
3D Modeling from Wide Baseline Range Scans using Contour Coherence

Ruizhe Wang Jongmoo Choi Gérard Medioni
Computer Vision Lab, Institute for Robotics and Intelligent Systems

University of Southern California
{ruizhewa, jongmooc, medioni}@usc.edu

Abstract

Registering 2 or more range scans is a fundamental
problem, with application to 3D modeling. While this prob-
lem is well addressed by existing techniques such as ICP
when the views overlap significantly at a good initializa-
tion, no satisfactory solution exists for wide baseline regis-
tration. We propose here a novel approach which leverages
contour coherence and allows us to align two wide base-
line range scans with limited overlap from a poor initializa-
tion. Inspired by ICP, we maximize the contour coherence
by building robust corresponding pairs on apparent con-
tours and minimizing their distances in an iterative fashion.
We use the contour coherence under a multi-view rigid reg-
istration framework, and this enables the reconstruction of
accurate and complete 3D models from as few as 4 frames.
We further extend it to handle articulations, and this allows
us to model articulated objects such as human body. Exper-
imental results on both synthetic and real data demonstrate
the effectiveness and robustness of our contour coherence
based registration approach to wide baseline range scans,
and to 3D modeling.

1. Introduction
Registering 2 or more range scans is a fundamental prob-

lem with application to 3D modeling. It is well addressed
in the presence of sufficient overlap and good initializa-
tion [3, 4, 5, 14]. However, registering two wide baseline
range scans presents a challenging task where two range
scans barely overlap and the shape coherence no longer pre-
vails. An example of two wide baseline range scans of the
Stanford Bunny with approximately 40% overlap is given
in Fig. 1(a). The traditional shape coherence based meth-
ods may fail as most closest-distance correspondences are
incorrect.

In computer vision dealing with intensity images, a large
body of work has been devoted to study the apparent con-
tour, or simply contour. An apparent contour is the projec-
tion of a contour generator, which is defined as the set of
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Figure 1. (a) Two roughly aligned wide baseline 2.5D range scans
of the Stanford Bunny with the observed and predicted apparent
contours extracted. The two meshed points cloud are generated
from the two 2.5D range scans respectively (b) Registration result
after maximizing the contour coherence

points on the surface where the tangent plane contains the
line of sight from the camera. This contour has been shown
to be a rich source of geometric information for motion es-
timation and 3D reconstruction [7, 8, 9, 12].

Inspired by their works, we propose the concept of con-
tour coherence for wide baseline range scan registration.
Contour coherence is defined as the agreement between the
observed apparent contour and the predicted apparent con-
tour. As shown in Fig. 1(a), the observed contours extracted
from the original 2.5D range scans, i.e., red lines in image
1 and blue lines in image 2, do not match the corresponding
contours extracted from the projected 2.5D range scans, i.e.,
blue lines in image 1 and red lines in image 2. We maximize
contour coherence by iteratively building robust correspon-
dences among apparent contours and minimizing their dis-
tances. The registration result is shown in Fig. 1(b) with the
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contour coherence maximized and two wide baseline range
scans well aligned. The contour coherence is robust in the
presence of wide baseline in the sense that only the shape
area close to the predicted contour generator is considered
when building correspondences on the contour, thus avoid-
ing the search for correspondences over the entire shape.

The recently released low-cost structured light 3D sen-
sors (e.g., Kinect, Primesense) enable handy complete scan-
ning of objects in the home environment. While the state-
of-the-art scanning methods [17, 23] generate excellent 3D
reconstruction results of rigid or articulated objects, they
assume small motion between consecutive views and as a
result either the user has to move the 3D sensor carefully
around the object or the subject must turn slowly in a con-
trolled manner. Even with best effort to reduce the drifting
error, sometimes the gap is still visible when closing the
loop (Section 7).

In our work, we explicitly employ contour coherence un-
der a multi-view framework and develop the Multi-view It-
erative Closest Contour (M-ICC) algorithm which rigidly
aligns all range scans at the same time. We further extend
M-ICC to handle small articulations and propose the Multi-
view Articulated Iterative Closest Contour (MA-ICC) algo-
rithm. Using our proposed registration methods, we suc-
cessfully address the loop-closure problem from as few as
4 wide baseline views with limited overlap, and reconstruct
accurate and complete rigid as well as articulated objects,
hence greatly reducing the data acquisition time and the reg-
istration complexity, while providing accurate results.

To the best of our knowledge, we are first to introduce
contour coherence for multi-view wide baseline range scan
registration. Our main contributions include: 1) The con-
cept of contour coherence for robust wide baseline range
scan registration; 2) Contour coherence based multi-view
rigid registration algorithm M-ICC which allows 3D mod-
eling from as few as 4 views; 3) Extension to multi-view
articulated registration algorithm MA-ICC and its applica-
tion to 3D body modeling.

Section 2 presents the relevant literature. Section 3 de-
scribes how to extract robust correspondences from the ob-
served and predicted contours. Section 4 employs the con-
tour coherence in a multi-view rigid registration framework,
which is further extended to consider articulation in Sec-
tion 5. Section 6 briefly covers implementation. Section 7
presents the experimental evaluation results while section 8
ends with a conclusion and future work.

2. Related Work
We roughly classify all relevant work into 4 categories:

rigid registration, articulated non-rigid registration (assum-
ing an articulated structure), general non-rigid registration,
and apparent contour or silhouette for pose estimation.
Rigid registration. The classic Iterative Closest Point

(ICP) algorithm [5] and its variants [6, 19] prove to be ef-
fective in accurate rigid registration for high-quality 3D in-
door scene reconstruction [17]. Few efficient attempts have
been made for solving rigid range scan registration of par-
tial overlap and poor initialization. Silva et al. [22] solve the
alignment by an expensive search over the entire pose-space
which is speeded up by the genetic algorithm. Gelfand
et al. [11] propose a shape descriptor based method and
perform the registration by matching descriptors under the
RANSAC framework. Similar approaches have been pro-
posed [1, 2]. These metric-based registration methods re-
quires extensive computation of similarity values across a
set of candidate matches and they are only pairwise. Fur-
thermore, they fail when two range scans overlap on fea-
tureless region.
Articulated non-rigid registration. Allen et al. [3] extend
rigid registration to a template-based articulated registration
algorithm for aligning several body scans. Their method
utilizes a set of manually selected markers. Pekelney and
Gotsman [18] achieve articulated registration by perform-
ing ICP on each segment and their method requires a man-
ual segmentation of the first frame. Chang and Zwicker [4]
further remove the assumption of known segmentation by
solving a discrete labeling problem to detect the set of opti-
mal correspondences and apply graph cuts for optimization.
General non-rigid registration. Li et al. [14] develop a
registration framework that simultaneously solves for point
correspondences, surface deformation, and region of over-
lap within a single global optimization. More recently, sev-
eral methods based on the embedded deformation model
have been proposed for modeling of non-rigid objects, ei-
ther by initializing a complete deformation model with the
first frame [23] or incrementally updating it [27].
Apparent contour or silhouette for pose estimation. Ap-
parent contour has been used for camera motion estimation
[8] relying on the notion of epipolar tangency points. In par-
ticular, the work of [26] uses only the two outermost epipo-
lar tangents for the camera pose estimation. More recently,
Hernandez et al. [12] propose the notion of silhouette co-
herence, which measures the consistency between observed
silhouettes and predicted silhouettes, and maximize it to es-
timate the camera poses. Cheung et al. [7] calculate camera
poses by locating colored surface points along the bounding
edges.

3. Contour Coherence
We perform wide baseline range scan registration by

maximizing contour coherence, i.e., the agreement between
the observed and predicted apparent contours. From an im-
plementation point of view, M-ICC and MA-ICC alternate
between finding closest contour correspondences and mini-
mizing their distances. However an intuitive closest match-
ing scheme on all contour points fails, mainly due to the
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Figure 2. General pipeline of our Robust Closest Contour (RCC)
method

presence of self-occlusion, 2D ambiguity, and outliers as
described later. Hence we propose the Robust Closest Con-
tour (RCC) algorithm for establishing robust contour corre-
spondences on a pair of range scans (Fig. 2).

Preliminaries. A 2.5D range scan Ri of frame i pro-
vides depth valueRi(u) at each image pixel u = (u, v)T ∈
R2. We use a single constant camera calibration matrix
K which transforms points from the camera frame to the
image plane. We represent Vi(u) = K−1Ri(u)ũ as the
back-projection operator which maps u in frame i to its 3D
location, where ũ denotes the homogeneous vector ũ =
[uT |1]T . Inversely, we denote the projection operator as
P(Vi(u)) = g(KVi(u)) where g represents dehomogeni-
sation.

A meshed points cloud Pi is generated for each frame i
considering the connectivity on the 2.5D range scanRi. We
calculate the normalized 3D normal at each pixel Ni(u) ∈
R3 following [17]. Ni(u) is further projected back to the
image to obtain normalized 2D normal ni(u) of each image
pixel. Projecting Pj to the ith image, given current camera
poses, leads us to a projected range scan Rj→i. The inputs
to our RCC method are observed and predicted range scans,
namely Ri and Rj→i, and the output is the robust contour
correspondencesMi,j→i (Eq. 5 and Eq. 9).

Extracting contour points. Given pixels belonging to
the object in frame i as Ui, we set Ri(u) = ∞ for u /∈ Ui.
The contour points Ci are extracted considering the depth
discontinuity of a pixel and its 8-neighboring pixels N 8

u ,

Ci = {u ∈ Ui|∃v ∈ N 8
u , Ri(v)−Ri(u) > ζ}, (1)

where ζ is the threshold to detect depth discontinuity. We
also extract a set of occlusion points,

Oi = {u ∈ Ui|∃v ∈ N 8
u , Ri(u)−Ri(v) > ζ}, (2)

which are boundary points of surface holes created by self-
occlusion. An example of Ci and Cj→i, extracted from Ri
andRj→i respectively, is demonstrated in Fig. 3(b).

Pruning contour points. Both Ci and Cj→i must be
pruned before the matching stage to avoid possible incor-
rect correspondences. First due to the self-occlusion of
frame j, Cj→i contains false contour points which are actu-
ally generated by the meshes in Pj connected with Cj and
Oj . We mark and remove them to generate the pruned con-
tour points Cpj→i. Second again due to the self-occlusion of
frame j, some contour points in Ci should not be matched
with any contour point in Cpj→i, e.g., the contour points in

frame 2 belonging to the back part of the Armadillo are not
visible in view 1 (Fig. 3(b)). Hence we prune Ci based on
the visibility of the corresponding contour generator in view
j,

Cpi/j = {u ∈ Ci|Ni(u)T · (oj→i − Vi(u)) > 0}, (3)

where oj→i is the camera location of frame j in camera i.
An example of pruned contour points is shown in Fig. 3(c).

Bijective closest matching in 3D. After pruning, a one-
way closest matching algorithm between Cpi/j and Cpj→i still
fails, as contour points are sensitive to minor changes in
viewing directions, e.g., camera 1 observes only one leg
while the contour points of two legs are extracted from the
projected range scan (Fig. 3(c)). Hence we follow a bijec-
tive matching scheme [27] when establishing robust corre-
spondences (Eq. 5 and Eq. 9).

(a)
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Figure 3. (a) Front range scan (red) and side range scan (blue) of
the Stanford Armadillo. (b) C1→2 (red) and C2 (blue). (c) Cp

1→2

(red) and Cp
2/1 (blue). (d) Bijective correspondences (black line)

found in 3D. (e) Bijective correspondences (black line) found in
2D with red rectangle indicating mismatches
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Figure 4. (a) Our M-ICC method. (b) 4 range scans of a Bach
head statue taken approximately at 90o apart, with limited overlap
and poor initialization. (c) Initial right range scan and back range
scan barely overlap and have a large rotation error. (d) Result of
pairwise registration using standard ICP algorithm. (e) Result of
our M-ICC method.

Matching directly in the 2D image space leads to many
wrong corresponding pairs. An example is shown in
Fig. 3(e), where the contour points of the right leg in frame
1 are wrongly matched with the contour points of the left
leg in frame 2. The ambiguity imposed by the 2D nature is
resolved by relaxing the search to the 3D space (Fig. 3(d)),
as we have the 3D point location Vi(u) for each contour
point. It is worth mentioning that while we build corre-
spondences in 3D, we are minimizing the distances between
contour correspondences in 2D, as the real data given by
most structured-light 3D sensors is extremely noisy along
the rays of apparent contour.

4. Multi-View Rigid Registration

The general pipeline of our Multi-view Iterative Closest
Contour (M-ICC) method is shown in Fig. 4(a). Given N
roughly initialized range scans (Fig. 4(b)), we alternate be-
tween updating the view graph, establishing robust contour
correspondences from pairs of range scans in the view graph
and minimizing distances of all correspondences. While
the standard pairwise ICP algorithm fails in the presence
of wide baseline (Fig. 4(d)), our M-ICC method jointly re-
covers accurate camera poses (Fig. 4(e)).

Preliminaries. Frame i is associated with a 6 DOF

rigid transformation matrix wTi =

[
Ri ti
0T 1

]
where Ri

is parameterized by a 3 DOF quaternion, namely qi =
[qwi , q

x
i , q

y
i , q

z
i ] with ‖q‖2 = 1, and ti is the translation

vector. Operator wΠi(u) = wT iṼi(u) transforms pixel u
to its corresponding homogeneous back-projected 3D point
in the world coordinate system, where Ṽi(u) is the homo-
geneous back-projected 3D point in the camera coordinate
system of frame i. Inversely we have operator iΠw such
that u = iΠw(wΠi(u)) = P(g(iTw

wΠi(u))). Given N
frames, we have a total 6×N parameters stored in a vector
θ.

Unlike [23, 24] where pairwise registration is performed
before a final global error diffusion step, we do not require
pairwise registration and explicitly employ contour coher-
ence under a multi-view framework. We achieve that by
associating two camera poses with a single contour corre-
spondence. Assuming u and v is a corresponding pair be-
longing to frame i and frame j respectively, then their dis-
tance is modeled as ‖v− jΠw(wΠi(u))‖2. Minimizing this
distance updates both camera poses at the same time, which
allows us to globally align all frames together. It is worth
mentioning that pairwise registration is a special case of the
multi-view scenario in a way that the pairwise registration
2T1 is achieved as 2T1 = 2Tw

wT1.
View graph. View graph L is a set of pairing relation-

ship among all frames. (i, j) ∈ L indicates that frame
j is viewable in frame i and hence robust contour corre-
spondences should be established between Ri and Rj→i.
Each frame’s viewing direction in the world coordinate is
Ri(0, 0, 1)T and frame j is viewable in frame i only if their
viewing directions are within a certain angle η, i.e.,

L = {(i, j)| acos((0, 0, 1)Ri
TRj(0, 0, 1)T ) < η}. (4)

It is worth mentioning that (i, j) 6= (j, i) and we establish
two pairs of correspondences between frame i and frame j,
namely between Cpj→i and Cpi/j , and between Cpi→j and Cpj/i.
Another issue worth raising is that the loop closure is auto-
matically detected and achieved if all N views form a loop.
An example is shown in Fig. 4(c), where L is calculated
as {(1, 2), (2, 1), (2, 3), (3, 2), (1, 4), (4, 1)} from θinitial,
i.e., the gap between frame 3 (back frame) and frame 4
(right frame) is large and the loop is not closed from the
beginning. As we iterate and update the camera poses, link
{(3, 4), (4, 3)} is added to L and we automatically close the
loop.

Robust Closest Contour and Minimization. For each
viewable pair (i, j) ∈ L, we extract robust contour cor-
respondences Mi,j→i between Cpj→i and Cpi/j using RCC
algorithm as

Mi,j→i = {(u, jΠw(wΠi(v))) |
v = arg min

m∈Cpj→i

d(Vi(u),Vj→i(m)),

u = arg min
n∈Cp

i/j

d(Vj→i(v),Vi(n))} (5)



where d(x,y) = ‖x−y‖2 is the Euclidean distance opera-
tor. Pixel v is the closest (i.e., distance in the back-projected
3D space) point on the pruned predicted contour to pixel
u on the pruned observed contour, while at the same time
pixel u is also the closest to pixel v, i.e., the bijectivity in
3D is imposed.

We minimize the sum of point-to-plane [5] distances of
all contour correspondences as

ER =
∑

(i,j)∈L

∑
(u,v)∈Mi,j→i

|(u− iΠw(wΠj(v)))T · ni(u)|.

(6)
In practice, we find that the point-to-plane error metric al-
lows two contours to slide along each other and reaches bet-
ter local optimum than the point-to-point error metric.

5. Multi-view Articulated Registration
To handle small articulations, we further extend M-ICC

to Multi-view Articulated Iterative Closest Contour (MA-
ICC) algorithm (Fig. 5(a)). Given N range scans, articula-
tion structure as well as known segmentationW1 of all rigid
parts in the first frame (Fig. 5(b)), we first regard all range
scans as rigid and apply the M-ICC method, after which
all range scans are roughly aligned (Fig. 5(c)). We then
iteratively segment other frames, update the view graph, es-
tablish robust contour correspondences and minimize until
convergence (Fig. 5(d)).
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Figure 5. (a) Our MA-ICC method. (b) Segmentation of human
body into rigid parts. (c) Registration result after our M-ICC
method. (d) Registration result after our MA-ICC method.

Preliminaries. We employ a standard hierarchical struc-
ture, where each rigid segment k of frame i has an attached
local coordinate system related to the world coordinate sys-
tem via transform wT ik. This transformation is defined hier-
archically by recurrence wT ik = wT ikp

kpT ik, where kp is the

parent node of k. For the root node, we have wT iroot = wTi,
where wTi can be regarded as camera pose of frame i. kpT ik
has a parameterized rotation component and a translation
component completely dependent on the rotation compo-
nent. As such, for a total of N range scans where the com-
plete articulated structure contains M rigid segments, there
is a total number of N × (M × 3 + 3) parameters stored in
the vector θ.

We employ the Linear Blend Skinning (LBS) scheme
where each pixel u in frame i is given a weight vec-
tor Wi(u) ∈ RM with

∑
j=1...M

Wi(u)j = 1, indicat-

ing its support from all rigid segments. As such, op-
erator wΠi in the rigid case is rewritten as wΠAi (u) =∑
j=1...M

wT ijṼi(u)Wi(u)j in the articulated case, which is

a weighted transformation of all rigid segments attached to
u. Similarly we have operator iΠAw as the inverse process
such that u = iΠ

A
w(wΠAi (u)).

Segmentation of other frames. Given the segmentation
W1 of the first frame and predicted pose θ, we segment pixel
u ∈ Ui of frame i as

Wi(u) =W1(arg min
v∈U1

d(v, 1Π
A
w(wΠAi (u)))), (7)

i.e., the same weight as the closest pixel in the first frame.
To simplify the following discussion, we define

F(S, k) = {u ∈ S| WS(u)k = 1} which indicates the
subset of S with pixels exclusively belonging to the k-th
rigid part.

View graph. In the presence of articulation, we only
build contour correspondences on the corresponding rigid
body parts, as such (i, j, k) ∈ LA indicates that rigid seg-
ment k of frame j is viewable in frame i and we should
build robust contour correspondences among F(Cpi/j , k)

and F(Cpj→i, k). Besides considering the viewing direction
of cameras, we consider self-occlusion and build contour
correspondences only when there are enough contour points
(i.e., more than γ) belonging to the rigid segment k in both
views,

LA = {(i, j, k)| acos((0, 0, 1)Ri
TRj(0, 0, 1)T ) < η,

#(F(Cpi/j , k)) > γ, #(F(Cpj→i, k)) > γ|} (8)

Robust closest contour and minimization. For each
viewable pair (i, j, k) ∈ LA, the set of bijective con-
tour correspondences MAi,j→i,k between F(Cpi/j , k) and
F(Cpj→i, k) are extracted by RCC as

MAi,j→i,k = {(u, jΠAw(wΠAi (v))) |
v = arg min

m∈F(Cpj→i,k)

d(Vi(u),Vj→i(m)),

u = arg min
n∈F(Cp

i/j
,k)

d(Vi(n),Vj→i(v))}. (9)



We minimize the sum of point-to-plane distances between
all contour correspondences

EA =
∑

(i,j,k)∈LA

∑
(u,v)∈MA

i,j→i,k

|(u−iΠAw(wΠAj (v)))T ·ni(u)|

+ αθT · θ, (10)

where we use αθT · θ as the regularization term favoring
the small articulation assumption.

6. Implementation
We use a standard stopping condition for our itera-

tive process: (1) the maximum iteration number has been
achieved, or (2) the distance per contour correspondence
is small, or (3) the decrease in distance per contour corre-
spondence is small. For each iteration Eq. 6 and Eq. 10 are
non-linear in parameters, as such we employ the Levenberg-
Marquardt algorithm [16] as our solver. The Jacobian ma-
trix for the Levenberg-Marquardt algorithm is calculated by
the chain rule.

In all our experiments, we set the depth discontinuity
threshold ζ = 50mm (Eq. 1, 2). The viewable angle thresh-
old is η = 120o (Eq. 4, 8) while the rigid segment minimum
number of points threshold γ = 500 (Eq. 8). The weight for
the regularization term is set as α = 100 (Eq. 10). For scan-
ning real rigid and articulated objects, we use the Kinect
sensor. It is worth mentioning that for a specific range scan-
ning device the parameters work in a large range and do not
require specific tuning.

In practice, our M-ICC and MA-ICC methods converge
within 10 iterations. Specifically for pair-wise rigid regis-
tration, within each iteration, we perform two projections,
extract two sets of robust contour correspondences, and
minimize the cost function with the Levenberg-Marquardt
algorithm. Since the projection is easily parallelized and
the closest-point matching is searching over a limited num-
ber of contour points in 2D space, our algorithm can easily
run in real time on a GPU.

7. Experimental Results
We evaluate our contour coherence based multi-view

registration algorithms with two sets of experiments. First
we evaluate our method on pair-wise registration between
synthetic wide baseline range scans. Then we show recon-
struction results of rigid and articulated objects using a low-
cost Kinect device, and compare with other state-of-the-art
scanning algorithms.

7.1. Pair-wise Registration of Synthetic Data

We compare our contour coherence method with the
Trimmed-ICP (trICP) algorithm [6] which is the most ro-
bust variant of ICP in the presence of wide baseline. The

basic idea of trICP is that since we don’t know the exact
percentage of overlap, we can manually select a set of over-
lap percentages in [0, 1] and run the basic ICP algorithm at
each overlap level by forcing the ICP to only use the prede-
fined percentage of closest correpondences. A robust mea-
sure of ψoverlap(ξ) = e(ξ)ξ−(1+λ) is introduced for the se-
lection of optimal overlap percentage where ξ is the amount
of overlap, e(ξ) is the final RMSE at the predefined overlap
level and λ is a preset parameter. For our experiment, we
use the standard point-to-plane ICP , test a range of overlap
percentages ξ from 10% to 100% increased by 10% and set
λ = 2 as suggested in the original paper.

We generate pairs of synthetic wide baseline range scans
of different 3D objects by moving a virtual camera around
them. When aligning two synthetic range scans, an increas-
ing offset θoffset is added to the main rotation angle while
small random perturbations (0 ∼ 10o) are added to its other
rotation angles. This setup simulates the 3D reconstruc-
tion scenario where we are trying to align two wide base-
line range scans yet only have a rough approximation of the
main rotation angle between them. We initialize the two
range scans by aligning their centers together (Fig. 6(a)).
We register the two range scans, estimate the preset offset in
the main rotation angle and compare with the ground truth
to obtain the error in estimation. Table 1 summarizes the
alignment result of two Stanford Bunny range scans with a
45% overlap on the red range scan. Small error indicates
successful registration and we denote as error < 1.

The triICP algorithm fails to align these two range scans
beyond a 30o main rotation offset and stops at a local min-
imum (Fig. 6(b)), while our method successfully recovers
up to 54o as shown in Fig. 6(c). Experiments on wide base-
line range scans of other 3D objects, including the Stanford
Armadillo and the Stanford Dragon, produce similar results

Table 1. Errors of recovered main rotation angle at different
θoffset (in degrees)

θb 12 24 30 36 42 48 54 60
trICP < 1 < 1 < 1 44.1 44.2 44 44.2 44.1
Ours < 1 < 1 < 1 < 1 < 1 < 1 < 1 34

(a) (b) (c)

Figure 6. (a) Initialization of two synthetic Stanford Bunny range
scans of 45% overlap and a 54o offset in main rotation angle (b)
Registration results of triICP algorithm (c) Registration result of
our method
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Figure 7. (a) Our modeling result of the Bach head statue from 4
range scans. (b) Modeling result of the KinectFusion algorithm
from approximately 1200 range scans. (c) Our modeling result
of the mannequin torso from 4 range scans. (d) Modeling result of
the KinectFusion algorithm from approximately 1200 range scans.
(e) Heatmap of our modeling result compared with a ground truth
laser scan with error range from 0mm (blue) to 10mm (red). (f)
Heatmap of the KinectFusion modeling result compared with a
ground truth laser scan with the same range.

and are not listed here.

7.2. Scanning Real Objects

Rigid Objects. When modeling rigid objects, we cap-
ture four depth images of rigid objects at approximately
90o apart using a single Kinect. The background depth
pixels are removed from the range scans by simply thresh-
olding depth, detecting and removing planar pixels using
RANSAC [10], assuming the object is the only thing on the
ground or table. The four wide baseline range scans are
initialized by aligning the centers together and assuming a
pairwise 90o rotation angle (Fig. 4(b)). We register four
frames using our proposed M-ICC method and use the Pois-
son Surface Reconstruction (PSR) algorithm [13] to gener-
ate the final water-tight model (Fig. 7(a)). We compare our
method with the KinectFusion algorithm [17] (Fig. 7). In
practice, KinectFusion easily loses track of the camera even

when we carefully hold the camera and move slowly. As a
result, we put the object on a turntable, rotate it for approx-
imately 2 minutes and scan it with a fixed Kinect.

As KinectFusion incrementally updates the model, the
drifting error accumulates and creates artifacts when closing
the loop (Fig. 7(b) 7(d)), while our method successfully re-
construct smooth 3D objects (Fig. 7(a) 7(c)) from only four
views. We further compare our reconstructed model with a
laser scanned ground truth model and achieve a median er-
ror of 2.12mm (Fig. 7(e)), while the KinectFusion achieves
a median error of 5.17mm (Fig. 7(f)). The heatmaps clearly
show that while our model accurately captures the global
shape, KinectFusion suffers from an accumulated drifting
error.

Articulated Objects. Among all articulated objects, hu-
man body is of most interest in 3D modeling [15, 23, 25, 27]
for its potential applications in 3D printing, animation and
apparel design. The subject is scanned by turning in front of
a fixed Kinect sensor while showing 4 key poses, i.e., front,
left, back and right in order.

When scanning human body, due to Kinect’s field of
view limit, the subject must stand at approximately 2 me-
ters away which leads to a large degradation in the input
data quality. As such, inspired by [15], we ask the subject
to come closer and stay rigid for 5 to 10 seconds at each
key pose while the Kinect, controlled by a built-in motor,
rotates to scan the subject using KinectFusion. The recon-
structed partial 3D scene is further projected back to gener-
ate a super-resolution range scan.

After acquiring 4 super-resolution range scans of the
subject, we align them using our MA-ICC method. Seg-
mentation of the first range scan is performed by heuristi-
cally segmenting the bounding contour and then assign the
same weight to each pixel as of its closest bounding con-
tour. In practice we segment the whole body into 9 parts
(Fig. 5(b)). It is worth mentioning that any other segmenta-
tion algorithm can be applied as input, such as [21]. After
registration, we again use PSR to generate the final water-
tight model as shown in Fig. 8. To the best of our knowl-
edge, we are the first to generate accurate and complete hu-
man body models from as few as 4 views with a single sen-
sor, as other shape coherence based methods fail in the pres-
ence of wide baseline. Our single Kinect 3D body scanning
system opens the door for many domestic applications, in-
cluding our recent work on animating the acquired 3D body
model [20].

8. Conclusion and Future Work
We propose the concept of contour coherence for solv-

ing the problem of wide baseline range scan registration.
Our M-ICC and MA-ICC methods allow complete recon-
struction of rigid and articulated objects from as few as 4
frames. In the future, we plan to apply contour coherence



Figure 8. Front and back views of our reconstructed human body
model from 4 super-resolution range scans using MA-ICC method

in other interesting fields, e.g., object recognition and pose
estimation from range scans.
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