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Abstract

We propose a novel solution to the generalized camera
pose problem which includes the internal scale of the gener-
alized camera as an unknown parameter. This further gen-
eralization of the well-known absolute camera pose prob-
lem has applications in multi-frame loop closure. While
a well-calibrated camera rig has a fixed and known scale,
camera trajectories produced by monocular motion estima-
tion necessarily lack a scale estimate. Thus, when perform-
ing loop closure in monocular visual odometry, or regis-
tering separate structure-from-motion reconstructions, we
must estimate a seven degree-of-freedom similarity trans-
form from corresponding observations.

Existing approaches solve this problem, in specialized
configurations, by aligning 3D triangulated points or indi-
vidual camera pose estimates. Our approach handles gen-
eral configurations of rays and points and directly estimates
the full similarity transformation from the 2D-3D corre-
spondences. Four correspondences are needed in the mini-
mal case, which has eight possible solutions. The minimal
solver can be used in a hypothesize-and-test architecture for
robust transformation estimation. Our solver also produces
a least-squares estimate in the overdetermined case.

The approach is evaluated experimentally on synthetic
and real datasets, and is shown to produce higher accu-
racy solutions to multi-frame loop closure than existing ap-
proaches.

1. Introduction
A well-known classical problem in photogrammetry is

the determination of the absolute pose of a calibrated cam-
era given three imaged point observations, for which sev-
eral solutions exist (c.f . [16]). In the generalized camera

(a) P3P (b) gP+s

Figure 1: (a) From three or more point observations we can recover
the pose of a pinhole camera, where all image rays intersect at a
common optical center. (b) In this paper we consider the problem
of solving for both the pose and scale of a generalized camera,
where the rays do not necessarily meet at a common optical center,
from four or more point observations. The generalized camera
represents multiple cameras, or, multiple images from a single,
moving camera, as one.

pose problem, the imaging rays do not necessarily meet at
a common optical center [4, 25]. In this paper, we propose
a new absolute pose problem which is a further generaliza-
tion, including the internal scale of the generalized camera
as an unknown parameter. As illustrated in Figure 1, mul-
tiple cameras, or the images from a single, moving camera,
can be modeled as a single generalized camera, described
by its imaging rays. In the generalized pose-and-scale prob-
lem, we wish to determine the position and orientation of
the set of cameras, as well as the scale of the translation be-
tween them, with respect to a set of observed anchor points.

This problem arises in monocular camera motion esti-
mation and scene reconstruction, or structure-from-motion
(SfM). It is impossible to determine scale from camera im-
ages alone, without some external piece of information,
such as a measured distance between cameras or a mea-
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sured dimension of an observed object. Thus, when reg-
istering two SfM results, the relative scale must be deter-
mined along with the translation and rotation. For example,
when integrating loop closures in visual odometry, when
joining two independent SfM reconstructions together, or
when registering a single SfM reconstruction with known
anchor points, the generalized pose+scale problem must be
solved. Essentially, we must find the similarity transform
which relates the two coordinate systems, given image ob-
servations in one reconstruction of 3D points in the other
reconstruction.

Existing solutions to loop closure and SfM alignment
have typically used some combination of single-image pose
determination, point triangulation, and scale estimation.
One common approach is to match triangulated 3D points
between the two reconstructions, and then use absolute ori-
entation [13, 34] to determine the seven degree-of-freedom
registration [6]. A second approach is to localize two im-
ages separately; one localized image determines the rotation
and translation, and the distance to the other image deter-
mines the scale [36]. A third approach essentially combines
the first two: a single image is localized, and the distance
to points triangulated using a second camera determines the
scale [30]. These approaches represent solutions to specific
instances of the more general pose+scale problem: namely,
having three points or two cameras.

The solution proposed in this work handles the afore-
mentioned specific cases, as well as all other configurations:
three or four unique points, and two, three, or four cameras,
without requiring multiple observations of points, or a spe-
cific number of correspondences in any one camera. This
makes our algorithm simple to apply in a robust sampling
procedure such as RANSAC [11] or PROSAC [5]. Our
solution also provides a least squares answer in the over-
determined case. Our experimental results show that our
solution has better accuracy than other special-case align-
ment methods.

In the following, Section 2 discusses related work in the
area of minimal solvers and the corresponding application
scenario. Section 3 gives a formal problem statement fol-
lowed by a description of the proposed solution in Section
4. Experimental results on synthetic and real data are de-
scribed in Section 5. Concluding remarks are given in Sec-
tion 6.

2. Related work
Recently, there has been a great deal of work on mini-

mal solvers for absolute and relative camera pose problems
[1, 2, 3, 17, 18, 19, 21, 22, 24, 29]. A fast and numerically
stable solution which requires the minimal number of cor-
respondences is useful because it can then be applied in a
random sampling framework to robustly find the solution
most consistent with the contaminated input set [11].

The problem we solve belongs to the group of Non-
Perspective-n-Point (NPnP) problems. Closest related to
our work are solutions to the NP3P problem, where minimal
solutions were proposed by Chen and Chang [4] and Nistér
[25]. Chen and Chang developed an iterative solver for the
NPnP problem with the NP3P problem as a special case.
Nistér developed a near closed-form solution for the mini-
mal case of three point-ray correspondences; the problem is
reduced to the solution of an octic polynomial, which, al-
though it cannot be solved in closed-form, can be solved ef-
ficiently by transferring the problem to an eigenvalue prob-
lem or using other root-finding methods [3]. Other solu-
tions to the NPnP problem were proposed by Schweighofer
and Pinz [28] and by Tariq and Dellaert [32]. Kneip et al.
[15] describe an approach which is a modification to the
ePnP algorithm originally proposed by Lepetit et al. [20].
The so-called gPnP algorithm gives an O(n) solution to
the overdetermined NPnP problem, employing Gröbner ba-
sis computations to resolve the different cases arising from
noisy correspondence samples. We known of no previous
solution to the generalized pose and scale problem, which
we call gP+s, or alternatively, NP4P+s.

A potential application of the proposed algorithm is in
the field of online visual odometry and SLAM, where dif-
ferent strategies for loop closure are found [7, 9, 10, 14, 33].
These solutions usually contain variants, derivatives or
combinations of either the absolute orientation algorithm
used to align particles or landmarks, or use PnP algorithms
applied on single or multiple images. This is usually fol-
lowed by backpropagation of correction terms into previ-
ously seen structure and previous pose estimates, setting up
a local or global error minimization problem using Bundle
Adjustment (BA). Essentially, the solution we propose in
this work can be considered a replacement for the similarity
transformation estimation step, whenever registering a set
of cameras with a point cloud. Therefore, it is suitable for
inclusion into these kind of approaches.

3. Problem statement
Notation: We use a bold capital letter M for a matrix, a
bold lower-case letter v for a vector, and an italic lower-case
letter s for a scalar.

Our goal is to determine the pose and internal scale, with
respect to known anchor points, of a generalized camera
which is described by n rays. We describe a ray of the gen-
eralized camera with a starting point pi and a direction di.
The corresponding anchor point is denoted qi. The vectors
pi, di, and qi each have size 3 × 1. We want to find a ro-
tation R, translation t and scale s so that the rays coincide
with the points:

Rqi + t = spi + αidi (1)

where αi is an unknown scalar which stretches the ray
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Figure 2: The input to the problem is at least four input points
(top left) and four corresponding input rays (bottom left). The
solver computes all possible similarity transforms which align
them. Each transformation is composed of a rotation and trans-
lation applied to the points (top right) and a scale applied to the
ray origins (bottom right). The ray stretch factors αi are also illus-
trated here but do not need to be computed.

to meet the anchor point when the generalized camera is
aligned. See Figure 2 for an illustration of the problem.

4. Solution procedure
We first re-arrange equation 1 and use the fact that the

cross product of coincident vectors is zero to eliminate the
unknown scalar αi:

di × (Rqi + t− spi) = αi(di × di) = 0. (2)

This gives three equations, only two of which are linearly
independent. We have seven degrees of freedom: three for
rotation, three for translation and one for scale. Thus in the
minimal case we need four point-ray correspondences for
the system to have a finite number of solutions.

Collecting the unknown parameters into a vector x, the
two linearly independent equations from Equation 2 are:

ai1x = 0 (3)
ai2x = 0 (4)

where

ai1 ≡ [0> − di3q>i di2q
>
i 0 − di3 di2 (di3pi2 − di2pi3)]

ai2 ≡ [di3q
>
i 0> − di1q>i di3 0 − di1 (di1pi3 − di3pi1)]

x ≡ [ r1 r2 r3 t1 t2 t3 s ]
>. (5)

Here rj denotes the j-th row of matrix R and tj denotes the
j-th element of t.

By stacking equations 3 and 4 from all correspondences
into a single matrix A, we arrive at a linear system of 2n
equations:

Ax = 0 (6)

In the minimal case, where n = 4, we could remove one
equation to have the minimum of seven equations. How-
ever, we found that this can cause the system to be rank-
deficient, so we always solve the complete system of 2n
equations.

Directly solving the linear system Ax = 0 does not
guarantee that the matrix R will have the properties of a
rotation matrix, i.e. that R is orthogonal and det(R) = 1.
Instead, we extract the six vectors b1, . . . ,b6 which span
the right nullspace of matrix A. This can be achieved using
the singular value decomposition or the QR decomposition
[27]. Any solution for x is then a linear combination of the
six null basis vectors:

x = β1b1 + . . .+ β6b6 (7)

for some scalars β1, . . . , β6. Similar to Nistér’s solution
to the five-point relative pose problem [24], this procedure
can be extended to use more than four correspondences. In
the overdetermined case, we extract the six singular vectors
which correspond to the six smallest singular values.

We can remove one variable by fixing β6 = 1. The fol-
lowing ten quadratic constraints ensure that the matrix R is
orthogonal, up to scale:

||r1||2 − ||r2||2 = 0 (8)
||r1||2 − ||r3||2 = 0 (9)
||c1||2 − ||r2||2 = 0 (10)
||c1||2 − ||c3||2 = 0 (11)

r1 · r2 = 0 (12)
r1 · r3 = 0 (13)
r2 · r3 = 0 (14)
c1 · c2 = 0 (15)
c1 · c3 = 0 (16)
c2 · c3 = 0 (17)

where cj denotes the j-th column of matrix R.
By inserting Equation 7 into these constraints, we arrive

at ten quadratic equations in twenty-one monomials with
the variables β1, . . . , β5. After extracting the roots of this
system of equations (see next section), for each solution
we divide x by ||r1|| and negate x if necessary to make
det(R) = 1.

4.1. Gröbner basis solution

We used the automatic tool of Kukelova, Bujnak and Pa-
jdla [17] to find a reduced Gröbner basis using the grevlex
monomial ordering [8] for the system of ten polyonomial
equations described above. The system of polynomials has
eight solutions in general. The produced solver performs
row reduction via LU decomposition on a coefficient ma-
trix M of size 48 × 56, and from the row-reduced matrix
extracts coefficients to produce an 8× 8 action matrix. The
eigenvectors of this action matrix give the eight solutions
for x, from which we only keep the real-valued solutions.
Furthermore, in most practical cases, we can reject any so-
lution with negative scale. Finally, a unique solution can be



chosen by selecting the solution with the minimum angular
error over all input rays.

The average time taken for each step of the solver, over
104 trials, is reported in Table 1.

SVD LU Eig. Total
26.33 47.94 20.02 102.74

Table 1: Average computation time of the major steps of the mini-
mal solver, in µs. The test was run on a 2.5 GHz Intel i7 machine,
using a C++ implementation with the Eigen linear algebra library.

We expect that the speed of the method could be im-
proved with the alternate root-finding methods suggested by
Bujnak, Kukelova and Pajdla [3].

4.2. Degenerate cases

As in all absolute camera pose problems, if the anchor
points are all collinear, no unique solution can be found,
because there is a rotational ambiguity about the line con-
necting the points. This means that we need at least three
unique and non-collinear anchor points to have a finite num-
ber of solutions. A second degenerate configuration arises
when the rays di are all parallel. These degenerate cases
cause the rank of matrix A from Equation 6 to drop, and
can be detected numerically by checking whether A is ill-
conditioned. The condition number κ(A) is the ratio of the
largest and smallest singular values of A. If this ratio is
very large, then the matrix is ill-conditioned, and thus the
solution will be numerically unstable.

A third degenerate configuration arises when all the cam-
era rays share the same optical center, meaning that the
generalized camera could be modeled as a pinhole camera.
While Nistér’s solution [26] to the generalized camera pose
problem, without scale, can seamlessly handle the pinhole
camera case, for our problem it is not possible. This is be-
cause without any baseline between the rays, the scale pa-
rameter s is unconstrained. In practical scenarios, the situa-
tion might arise that the distance to the visible anchor points
is large relative to the baseline between camera rays. In
this situation, the scale of the generalized camera is close to
zero, and thus the camera configuration is close to having a
single optical center with respect to the anchor points.

To show the effect of having a common optical center on
our solution, we first define At,s as the last four columns of
A, corresponding to the translation and scale components.
By including all three equations from Equation 2, we see
that At,s can be expressed simply as

At,s ≡ [ [di]× [di]×pi ] (18)

where [di]× is a skew-symmetric matrix such that [di]×v =
di × v for any vector v [12]. If the ray origins pi are

-16 -14 -12 -10 -8 -6
0

0.5

Log
10

 rotation error (rad)

D
e

n
s
it
y

-16 -14 -12 -10 -8 -6
0

0.5

Log
10

 position error

D
e

n
s
it
y

-16 -14 -12 -10 -8 -6
0

0.5

Log
10

 scale error

D
e

n
s
it
y

Figure 3: Distribution of numerical error in the computed pose
and scale based on 105 random trials with four point-ray corre-
spondences. The probability distribution function for each error
dimension was estimated using kernel density estimation with a
normal kernel function.

equal, i.e., pi = p ∀i, then the rank of At,s will drop,
because then the last column is a linear combination of the
first three. More generally, we have the same situation if
each pi = p + λidi for some unknown center point p and
scalars λ1, . . . , λn. This is because, plugging into Equation
18, we can see that [di]×(p+ λidi) = [di]×p.

From this analysis, we can see that if At,s is ill-
conditioned, then the problem is better solved by ignoring
the pi and assuming that all rays emanate from a single
point. In this case, we can use an existing P3P [16] or PnP
[20] solver, and assume that s = 1. In Section 5.2, we inves-
tigate numerically the relationship between the generalized
camera model and the pinhole camera model as the baseline
between the camera rays changes.

5. Evaluation
5.1. Numerical stability

To test the numerical stability of our solution, we tested
the solution on synthetic data over 105 trials. Random cam-
era configurations were generated with the ray origins pi

uniformly distributed in the volume [−1, 1] × [−1, 1] ×
[−1, 1], the anchor points qi in the volume [−1, 1] ×
[−1, 1] × [2, 4], and the ray directions as di = (qi −
pi)/||(qi − pi)||. No transformation was applied to the in-
put vectors, so that the correct solution for each trial was
R = I3, t = 0 and s = 1. For each trial, the mini-
mal four correspondences were used to produce solutions
using our solver, and the angular error of a fifth corre-
spondence was used to choose the best solution, denoted
R̂, t̂, ŝ. We calculated three error measures: rotational er-
ror, the angular error between R̂ and R; translational error,
||(−R>t)− (−R̂>t̂)||; and scale error, |ŝ− s|. The results
of the experiment are shown in Figure 3. All error terms
were below 1× 10−11 in 96% of the trials.
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Figure 4: Relative accuracy of our generalized pose and scale so-
lution and a pinhole camera pose solution which disregards the
baseline between the camera rays. Each solution was tested over a
range of baseline distances between 1× 10−10 and 1. The condi-
tion number κ(Ats) is plotted in a black dashed line.

5.2. Relation to the pinhole camera model

As discussed in Section 4.2, our solution becomes nu-
merically unstable when the baseline between the rays is
small relative to the distance to the anchor points. We in-
vestigated experimentally the change in accuracy of our so-
lution as the baseline is reduced, in comparison with the
P3P solution of Kneip et al. [16], which assumes that all
rays meet at a common optical center. We generated syn-
thetic four-point problems with anchor points uniformly
distributed in the volume [0, 1]× [0, 1]× [1, 2]. The camera
rays were fixed as p1 = p2 = 0>, p3 = p4 = [b 0 0]>,
where b is the chosen baseline distance.

For each trial, we computed the result of our gP+s algo-
rithm on all four rays, and the result of standard P3P us-
ing the first three rays. We tested baseline values in the
range [1 × 10−10, 1] with 104 trials for each setting. Fig-
ure 4 shows a log-log plot of the rotational accuracy for
both methods, as well as the condition number κ(At,s);
the translational accuracy (not shown) indicates a very sim-
ilar pattern. The crossover-point in accuracy occurs when
κ ≈ 105.5.

5.3. Comparison on noisy synthetic data

We also compared the accuracy of our solution, on syn-
thetic data, with two other possible solutions which are
applicable in the overdetermined case, depending on the
camera configuration. For the absolute orientation solu-
tion, each pair of rays from each point is used to triangu-
late a point, and then with the three pairs of corresponding
points we compute the absolute orientation estimate using
the method of Uchiyama [34]. For the P3P+s solution, we

Figure 5: With this two camera, three point configuration, we
tested three possible solutions to determine the pose and scale:
triangulation of the points followed absolute orientation to align
them; pose estimation of one camera followed by scale estima-
tion with the other; and our direct solution using the six rays in an
overdetermined system.

use the three rays in the first camera to calculate a pose es-
timate using the method of Kneip et al. [16]. The estimated
pose of the first camera is taken as the rotation and trans-
lation, and the three observations in the second camera are
used to produce a least-squares estimate of the scale. For
our novel gP+s solution, all six rays are used together in our
solver.

The conceptual advantage of our solution is that it uses
all input rays to calculate all parameters together, whereas
P3P+s separates the calculation of pose and scale, and abso-
lute orientation transfers the 2D input error to an anisotropic
3D error by point triangulation.

To test all three methods using the same set of input rays,
we used the three-point, two-camera setup illustrated in Fig-
ure 5. The points were uniformly distributed in the volume
[−10, 10]×[−10, 10]×[10, 20] and the cameras were placed
at [−1 0 0]> and [1 0 0]> facing the +Z direction. We tested
the accuracy of all solutions with Gaussian noise added to
the projected point locations. We tested a range of noise lev-
els from 0.1 to 2 pixels standard deviation, with 104 trials at
each noise level.

The mean, median (50th percentile), 75th percentile, and
95th percentile error for each solution is plotted in Figure 6.
There are certain samples for which each method produces
a higher error than usual. These outliers affect the mean,
but not the median. The mean is an unstable measure be-
cause of this. The median is of more interest, because it
better reflects the quality of the solution when used in a ran-
dom sampling framework like RANSAC, which is what is
important in practice. Our novel solution has the best accu-
racy when comparing the 50th and 75th percentile error in
rotation, translation and scale over the entire range of noise
levels. The error of our solution is slightly worse at the 95th
percentile; this means that our solution is better except in
some 5% of cases.
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Figure 6: Error in computed pose and scale with a three point, two camera configuration (six point-ray correspondences). Three methods
are compared: point triangulation and absolute orientation (Abs. Ori.), P3P pose computation with one camera and scale from the other
(P3P), and our generalized pose+scale solution (gP+s). A range of levels of Gaussian noise was added to the measurements, from 0.1 to 2
pixels standard deviation. Each noise level and method was tested with 104 random trials.

5.4. SLAM registration with real images

We tested the use of our minimal solver for registration
of a monocular SLAM reconstruction with an existing SfM
reconstruction. In previous work [35], we developed a real-
time system for mobile camera tracking which registers a
client-side SLAM map with a pre-made reconstruction on a
server. The advantage of this system concept is that it re-
duces computation and storage costs on the mobile device,
while providing globally registered tracking on the client
device by way of loop closure of the local map with the
global map on the server.

To test the accuracy of our solution in comparison to
other possible map registration methods, we recorded sev-
eral image sequences in a controlled indoor environment.
An ART-2 tracking system provided precise optical track-
ing of a marker attached to the camera. One long image
sequence was used in an offline, incremental SfM pipeline
to produce a point cloud reconstruction of the environment,
and to calibrate the transformation between the camera and
the tracker coordinate systems. We then recorded twelve
image sequences in the tracked environment, and processed
them in a real-time capable keyframe-based SLAM system.
This provided locally-referenced tracking of each image se-
quence. A top-down view of the SfM reconstruction and
the paths calculated from the SLAM tracker and the actual
ground-truth measurements from the ART-2 tracking sys-
tem are shown in Figure 7. Note that the reconstructed area
was a partition of a larger room which was separated by
temporary walls. The walls were not set up perfectly per-
pendicular to each other, therefore the reconstruction looks
skewed, although it is correct. Photographs of the room and
sample images from the recorded sequences are shown in
Figure 8.

We compared three procedures for registering a SLAM
map to the global point cloud. As a preliminary step for
each method, SIFT keypoints from each keyframe image
are matched to the global point cloud using approximate
nearest-neighbor matching and the ratio test [23]. Then the
methods proceed as follows:

Absolute orientation Each global point aggregates a list
of feature matches, and for each point with at least two
matches, a consistent triangulation is found using the rela-
tive camera poses given by the SLAM system. Then the ab-
solute orientation method is employed in a RANSAC loop
to find a consistent registration of the triangulated points
with the global points.

P3P+s Each keyframe image is localized separately using
the P3P algorithm of Kneip et al. [16] in a PROSAC loop.
Then for each camera, the median scale estimate over all
feature matches in other cameras is taken. The pose+scale
estimate with the most inliers is taken as the solution.

gP+s Our solution is used in a PROSAC loop with all
feature matches from all keyframes.

For each image sequence and registration method, we
computed the average positional error of all keyframes ac-
cording to the ground truth given by the optical tracker. The
results are summarized in Table 2. Our method gives the
most accurate estimate in eight of the twelve sequences.

We also tested our system using sequences from the
SLAM benchmark dataset of Sturm et al. [31]. In our
tests, we used only the RGB camera sequences, without the
depth images or other sensor data provided. We selected



Sequence # Keyframes Abs. Ori. P3P+s gP+s
office1 9 6.37 6.14 6.12
office2 9 8.09 7.81 7.49
office3 33 8.29 9.31 6.78
office4 9 4.76 4.48 4.00
office5 15 3.63 3.42 4.75
office6 24 5.15 5.23 5.91
office7 9 6.33 7.08 7.07
office8 11 4.72 4.85 4.59
office9 7 8.41 8.44 6.65

office10 23 5.88 6.60 5.88
office11 58 5.19 4.85 6.74
office12 67 5.53 5.20 4.86
fr1/desk 121 13.91 13.22 12.16
fr1/desk2 50 6.95 5.37 5.83

Table 2: Average keyframe registration accuracy, in centimeters.
The office sequences were created in small office setting with an
ART-2 optical tracker providing ground truth pose measurements.
They were registered against a structure-from-motion point cloud
reconstruction of the scene. The desk sequences sequences are
from the benchmark dataset of Sturm et al. [31]. These sequences
were registered against a point cloud reconstruction made using
the fr1/room sequence.

the fr1/room sequence to produce a reference point cloud
using our batch SfM pipeline. The ground truth measure-
ments from a Vicon tracker were included in the bundle
adjustment error term, in order to align the reconstruction
with the ground truth coordinate system. The sequences
fr1/desk and fr1/desk2 are two other image sequences which
view the same scene with handheld camera motion. Be-
cause these sequences had very fast movement and signif-
icant motion blur, we could not successfully process them
in our monocular SLAM system. Instead, we again used
our batch SfM pipeline to process the two desk sequences,
without the ground truth measurements added. Finally, we
tested all three SLAM registration methods on these two se-
quences for registering with the reference room reconstruc-
tion. The results are summarized in the last two rows of
Table 2.

6. Conclusion
In this work, we proposed a new absolute pose-and-scale

problem for a generalized camera model. Our solver pro-
duces an accurate estimate in both the minimal and overde-
termined cases. Furthermore, it is efficient enough to be
applied in a random sampling framework for robust estima-
tion with noisy measurements.

Through analysis on synthetic datasets, we showed the
numerical stability of the solution, the relation to the pin-
hole camera model and detection of this degenerate case,

Figure 7: SLAM Keyframes from the image sequences (green) af-
ter registration with the 3D point cloud (black points). The ground
truth paths (blue) were measured with an ART-2 optical tracker.

Figure 8: Example photographs from our ART2 setup and the in-
door tracking area.

and a comparison with other possible special-case solutions.
Finally, our tests on real-world image sequences show the
usefulness of our method for loop closure and registration
of SLAM and structure-from-motion results.
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