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Abstract

Current human-in-the-loop fine-grained visual catego-
rization systems depend on a predefined vocabulary of at-
tributes and parts, usually determined by experts. In this
work, we move away from that expert-driven and attribute-
centric paradigm and present a novel interactive classifi-
cation system that incorporates computer vision and per-
ceptual similarity metrics in a unified framework. At test
time, users are asked to judge relative similarity between
a query image and various sets of images; these general
queries do not require expert-defined terminology and are
applicable to other domains and basic-level categories, en-
abling a flexible, efficient, and scalable system for fine-
grained categorization with humans in the loop. Our system
outperforms existing state-of-the-art systems for relevance
feedback-based image retrieval as well as interactive classi-
fication, resulting in a reduction of up to 43% in the average
number of questions needed to correctly classify an image.

1. Introduction
Within the realm of visual categorization in computer

vision, humans can play multiple roles. As experts, they
can define a comprehensive set of semantic parts and at-
tributes to describe and differentiate categories, as well as
provide ground truth attribute values, such as for a field
guide. As non-expert users of interactive classification sys-
tems [5, 38], they can also supply these attribute and part
annotations. These types of systems combine machine vi-
sion algorithms with user feedback at test time in order to
guide the user to the correct answer. An interactive bird
species recognition system, for example, may request feed-
back from the user regarding a particular image, such as
“Click on the beak” or “Is the wing blue?”

These attribute-based methods have several weaknesses,
especially within fine-grained visual categorization. Fine-
grained categories comprise the set of classes (e.g. Pem-
broke Welsh Corgi, Shiba Inu) within a basic-level cate-
gory (e.g. dogs); each basic-level category requires its own
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Figure 1. Our interactive categorization system learns a perceptual
similarity metric from human similarity comparisons on a fixed
training set of images and class labels. At test time, our system
leverages this learned metric, along with similarity comparisons
provided by the user, to classify out-of-sample query images.

unique, discriminative part and attribute vocabulary. Ac-
quiring this vocabulary involves identifying an expert re-
source (e.g. a field guide) for that basic-level category. For
certain categories, such as chairs or paintings, it may be dif-
ficult to produce an adequate vocabulary. Furthermore, one
must obtain image- or class-level annotations for these at-
tributes. Even if the labels were crowdsourced, each basic-
level category would require a custom set of annotation
tools, and building these tools is a nontrivial task.

In addition, users may have difficulty understanding the
domain-specific jargon used to articulate the semantic at-
tribute vocabulary. The fixed-size vocabulary may also lack
sufficient discriminative attributes for recognition. Thus,
the cost in obtaining attribute vocabularies is high, making
it expensive to extend an existing system to new categories.

In this work, we propose an approach to visual catego-
rization (Fig. 1) that is based on perceptual similarity rather
than an attribute vocabulary. We assume that we are pro-
vided with a fine-grained dataset of images that are anno-
tated with only class labels. In an offline stage, we col-
lect relative similarity comparisons between images in the
dataset, and then leverage these human-provided compar-
isons to perform visual categorization.
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Figure 2. An example of the interface used for offline collection of
similarity comparisons, from which we learn a similarity metric.

This similarity-based approach to interactive classifica-
tion has several compelling advantages. First, we no longer
require part and attribute vocabularies, which can be ex-
pensive to obtain. By eliminating the need for experts to
predefine these vocabularies, we no longer constrain users
by expert-defined terminology. Moreover, the continuous
embedded similarity space is a richer and vastly more pow-
erful representation than these typically fixed-size vocabu-
laries. These factors facilitate the adaptation of an existing
similarity-based system to other basic-level categories.

This similarity-based paradigm enables us to incremen-
tally improve our computer vision models and algorithms
while providing a useful service to users. Each user re-
sponse collected at test time can further refine the learned
similarity metrics and consequently improve performance.
In addition, our flexible framework supports a variety of off-
the-shelf computer vision algorithms, such as SVMs, logis-
tic regression, and distance learning algorithms, all of which
can be easily mapped into the system.

The psychology literature [35] informs us that humans
judge similarity subjectively based on various universal fac-
tors that may differ from person to person; in evaluating
similarity between objects in images, these factors could be
based on category, pose, background, illumination, etc. Be-
cause of this, we also study how multiple general-purpose
similarity metrics, with respect to universal factors such as
color and shape, can be used to perform categorization.

Our visual categorization system is similar to the system
in [14], with several important distinctions. While our sys-
tem shares aspects of [14]’s user and display models, it uses
similarity metrics that are derived from human perception
of similarity rather than computer vision features, which al-
low us to bridge the “semantic gap” of many content-based
image retrieval systems [6], including [14]. This semantic
gap references the disparity between information extracted
from visual data and how the user perceives and interprets
that data [6]. Second, we assume that a query image is avail-
able at test time, enabling us to incorporate computer vision
algorithms that are evaluated on the test image in order to
initialize per-class probabilities [5]. Our system reduces hu-

man effort (as measured by the average number of questions
posed to the user) by 43%, compared to an implementation
of [14] that has been initialized using computer vision.

Our contributions in this work are three-fold. First, we
present a efficient, flexible, and scalable system for fine-
grained visual categorization that is based on perceptual
similarity and combines different types of similarity met-
rics and computer vision methods in a unified framework.
Second, we demonstrate the value in using a perceptual
similarity metric over relevance feedback-based image re-
trieval methods and vocabulary-dependent attribute-based
approaches. Lastly, we demonstrate that our system can in-
corporate multiple metrics, posing different forms of ques-
tions intelligently to the user at test time.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss relevant work. In Section 3, we introduce
our method for learning similarity metrics and describe how
we integrate those metrics in our framework. We discuss
implementation details in Section 4 and present our experi-
mental results in Section 5. We conclude in Section 6.

2. Related Work
Recently, the computer vision community has seen a

burst of interest in interactive classification systems [5, 38,
19], several of which build on attribute-based classification
methods. Some works harvest attributes through various
means [20, 12, 18, 11, 25], while others discover attributes
in an automatic or interactive manner [30, 4, 8], relying on
users to identify and name attributes [26, 17, 22, 23] or to
provide feedback in order to improve classification [7, 28].

In contrast to these attribute-centric methods, we fo-
cus on similarity. Some recent works use similarity in
feature space [18, 3]; others rely on human judgment to
quantify similarity for classifying attributes or clustering
categories [27, 7, 15, 21]. We instead learn a metric of
perceptual similarity for categorization from relative com-
parisons [33, 1, 24, 34], specifically employing stochastic
triplet embedding [36] in this work.

Another related area is relevance feedback-based image
retrieval [32, 2, 6, 16, 40]. Some works, e.g., [31], have
focused on identifying nonlinear manifolds that better align
with human perception; however, they do not adequately
bridge the semantic gap or capture perceptual measures of
similarity. In particular, our work bears similarities to the
relevance feedback system presented in [14] but differs in
several important ways. First, the motivating assumption
in [14] is that the user possesses only a mental image or con-
cept of a semantic category. We instead assume existence of
the query image, such that we are able to incorporate com-
puter vision at test time. Second, [14] uses a single simi-
larity metric derived from visual features (i.e. GIST) rather
than human perception; we conduct human experiments to
generate a perceptual embedding of the data. We combine



this perceptual similarity metric along with computer vision
as part of a unified framework for recognition. Our system
supports multiple similarity metrics and is able to trade off
between these metrics at test time. To our knowledge, no
other existing system combines perceptual and visual infor-
mation for categorization in this integrated manner.

3. Approach

3.1. Problem Formulation

We formulate the problem as follows. Given an image x,
we wish to predict the object class from C possible classes
that fall within a common basic-level category, where C is
the set of images belonging in the true object class. We do
so using a combination of computer vision and a series of
questions that are interactively posed to a user. Each ques-
tion contains a display D of images, and the user is asked
to make a subjective judgment regarding the similarity of
images in D to the target image x, providing a response u.

An image x in pixel space can also be represented as a
vector z in human-perceptual space. At train time, we are
given a set of N images and their class labels {(xi, ci)}Ni=1.
We ask similarity questions to human users to learn a per-
ceptual embedding {(xi, zi, ci)}Ni=1 of the training data. At
test time, we observe an image x and pose questions to a
human user, and we obtain probabilistic estimates of z and
c that are incrementally refined as the user answers more
questions.

We also consider an extension in which similarity can be
decomposed into multiple similarity metrics over A differ-
ent visual traits. It is intended for these traits to be broadly
applicable to a wide range of basic-level categories, such as
similarity in terms of color, shape, or texture.

3.2. Learning Similarity Metrics

In this section, we describe how we use similarity com-
parisons collected from humans (Sec. 3.2.1) to learn a per-
ceptual embedding of similarity (Sec. 3.2.2).

3.2.1 Triplet Constraints

We begin by obtaining a set of K user similarity compar-
isons in an offline data collection stage; more details regard-
ing this step are discussed in Section 4.1. Each collected
user response is interpreted as follows.

A user is asked to judge the similarity between a target
image x and a display D that comprises a set I of G im-
ages. From each user response uk, k = 1 . . .K, we obtain
two disjoint sets: one set {xS1 , xS2 , . . . , xSn} ∈ IS rep-
resents the images judged as similar to the query image;
and {xD1

, xD2
, . . . , xDm

} ∈ ID includes all other images,
such that ID ∪ IS = I. Recall that a user response for a

given query image x yields two sets ID and IS . We broad-
cast this to an equivalent set of (noisy) triplet constraints
T k = {(i, j, l)|xi is more similar to xj than xl}, where i is
the target image, represented as xi; j is from set IS ; and
l is drawn from set ID. Therefore, for each user response,
we obtain nm triplet constraints in T k. For a display size
G = 9, this value can range from 8 to 20 triplet constraints
per user response. Constraints from each user response are
then added to a comprehensive set T of similarity triplets.

3.2.2 Generating a Perceptual Embedding

Let s(i, j) denote the perceptual similarity between two im-
ages xi and xj . Using T , we wish to find an embedding Z
of N training images {z1, . . . , zN} ∈ Rr for some r ≤ N ,
in which triplet comparisons based on Euclidean distances
are consistent with s(·, ·). In other words, we want the fol-
lowing to occur with high probability:

‖zi − zj‖2 < ‖zi − zl‖2 ⇐⇒ s(i, j) > s(i, l). (1)

The dimensionality r is empirically chosen based on mini-
mizing generalization error (see Sec. 5.1). We use the met-
ric learning approach described in [36] and optimize for the
embedding Z = [z1, z2, . . . , zN ], such that for each triplet
(i, j, l) the similarity of zi and zj is large in comparison
to the similarity of zi and zl according to a Student-t ker-
nel; we refer the reader to [36] for additional details. From
the learned embedding Z, we generate a similarity matrix
S ∈ N ×N with entries:

Sij = exp

(
−‖zi − zj‖2

2σ2

)
, (2)

which can be directly used in our classification system. The
scaling parameter σ is learned jointly with the user response
model parameters (see Sec. 3.3.1). In practice, this matrix
can be reduced to S ∈ C × C, where C is the number of
classes, by pooling over images in each class (see Sec. 5.1).

3.3. Human-in-the-Loop Classification

Given a test image x, the goal of our human-in-the-loop
classification system is to identify the true class c as quickly
as possible using a combination of computer vision and
user responses to similarity questions. At each timestep
t, the system intelligently chooses a display Dt of G im-
ages to show. The user provides a response ut, selecting
the image perceived to be most similar to the test image
x. Let Ut = u1 . . . ut be the set of responses obtained
within timestep t. Our goal is to predict class probabilities
p(c|x, Ut) while exploiting the visual content of the image
x and user responses Ut. We compute class probabilities
by marginalizing over all possible locations z of image x in
perceptual space:

p(c, Ut|x) =

∫
z

p(c, z, Ut|x)dz (3)



where p(c|x, Ut) ∝ p(c, Ut|x). Our probabilistic prediction
of the location z and the class c becomes increasingly re-
fined as the user answers more questions. We can further
decompose p(c, z, Ut|x) into terms:

p(c, z, Ut|x) = p(Ut|c, z, x)p(c, z|x) (4)

where p(Ut|c, z, x) is a model of how users respond to simi-
larity questions, and p(c, z|x) is a computer vision estimate.

In the following sections, we discuss the user model
(Sec. 3.3.1), its efficient computation (Sec. 3.3.2), populat-
ing the display (Sec. 3.3.3), and an extension to multiple
similarity metrics (Sec. 3.3.4).

3.3.1 User Response Model

We describe our probabilistic model of how users answer
similarity questions as follows. We decompose user re-
sponse probabilities p(Ut|c, z, x) as such:

p(Ut|c, z, x) = p(Ut|z) =
t∏

r=1

p(ur|z). (5)

Here, we assume that a user’s response to similarity ques-
tions depends only on the true location z in perceptual space
and that answers to each question are independent. Recall
that each similarity question comprises a display D of G
images, and the user responds by selecting the index i ∈ D
of an image that is perceived to be most similar to the test
image. A perfect user would deterministically choose the
image xi for which the perceptual similarity s(z, zi) is high-
est, such that:

p(u|z) = 1[s(z, zi) = max
j∈D

s(z, zj)]. (6)

However, real users may respond differently due to subjec-
tive differences and user error. We thus model noisy re-
sponses probabilistically, assuming that the probability that
the user selects i is proportional to its similarity s(z, zi) to
the test image x:

p(u|z) = φ(s(z, zi))∑
j∈D φ(s(z, zj))

(7)

where φ(·) is some customizable, monotonically increasing
function. In practice, we use

φ(s) = max (θ, (1− θ)s) (8)

where θ is a learnable parameter. This model of p(u|z) can
be understood as a mixture of two distributions: with prob-
ability θ a user selects an image at random (e.g., due to user
error); otherwise, a user selects an image with probability
proportional to its perceptual similarity. Recall from Eq 2
that s(z, zj) contains an additional parameter σ. Similar
to [13], the parameters σ and θ are learned by maximizing
the log-likelihood of a validation set of 200 non-Turker hu-
man user responses.

3.3.2 Efficient Computation

Recall that the user sequentially answers a series of similar-
ity questions Ut = u1 . . . ut. In this section, we derive an
efficient algorithm for updating class probability estimates
p(c|x, Ut) in each timestep t.

Let wt
k be shorthand for the probability p(ck, zk, Ut|x):

wt
k =

(
t∏

r=1

p(ur|zk)

)
p(ck, zk|x) (9)

where k enumerates images in the training set. Each weight
wk captures how likely location zk is the true location z.
Note that wt+1

k can be efficiently computed from wt
k as:

wt+1
k = p(ut+1|zk)wt

k =
φ(Sik)∑

j∈D φ(Sjk)
wt

k (10)

where i is the selected image at t + 1, Sij is an entry of
the similarity matrix (Sec. 3.2.2), and w0

k = p(ck, zk|x). To
estimate class probabilities, we approximate the integral in
Eq 3 as the sum over training examples:

p(c, Ut|x) ≈ 1

N

∑
k=1...n,
ck=c

p(ck, zk, Ut|x). (11)

By the definition ofwt
k and normalizing probabilities, it fol-

lows that p(c|x, Ut) is the sum of the weights of training
examples of class c:

p(c|x, Ut) =

∑
k,ck=c w

t
k∑

k w
t
k

, (12)

resulting in an efficient algorithm where we maintain
weights wt

k for each training example: (1) we initialize
weights w0

k = p(ck, zk|x) (estimated using computer vi-
sion; see Sec. 3.4); (2) we update weights when the user
answers a similarity question (Eq 10); and (3) we update
per-class probabilities (Eq 12).

3.3.3 Choosing Which Images to Display

Recall that at each timestep, our system intelligently poses
a similarity question by selecting a display D of G images.
We wish to choose the set of images that maximizes ex-
pected information gain. We follow the procedure used by
Ferecatu and Geman [14], which defines an efficient ap-
proximate solution for populating this display. We group
the images into equal-weight clusters, where each image
possesses mass wt

k. This ensures that each image in the
display is equally likely to be clicked, maximizing the infor-
mation gain in terms of the entropy of p(c, zk, Ut|x). Given
the clustering of images, we pick the image within the clus-
ter with the highest mass for the display using an approxi-
mate solution. We refer the reader to [10, 14] for additional



details. A similar procedure can be used to instead pick
a set of G classes to display, assigning each class a mass∑

k,ck=c w
t
k, maximizing the information gain in terms of

the entropy of p(c|x, Ut).

3.3.4 Extension to Multiple Similarity Metrics

Our system can support the use of multiple similarity met-
rics Sa, a ∈ 1 . . . A that are represented at test time as
different questions, where we direct the user’s attention to
specific visual traits. At train time, we obtain a separate em-
bedding Z1 . . .ZA for each trait (using similarity questions
that are targeted toward a specific trait), yielding multiple
similarity matrices S1 . . . SA.

At test time at each timestep t, we pick both a trait a and
display of images D that is likely to provide the most infor-
mation gain. This amounts to finding the trait that can pro-
duce the most balanced clustering according to the current
weights wt

k. Computation of updated class probabilities oc-
curs identically to the procedure described in Section 3.3.2,
with a slightly modified update rule that replaces Eq 10:

wt+1
k = p(ut+1|zak)wt

k =
φ(Sa

ik)∑
j∈D φ(S

a
jk)

wt
k. (13)

Here, we update weights wt+1
k according to the similarity

matrix Sa of the selected trait a.

3.4. Incorporating Computer Vision

Recall from Eq 4 that we would like to train an estima-
tor for p(c, z|x), the probability that an observed image x
belongs to a particular class c and location z in perceptual
space. In practice, our human-in-the-loop classification al-
gorithm (as described in Sec. 3.3.2) only requires us to es-
timate w0

k = p(ck, zk|x) for training examples k = 1...N
rather than for all possible values of z. In this section, we
show how off-the-shelf computer vision algorithms such as
SVMs, boosting, logistic regression, and distance learning
algorithms can be mapped into this framework. We also
discuss novel extensions for designing new algorithms that
are more customized to the form of p(c, z|x). For each such
method, we describe the resulting computation of w0

k.
No Computer Vision: If no computer vision algorithm is
available, then we have no information toward predicting c
or z based on observed image pixels x. As such, we assume
each location zk is equally likely:

w0
k = p(ck, zk|x) =

1

N
. (14)

Classification Algorithms: Classification algorithms such
as SVMs, boosting, and logistic regression produce a classi-
fication score that can be adapted to produce a probabilistic
output p(c|x). They are otherwise agnostic to the prediction

of z. We thus assume that zi and zj are equally likely for
examples of the same class ci = cj :

w0
k = p(ck, zk|x) =

1

Nck

p(ck|x) (15)

where Nc is the number of training images of class c. We
learn parameters for p(c|x) on a validation set [29].
Distance-Based Algorithms: Non-parametric methods
(e.g., nearest neighbor and distance-learning methods) can
be adapted to produce a similarity s(xk, x) between x and
the kth training example (computed using low-level image
features) but are otherwise agnostic to class:

w0
k = p(ck, zk|x) ∝ s(xk, x). (16)

A Gaussian kernel s(xk, x) = exp{−d(xk, x)/σ} is com-
monly used, where d(xk, x) is a distance function and σ is
estimated on a validation set. Note that due to normaliza-
tion in Eq 12, using an unnormalized probability does not
affect correctness.
Pose-Based Classification Algorithms: Note that the
above classification and distance-based algorithms are sub-
optimal due to not exploiting information in zk and c, re-
spectively. We consider a simple extension to help rem-
edy this. We obtain a perceptual pose embedding Zo

of the training data using pose similarity questions (see
Sec. 3.2.2), then cluster training examples zo1...z

o
N using k-

means into K discrete poses. Let oi be the pose index of
the ith example. We train a separate multiclass classifier for
each pose o, obtaining a pose-conditioned class estimator
for p(c|x, o). We similarly train a multiclass pose classi-
fier that estimates pose probabilities p(o|x). We assume our
classifiers give us information about z through pose labels
o but are otherwise agnostic to the prediction of z:

w0
k = p(ck, zk|x) =

1

Nck,ok

p(ck|x, ok)p(ok|x) (17)

whereNco is the number of training examples of class c and
pose o. At test time, we have the option of asking a mixture
of class and pose similarity questions.

4. Implementation
4.1. Dataset and Data Collection

We perform experiments on CUB-200-2011 [39], which
contains 200 bird classes with roughly 60 images per class.
We maintain the training/testing split—only training images
are seen in the data collection phase and are used to gener-
ate the embedding. Test images are considered as out-of-
sample input to the interactive categorization system.

To collect the similarity comparisons, we created an in-
terface (Fig. 2) that displays a reference image along with
a grid of 3 × 3 images. Amazon Mechanical Turk workers



are asked to select all the images in the grid that clearly be-
long to a different species, as compared to the reference im-
age. Images for each task are sampled at the category level
without replacement, such that no two images belong to the
same category. Additional observations regarding how the
collected data impacts the embedding generation are dis-
cussed in Section 5.1.

4.2. Features and Learning

We use multiclass classifiers to initialize p(c, z|x), ex-
tracting color/grayscale SIFT features and color histograms
with VLFEAT [37] that were combined with spatial pyra-
mids. We trained 1-vs-all SVMs using LIBLINEAR [9],
achieving an average classification accuracy of 19.4% on
the test set. The classification scores are used to update w0

k

according to Eq 15. At test time, we display a ranked list
of classes based on the posterior probabilities, from which
users can verify the class of the input image.

5. Experiments
5.1. Embedding Generation

Using a set of triplets generated from our collected sim-
ilarity comparisons, we are able to learn an embedding
(Fig. 4(a)) of N nodes, where N=200 is the number of
classes. To better understand the tradeoff between dimen-
sionality r and embedding accuracy, we compute the gener-
alization error as we sweep over the number of dimensions.
The generalization error measures the percentage of held-
out similarity triplets satisfied in three-fold cross validation.
With this method, we empirically estimate r=10 as suffi-
cient for minimizing generalization error.

In Figure 4(a), various clusters of classes are highlighted.
We observe that visually similar classes tend to belong to
coherent clusters within the embedding, for example, the
gulls, large black birds, and small brown striped birds.
However, we also note that certain species that are dissimi-
lar to the other birds tend to fall in their own cluster, towards
the upper left portion of the embedding.

An embedding at the category level does not characterize
intraclass variation, which can be high due to differences in
gender, age, season, etc. Instead, this is handled through
the noisy user model (Eq 7). While our method does not
inherently require it, learning a similarity metric at the cat-
egory level requires much fewer annotations and still gives
a reasonable metric of similarity. In our experiments, we
used roughly 93, 000 triplets out of a possible 8 million to
generate a category-level embedding. At the instance level,
this would be equivalent to collecting over 2 billion triplets.

5.2. Interactive Categorization

We present our results for interactive classification us-
ing the learned perceptual metric for class similarity in Fig-
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Figure 3. Deterministic users. We report the average number of
questions asked per test image in parentheses for each method.
3(a): Our similarity-based approach requires fewer questions (4.32
vs. 6.67) than [5], which uses attributes. 3(b): Our display mecha-
nism reduces user effort, as compared to randomly generated grids
of images and a baseline based on the ranked classification scores.

ures 3 and 4(b). Qualitative examples of results are pre-
sented in Figure 5(a). At test time, a user is shown a display
of 3 × 3 images and asked to select the bird that is most
similar to the input class. The input image is drawn from
the test set, and the display images are drawn strictly from
the pool of training images. As such, the system does not
possess prior knowledge of perceptual similarity between
a given input image and any possible display of images.
We use simulated user responses, which facilitates com-
parison to previous work as well as allows us greater flex-
ibility in running experiments. Playback simulations based
on real human responses are common in human-in-the-loop
work [5, 38, 26, 27, 28] as they allow algorithmic and pa-
rameter setting choices to be explored without rerunning
human experiments.

In our experiments, we measure classification accuracy
as a function of the number of questions or displays the user
has seen. We use the same experimental setup and evalua-
tion criteria as [38], assuming that humans can verify the
highest probability class perfectly and can stop the system
early. Performance is measured as the average number of
questions that a user must answer per test image to clas-
sify it correctly. Different types of questions (similarity, at-
tribute, or part-based) may incur varying amounts of cog-
nitive effort on the user’s part, which may be reflected in
differing amounts of time to answer a single question. As
our test-time user responses are simulated, we compare per-
formance based on the number of questions posed.
Similarity comparisons are advantageous compared to
attribute questions. In Figures 3(a) and 3(b), we show the
effects of not using and using computer vision, respectively.
We observe performance using deterministic (perfect) users
(Eq 6) who are assumed to respond in accordance with
the learned similarity metric. For a direct comparison to
attribute-based approaches, we compare our method to the
setting in which users answer attribute questions determin-
istically in accordance with expert-defined class-attribute
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Figure 4. 4(a): A visualization of the first two dimensions of the 200-node category-level similarity embedding. Visually similar classes
tend to belong to coherent clusters (circled and shown with selected representative images). 4(b): Simulated noisy users. Our method
outperforms a part and attribute-based interactive classification system [38] as well as the relevance feedback-based image retrieval system
described in [14], which has been modified to utilize computer vision in initializing per-class probabilities for fairness of comparison.

values, as reported in [5]. We are able to reduce the average
number of questions needed by 2.4.

Computer vision reduces the burden on the user. We
note a similar trend when computer vision is incorporated
at test time (Fig. 3(b)), in which users take an average of
2.7 questions per image. The addition of computer vision
(Sec. 3.4) reduces the number of questions a user must an-
swer in order to classify an image by 1.6 (Fig. 3(a)).

Intelligently selecting image displays reduces effort. We
compare performance for two versions of our method: the
first intelligently populates each display (Sec. 3.3.3) and
the second randomly generates a display of images at each
question. Using our display model, we observe that 2.7
questions are required on average, compared to 3.3 ques-
tions using a random display. We also compare to a base-
line derived from classification scores [Ranked by CV], in
which the user moves down the ranked list of classes one
at a time to verify the correct class. With our model, we
reduce the average number of questions from 20.3 to 2.7.

Our system is robust to user noise. In reality, assuming
deterministic users is impractical, as users are likely to have
subjective differences in their perceptions of similarity. To
account for this, we incorporate a user response model that
accounts for real human behavior (see Sec. 3.3.1). Using a
validation set of query images, we pose similarity questions
to real human users and estimate the parameters of a noisy
user response p(u|z) with the collected responses.

In our experiments, we simulate noisy user behavior
at test time by randomly selecting answers according to
the distribution p(u|z). We compare performance directly
to the results presented in [38], a system that uses part-
localized computer vision algorithms as well as user feed-
back via attribute and part-click questions, obtaining a re-
duction of 2.6 questions on average (Fig. 4(b)).

We also improve performance significantly over an im-
plementation of [14] that uses a similarity metric generated
from the L1 distances of concatenated feature vectors (see

Method Avg # Questions
CV, Color Similarity 2.70
CV, Shape Similarity 2.67

CV, Texture Similarity 2.67
CV, Color/Shape/Texture Similarity 2.64

No CV, Color/Shape/Texture Similarity 4.21

Table 1. Results using multiple synthetic similarity metrics with
deterministic users. See Section 5.2.1 for additional details.

Sec. 4.2). For a fair comparison, the system in [14] is modi-
fied to use computer vision in initializing the per-class prob-
abilities, as the query image is provided. We note that the
use of the L1 distance-based metric is unable to adequately
capture perceptual similarity, resulting in a high average
number of questions needed for categorization.

5.2.1 Using Multiple Similarity Metrics

We demonstrate a proof-of-concept that our human-in-the-
loop system can utilize multiple similarity metrics. Ideally,
these metrics would be generated from human responses on
visual trait similarity; however, due to the time expense of
collecting new similarity datasets, we simulate perceptual
spaces using CUB-200-2011 attribute annotations. The at-
tribute vectors used to synthesize these metrics are averaged
over multiple human responses to attribute questions, and
therefore capture some perceptual measurements. Similar-
ity metrics are generated for certain universal traits by com-
paring category-level binary attribute vectors; for example,
the color trait is represented as a vector of the color-related
attributes. The pairwise Euclidean distances between binary
attribute vectors are used to generate a similarity matrix.
The observed traits—color, shape, and texture—are univer-
sal enough to be useful in describing a range of basic-level
categories. In this way, these traits would not necessitate
the creation of an attribute vocabulary for a new basic-level
category. We present our results using deterministic users
in Table 1 and Figure 5(b).
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Figure 5. Qualitative results using metrics 5(a) learned from AMT workers and 5(b) synthesized from binary attribute vectors.

6. Conclusion
We have presented an efficient approach to interactive

fine-grained categorization that does not rely on experts for
attribute vocabularies and is cost-effective to deploy for new
basic-level categories. As users answer similarity ques-
tions for new query images, we can augment the training
set and regenerate the perceptual similarity metric, enabling
the system to iteratively improve as more responses are col-
lected. Future work could involve using these perceptual
embeddings to induce attributes, parts, taxonomies, etc.,
which may be of educational value to a user. In addition,
as often there exists no ground truth relative similarity judg-
ment, it would be of interest to the computer vision commu-
nity to determine best practices of eliciting consistent user
similarity comparisons.
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