenvector of the diffusion tensor D [2]. It is
however well-known in DWMRI analysis research commu-
nity that the single Gaussian (mono-exponential) signal de-
cay model characterizing the DTI is incapable of accurately
capturing the neuronal pathways in presence of complex fi-
brous structures, e.g., crossing and kissing fibers, which are
often encountered in many locations in the brain and the
spinal cord.

To address this shortcoming, some extensions of stream-
line are proposed based on the reconstruction models from
High Angular Resolution Diffusion Imaging (HARDI).
Higher order tensors [1], Orientation Distribution Functions
(ODFs) [8, 6] are instances of HARDI reconstruction mod-
els based on which the streamline is generalized, where in
each case, the maxima of the ODF are estimated and the
streamline technique is applied to trace out the fiber tracts.
Front-propagation approaches are another example of de-
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terministic tractography, where white matter fiber bundles
are considered as a Riemannian manifold, equipped with a
metric derived from the diffusion tensor data [9, 18]. The
neuronal fiber tracts are then treated as geodesics using this
metric. While robust, these DTI-based models suffer from
the same shortcomings mentioned earlier.

Most of the aforementioned fiber tracking methods are
based on a two stage procedure, first estimating the under-
lying model from DWMRI throughout the image, and then
tracking based on the estimated model. Recently, authors
in [14] proposed a clever multi-tensor (mixture of two zero
mean Gaussians – called the bi-tensor model) tractography
method using an unscented Kalman filter (UKF), where the
multi-tensor estimation and the propagation of directional
information were performed simultaneously. This approach
provides two important advantages: (1) The reconstruction
is only performed along the fiber tracts, which yields a sig-
nificant computational efficiency since one need not recon-
struct the multi-tensors all over the image but only at vox-
els likely to be on the fiber paths, (2) propagating the most
consistent direction to track along achieves smoothness of
the tracts being traced using a streamline technique. The
streamline method implicitly regularizes the tracts by using
the most consistent direction from the smooth estimates of
tensors obtained from the UKF. However, this UKF-based
tractography method was not intrinsic to the space of diffu-
sion tensors, a drawback that may lead to non-positive defi-
niteness of the estimated diffusion tensors. It is well-known
that the diffusion tensors belong to the space of (n×n) sym-
metric positive-definite (SPD) matrices, denoted by P (n)
that is not a Euclidean space, but a negatively curved Rie-
mannian manifold [16]. In this context, in [10, 23] gener-
alizations of UKF to Riemannian manifolds were proposed.
While these methods are quite general extensions, there are
some technical problems that are not fully considered in
these works and will be discussed in details in Section 2.
While none of the above intrinsic UKFs are used in trac-
tography applications, authors in [5] presented an extension
of UKF to P (n) and applied it to tractography. The work
presented in this paper is however quite distinct as will be
evident subsequently.

Recently, in [4, 17], it was shown that the Fisher-Rao
(Riemannian) metric when used for interpolation of ODFs
fails to preserve clinically useful properties such as the frac-
tional anisotropy (FA) – a scalar-valued function of the
eigenvalues of the diffusion tensor D[2]. Fig. 1 illustrates
this phenomena for the task of interpolation of diffusion
tensors, where interpolation using different metrics is per-
formed between two tensors having the same FA value.
It can be seen that the Euclidean, LogEuclidean and GL-
invariant Riemannian metrics, used in [5], all produce inter-
polated tensors whose shapes are different from those of the
end point tensors. Lack of preservation of anisotropy mea-

Figure 1: Left shows the tensor interpolation, using the Rieman-
nian GL-invariant metric (1st row), Euclidean metric (2nd row),
LogEuclidean metric (3rd row) and the product Riemannian met-
ric of shape & orientation (4th row), abbreviated as RM, EM, LEM
& PRM, respectively. Right shows comparison of their FA-values.

sures will obviously lead to inaccuracies in tractography.
To address this issue, a clever solution was proposed for

the case of ODFs in [4, 17] involving the concept of treating
the orientation of ODFs separately from their shape for in-
terpolation and denoising problems. To find the interpolated
path between two given ODFs (possibly located at distinct
points in an ODF field), they minimize the Fisher-Rao dis-
tance between all possible rotations of two ODFs along with
a regularization term which seeks to keep the rotation small
so that the shape is preserved in the interpolant. Authors in
both the articles do not however explore the full geometry
of the product space of shape and orientations further.

Our work is also based on the idea of separating the
shape and orientation and then additionally considers the
Riemannian product space of shape and orientation, but for
the bi-tensor model and not the ODFs. However, similar
analysis is also applicable to the ODFs and the ensemble
average propagator (EAP) which is defined as the Fourier
transform of the DWMR signal. Accordingly, we would
like to emphasize that our method is significantly differ-
ent from the one reported in [5], because in their work the
idea of separating shape and orientation was not taken into
account, leading to less accurate tractography results com-
pared to ours. These results are presented in Section 3.

Therefore, our key contributions are: we derive the Rie-
mannian geometry of this product space by imposing a bi-
invariant Riemannian metric, including the log and exp
maps and the geodesic equations. In addition, we develop
a novel recursive unscented Kalman filter on this product
space and apply it to the publicly available DWMR realistic
phantom data [7], our own synthetic data and real DWMR
data from human brains. The accuracy of our tractogra-
phy results on the fibercup challenge data [7] are better than
those published in literature for the spatial distance mea-
sures used to evaluate the tractography in [7] and competi-
tive in the other measures used for evaluation. As an illus-
tration, we present results of interpolation using the product
space metric used in our approach in Fig. 1. It is visually
evident from the figure that the our approach preserves the
shape of the tensors along the interpolated path better than
our competition.

The rest of the paper is organized as follows: in sec-
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tion 2, we first provide the motivation for using UKF in
the tractography problem. Then, the mathematical deriva-
tion of the Riemannian geometry of the shape & orientation
product manifold are presented followed by the intrinsic un-
scented Kalman filter on this product manifold. Section 3
includes the synthetic and real data experiments showing
the effectiveness and accuracy of the new method. Section 4
contains the conclusions.

2. IUKFPro: Intrinsic UKF on the Product
Space of Shape & Orientation

As described earlier, in tractography the neuronal path-
ways from imaged tissue are traced out based on the given
DWMR signal. Therefore, care must be taken to reconstruct
the underlying fiber direction accurately at each voxel in the
DWMR data. In most of the existing techniques, e.g., [8, 9],
first a model is fitted to the MR signal, the fiber pathway
direction is computed following which tractography is per-
formed using the estimated direction. It is however more apt
to estimate the fiber directions recursively along the fiber.
This brings forth two important advantages, (1) the smooth-
ness along the fiber is employed to provide a more accurate
estimation of the fiber direction at each voxel, (2) the re-
construction of the tensor (ODF/EAP) is only performed at
locations in the image that lie on the fiber, and hence the
computational complexity is reduced considerably.

Simultaneous estimation of the tensors at each voxel
and propagation of the direction information for tractog-
raphy can be achieved recursively. Recursive estimation
can be easily cast into a state-space formulation as is nor-
mally done in control theory literature. From a state-space
modeling viewpoint, the tensors and the MR signal at each
voxel can be viewed as the system state and observation, re-
spectively. Therefore, a recursive stochastic dynamic filter
such as the well known Kalman Filter (KF) is an appeal-
ing choice for this problem. KF is a linear filter, and the
Extended KF (EKF) is a nonlinear extension, wherein the
probability distribution of the system state is estimated by a
Gaussian random variable and propagated through the sys-
tem dynamics analytically by using a first order lineariza-
tion of the nonlinear function. EKF however may lead to
significant errors in the mean and covariance approximation
of the transformed random variable, and in effect lead to di-
vergence of the filter [12]. Compared with KF and the EKF,
the Unscented KF (UKF) is a more stable and accurate al-
ternative which uses a set of carefully chosen sample points
to accurately approximate the mean and covariance of the
Gaussian random variable through the system dynamics. In
the tractography problem, we model the diffusion MR sig-
nal by a mixture model in the presence of intra-voxel het-
erogeneity, and we want to estimate the model parameters
and propagate the most consistent directional information,
simultaneously. Therefore, the UKF is a more appealing

choice for this problem than the KF and EKF.
In this section, we present a novel intrinsic UKF hence-

forth called IUKFPro, for the case when the system state
parameters belong to the product space of shape & orienta-
tion. We first introduce the shape & orientation representa-
tion of diffusion tensors as a Riemannian product manifold
along with its Riemannian geometry. Then, we present a
detailed description of IUKFPro in subsequent sections.

2.1. Product Space of Shape & Orientation for rep­
resenting Diffusion Tensors

Diffusion tensors are (3, 3) symmetric positive definite
(SPD) matrices. The eigen-decomposition of an SPD ma-
trix can be expressed as, D = UΛUT wherein, the compo-
nent U ∈ SO(n), and SO(n) is the special orthogonal group
and the component Λ, a real diagonal matrix with positive
entries. Here U contains the orientation information of a
diffusion tensor in terms of its eigen vectors, and Λ con-
veys the shape information of a diffusion tensor expressed
in terms of its eigenvalues. Let us denote the space of Λ by
Hn, and it is known that Hn is an connected Lie group iso-
morphic to R+

n . We propose a natural shape & orientation
representation of a diffusion tensor by the construction of a
Riemannian product manifold M = SO(n)× Hn.

As pointed out in [13], SO(n) admits a canonical bi-
invariant Riemannian metric, and Hn is equipped with a bi-
invariant Riemannian metric namely the Hyperbolic Metric.
The two bi-invariant Riemannian metrics are given by:

gS = tr[ṖT Ṗ]; gH = tr[(Q−1Q̇)T (Q−1Q̇)], (1)

where P ∈ SO(n), Ṗ ∈ TPSO(n), Q ∈ Hn, Q̇ ∈ TQHn, and
TPSO(n), TQHn are the tangent spaces of P ∈ SO(n) and
Q ∈ Hn, respectively. Given the two Riemannian metrics in
equation (1), it is easy to show from basic differential geom-
etry [13] that the product Riemannian metric on M is given
by gM = gS ⊕ gH. Since gS and gH are both bi-invariant,
the product Riemannian metric gM is also bi-invariant. In
addition, following [13], the geodesic between two points
(p1, q1) and (p2, q2) on M is given by γ(p1,q1),(p2,q2)

(t) =(
p1(pT

1 p2)
t,q1(q

−1
1 q2)

t
)
. where p1, p2 ∈ SO(n), q1, q2 ∈

Hn, t ∈ [0, 1]. With this geodesic in the product manifold
M, we can derive the Exponential Map and Log Map on M,
which are given by:

Exp(p,q)(v1, v2) =
(
pexp(pT v1), qexp(q−1v2)

)
Log(p1,q1)

(p2, q2) =
(
p1log(pT

1 p2), q1log(q−1
1 q2)

)
(2)

where p ∈ SO(n), q ∈ Hn, v1 ∈ TpSO(n), v2 ∈ TpH(n) in
the Exponential map, p1, p2 ∈ SO(n), q1, q2 ∈ Hn in the
Log map, and exp(·) & log(·) are the matrix exponential &
logarithm operations, respectively.
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2.2. The State Transition and Observation Models
in IUKFPro

We are now ready to present the IUKF for the product
manifold M. This filter will allow us to simultaneously es-
timate and track the fibers by using a bi-tensor model [22]
for the diffusion signal. To completely specify the IUKF, we
need to define the state transition and observation models as
well as the update equations and the Kalman gain. The state
transition model on M is based on the natural direct product
of Lie group operations in SO(n) and Hn and the LogNor-
mal distribution for the noise, in the case of diffusion tensor,
when n = 3. We employ a bi-tensor (sum of two Gaussians)
model [22] as the observation model [14] to capture cross-
ing fiber geometries at a voxel. The state transition model
at iteration k is given by the following equation:(

U(k+1)
1 ,Λ

(k+1)
1

)
= Exp(

F1U(k)
1 , F2Λ

(k)
1

) (a(k)1 , b(k)1

)
,(

U(k+1)
2 ,Λ

(k+1)
2

)
= Exp(

F1U(k)
2 , F2Λ

(k)
2

) (a(k)2 , b(k)2

)
, (3)

where F1, F2 are state transition operations in SO(3) and H3,
respectively.

(
a(k)1 , b(k)

1

)
and

(
a(k)2 , b(k)

2

)
are the Gaus-

sian distributed state transition noise in T(
U(k)

1 ,Λ
(k)
1

)M and

T(
U(k)

2 ,Λ
(k)
2

)M. “Exp(·)(·)” is the Exponential Map in (2).

In the state transition model, we assume that the two state
transition noise models are independent of each other and
of the previous state. This is because in diffusion MRI, the
signal at each voxel in the presence of an inhomogeneity
caused by crossing fibers is commonly modeled by assum-
ing that the sum total signal at a voxel is caused by mixing
of two or more independent sources. We denote by Q(k)

1

and Q(k)
2 the covariance matrices of the two state transition

noise models of dimension 6-by-6 for the tangent vectors in
T(

U(k)
i ,Λ

(k)
i

)M. Note that in [10, 23] a constant state transi-

tion noise covariance tensor is assumed over a Riemannian
manifold to apply an IUKF. However, this is not a valid as-
sumption for an IUKF as evident from the discussion below.
Let us denote an initial matrix-variate random variable by
X0 and the product group operation by F respectively. The
explicit forms for these are given by,

X0 = Exp(µU,µΛ)(vU, vΛ), F =

[
F1 0
0 F2

]
(4)

wherein vU ∈ TµU SO(3), vΛ ∈ TµΛH3. Denote µ =
[µT

U , µ
T
Λ]

T , v = [vTU , vT
Λ]

T , and v is from zero-mean Gaus-
sian distribution with covariance matrix Q. Then, after
the coordinate transform, the new random variable X =
FX0 = ExpFµ(Fv). The covariance matrix of Fv will be
Q (F) = (I ⊗ F)Q (I ⊗ F)T , where I is the identity ma-
trix, and ⊗ denotes the Kronecker product. Therefore, the
state transition noise covariance tensor should not be con-

stant over the manifold and should be changed by the in-
duced group operation. In addition, in [10] the use of par-
allel transport approximated by Schild’s ladder method via
a sequence of exponential maps followed by a Log map is
computationally more expensive than a single Log map op-
eration in our approach. Further, no accuracy measures of
their approximation as a function of data variance was re-
ported.

As mentioned before, the observation model is based on
the bi-tensor model and given by:

Y
(k)
n =

Y0

2

e
−bngTn U(k)

1 Λ
(k)
1 U(k)T

1 gn + e
−bngTn U(k)

2 Λ
(k)
2 U(k)T

2 gn
+r

(k)
n

(5)

where gn denotes the nth magnetic gradient direction, bn
the corresponding b-value, Y (k)

n , r
(k)
n the MR signal and the

measurement noise for nth magnetic gradient at the kth iter-
ation, respectively. We assume that the measurements from
distinct gradient directions are independent so that the co-
variance matrix of the observation model for all magnetic
gradients, denoted as R, is a diagonal matrix.

2.3. IUKFPro: The Intrinsic Unscented Kalman
Filter on M

Since the current dynamic model is based on the shape
& orientation product manifold M, we need a non-trivial
extension of the IUKF derived in [5]. To begin with, let us
first define the augmented state vector for the observation
model in equation (5) by

Xk =
[
s(k)

T

U1
, s(k)

T

U2
, s(k)

T

Λ1
, s(k)

T

Λ2
, n(k)T

U1
, n(k)T

U2
, n(k)T

Λ1
, n(k)T

Λ2

]T
,

(6)

at iteration step k, where
(

s(k)Ui
, s(k)Λi

)
= LogK̂(Ui,Λi)

(Ui,Λi)

is the representation of the orientation and shape state
random vectors in the tangent plane at its Karcher
mean K̂(Ui,Λi), and

(
n(k)

Ui
, n(k)

Λi

)
is the state transition

noise vector for (Ui,Λi). The covariance matrix for

[s(k)
T

U1
, s(k)

T

U2
, s(k)

T

Λ1
, s(k)

T

Λ2
]T is denoted by Pk,UΛ. The covari-

ance matrices for [n(k)T

U1
, n(k)T

Λ1
]T and [n(k)T

U2
, n(k)T

Λ2
]T are as

before, Q(k)
1 and Q(k)

2 respectively. We denote the covari-
ance matrix for the augmented state vector Xk by Pk,X , a
block-diagonal matrix composed of Pk,UΛ, Q(k)

1 , and Q(k)
2

respectively.
The IUKF consists of two stages: prediction stage and an

update stage. The prediction & update stages are detailed in
Table 1 & 2 respectively.

3. Experiments
To depict the accuracy of our tractography algorithm, we

present a set of synthetic data experiments generated at vari-
ous levels of Riccian noise. Since we know the ground truth
for synthesized data we report the reconstruction accuracy
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Table 1: The Prediction Stage

(1) Obtain the jth sigma point at iteration step k as described in [24]:

Xk,j =

[
s(k)T

U1,j
, s(k)T

U2,j
, s(k)T

Λ1,j
, s(k)T

Λ2,j
, n(k)T

U1,j
, n(k)T

U2,j
, n(k)T

Λ1,j
, n(k)T

Λ2,j

]T

(7)

(2) Obtain samples
(
U
(k+1)
i,j ,Λ

(k+1)
i,j

)
on M from the last iteration’s

posterior estimates
(

Û(k)
i , Λ̂

(k)
i

)
by two steps:

(
Ũ(k)
i,j , Λ̃

(k)
i,j

)
=

Exp(
Û(k)
i ,Λ̂

(k)
i

) (
s(k)

T

Ui,j
, s(k)

T

Λi,j

)
, and

(
U
(k+1)
i,j ,Λ

(k+1)
i,j

)
=

Exp(
Ũ(k)
i,j ,Λ̃

(k)
i,j

) (
n(k)

T

Ui,j
, n(k)

T

Λi,j

)
.

(3) Compute the predicted mean as a weighted Karcher mean:(
Û

(k+1)
i , Λ̂

(k+1)
i

)
= argminµ

∑
j

wjdist
2
((

U
(k+1)
i,j ,Λ

(k+1)
i,j

)
, µ

)
(8)

where dist(·, ·) is the geodesic distance, and wj are the combina-
tion weights used from the sigma point propagation scheme.

(4) Compute the predicted state covariance: PUΛ =
∑

j wjUjU
T
j .

Denote,

UT
j =

[
Log

Û
(k+1)
1,j

(
U
(k+1)
1,j

)
, Log

Û
(k+1)
2,j

(
U
(k+1)
2,j

)
,

Log
Λ̂
(k+1)
1,j

(
Λ
(k+1)
1,j

)
, Log

Λ̂
(k+1)
2,j

(
Λ
(k+1)
2,j

)]
, (9)

and Y
(k+1)
j as the predicted MR signals for different magnetic gra-

dients via the observation model (5) respectively. The predicted
mean of MR signal computed by the standard vector average oper-
ation is denoted by Ŷ(k+1).

(5) Compute the predicted observation covariance using: P
(k+1)
ss =

R +
∑

j wj

(
Y
(k+1)
j − Ŷ(k+1)

)(
Y
(k+1)
j − Ŷ(k+1)

)T
, and

the cross-correlation matrix between the observation and the states
using: P(k+1)

UΛs =
∑

j wjUj

(
Y
(k+1)
j − Ŷ(k+1)

)T
.

Table 2: The Update Stage
1. Compute the Kalman Gain: K(k+1) = P

(k+1)
UΛs P

(k+1)−1

ss

2. Compute the Innovation:
[

z(k+1)T

U1
, z(k+1)T

U2
, z(k+1)T

Λ1
, z(k+1)T

Λ2

]T
= K(k+1)

(
Y(k+1) − Ŷ(k+1)

)
, where the observation (MR signal

vector) at iteration step k + 1 is Y(k+1) =
[
Y

(k+1)
1 , . . . , Y

(k+1)
N

]
,

and Y
(k+1)
n is given by equation (5).

3. Compute the posterior estimates:(
Û(k+1)
i , Λ̂

(k+1)
i

)
= Exp(

Û
(k+1)
i ,Λ̂

(k+1)
i

) (
z(k+1)T

Ui
, z(k+1)T

Λi

)

of proposed technique w.r.t. the ground truth. The sec-
ond experiment involves results obtained by applying our
method to the fiber cup challenge phantom [7], which has
been widely used by numerous research groups across the
world to evaluate their tractography methods. We present
our results along with quantitative comparisons to those re-
ported in [7]. Finally, we present results obtained on a real
dataset used in the MICCAI’12 tractography challenge [19].

3.1. Synthetic Data Experiments

In this experiment, we generated synthetic datasets
containing 2 fiber bundles, crossing at various angles

{45, 60, 75, 90}. Then, we corrupted each data by Ric-
cian noise at 3 different levels, i.e., SNR ≈ 7, 12, 17.
We compared proposed method with 2 existing recursive
filter-based approaches (UKF & IUKF) [14, 5]. For each
method, we computed the spatial distances of each fiber to
the ground truth, using the error measure introduced in [7].
Fig. 2 shows the mean error of each method, for differ-
ent angles and noise levels. It is evident that our method
provides a more accurate estimation compared to the com-
peting methods. We now present tractography results from

Figure 2: Comparison of accuracy of IUKFPro, IUKF & UKF.
The SNRs are 17, 12 & 7 from left to right, respectively.

an application of IUKFPro to the fiber cup phantom [7],
along with the quantitative comparisons to other tractogra-
phy methods [20, 11, 21, 14], three of who were winners of
the challenge [7]. The phantom simulates a coronal section
of the human brain, including various kissing and crossing
fiber bundles with different curvatures. For the acquisition
parameters, we refer the reader to [7]. Fig. 3 depicts the
fiber tracts obtained using our method (IUKFPro) as well
as other competing algorithms. For quantitative validation,
we computed the spatial, angular and curvature distances,
described in [7], between the estimated fibers from each
method and the ground truth.

Fig. 4 depicts the errors computed from our method com-
pared to the first [20], second [11] and third [14] winners of
fiber cup challenge, which are labeled as MoG, FOD and
UKF, respectively. For the sake of completeness, we also
compared our method to the algorithms in [5] and [21], de-
noted by IUKF and PAS, respectively. It can be seen that
the IUKFPro outperforms the winners of the fiber cup chal-
lenge – in spatial distance and is competitive with respect
to the angular and curvature measures. Moreover, it can be
observed that IUKFPro provides reasonably small standard
deviations in all error measures, compared to other com-
peting methods. Further, IUKFPro is better than the other
recursive filter based approaches in [14, 5], one of which
was rated 3rd in the fiber cup challenge competition.

3.2. Real Data Experiments

We evaluated the effectiveness of our new tractography
method on a patient’s human brain scan acquired for the
challenge at MICCAI’12, using 31 gradient directions. The
acquisition parameters were, b = 1000s/mm2, TR = 14000
ms, TE = 30 ms, FOV = 25.6 cm, with 1.0 mm voxel size
and 2.6 mm slice thickness. See [19] for more details on
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Figure 3: Tractogra-
phy results obtained
on the fiber cup
phantom data [7].
(a) Ground-truth,
(b) IUKFPro, (c)
UKF [14], (d) FOD-
SH [11] and (e)
MoG [20].

Figure 4: Quantitative comparison between IUKFPro and com-
peting methods for the fiber cup data. Left, middle and right show
the average spatial, angular and curvature distances, respectively.

Figure 5: Tractography re-
sults using IUKFPro on the
human brain dataset, depict-
ing the corticospinal tract
(CST). Brain stem is shown
in red. Segmented regions
at the top shown in red, blue
and yellow represent the tu-
mor, cavity and gliosis, re-
spectively & were part of the
input from [19].

the data acquisition. In this experiment, we tracked the cor-
ticospinal fibers, originating in the brain stem. Left plate
in Fig. 5 depicts the estimated fibers along with the seeding
region and the tumor. It can be seen from the figure that
starting from the brain stem, tracts reach multiple regions
of motor cortex, as expected. Further, as expected, there is
a good number of tracts reaching the motor cortex on the
healthy side, and a good number of tracts reconstructed on
the pathological side.

4. Conclusions
In this paper, we presented novel fiber tractography algo-

rithm by separating shape and orientation and formulating
the problem of tractography on the product space of shape
and orientation. By doing so, it is easier to approximately
preserve clinically useful properties like anisotropy that is
a key feature useful in achieving accurate tractography. We
derived a novel dynamic IUKF on the product manifold of
shape & orientation. Further, we presented compelling re-
sults on the fiber cup challenge phantom data [7] wherein,
IUKFPro yielded smaller error than the winners of the fiber
cup challenge competition. We also presented results on
human brain scans that match expectations from experts.
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