
Simultaneous Twin Kernel Learning using Polynomial Transformations
for Structured Prediction

Chetan Tonde and Ahmed Elgammal
Department of Computer Science

Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
{cjtonde,elgammal}@cs.rutgers.edu

Abstract

Many learning problems in computer vision can be
posed as structured prediction problems, where the input
and output instances are structured objects such as trees,
graphs or strings rather than, single labels {+1,−1} or
scalars. Kernel methods such as Structured Support Vec-
tor Machines , Twin Gaussian Processes (TGP), Structured
Gaussian Processes, and vector-valued Reproducing Ker-
nel Hilbert Spaces (RKHS), offer powerful ways to per-
form learning and inference over these domains. Positive
definite kernel functions allow us to quantitatively capture
similarity between a pair of instances over these arbitrary
domains. A poor choice of the kernel function, which de-
cides the RKHS feature space, often results in poor per-
formance. Automatic kernel selection methods have been
developed, but have focused only on kernels on the in-
put domain (i.e.’one-way’). In this work, we propose a
novel and efficient algorithm for learning kernel functions
simultaneously, on both input and output domains. We in-
troduce the idea of learning polynomial kernel transfor-
mations, and call this method Simultaneous Twin Kernel
Learning (STKL). STKL can learn arbitrary, but continu-
ous kernel functions, including ’one-way’ kernel learning
as a special case. We formulate this problem for learn-
ing covariances kernels of Twin Gaussian Processes. Our
experimental evaluation using learned kernels on synthetic
and several real-world datasets demonstrate consistent im-
provement in performance of TGP’s.

1. Introduction

Kernel methods for structured prediction [29, 22, 30, 25,
6, 7, 12] have recently gathered a great deal of interest for
solving problems in computer vision [23]. Many learning
problems in vision e.g. Image Segmentation [19], Hand-
written Digit Reconstruction [16], Human Pose Estimation
[6] and others, can be posed as structured prediction prob-

lems. These techniques deal with complex inputs and out-
puts, which are governed by inherent structure and strong
dependencies between different parts of a single input and
output. These methods rely on the kernel trick [18] to solve
these problems efficiently, and the accuracy depends on the
choice of kernel and kernel parameters.

Previous work on automatic learning of kernels splits
roughly into three groups based on whether the kernels are
learned on input or output: 1) learning a kernel function
only on the input domain X , 2) learning a kernel function
on both input domain (X ) and output domain (Y) and 3)
learning explicit feature representations, say X ′ of the in-
put so as to use a simple untuned kernel (e.g. RBF kernel)
on them.

In the first group of work, supervised learning of tar-
get kernel matrix K′ is done given an input kernel matrix
K. In this case, the target kernel is either known or in-
fered from the label information Y [20]. In cases, such as
[26, 10, 21, 9, 24], they are restricted to belong to a family of
kernels and are learned by maximizing the likelihood of ob-
served data. In other words, given an input domain X with
kernel matrix K, we would like to compute a kernel matrix
K′ representing the feature space K′, such that the mapped
features correlate with the target output/label. These meth-
ods are very general and can learn any target kernel [20],
but they are computationally intensive and do not give an
analytic form for the kernel function. Others methods are
restrictive in terms of the family/class of kernel that they
can represent [26, 10, 21, 9, 24].

In the second group of work, both input and output do-
mains X and Y , with input kernel matrices K and G re-
spectively, are mapped to feature spaces K′ and G′, such
that, correlation between the mapped features is maximized.
Most of these techniques are similar in spirit to Kernel
Canonical Correlation Analysis (Kernel CCA) [2]. In Ker-
nel CCA, we learn feature mappings φ(·) and ψ(·) on both
the inputs and outputs, such that, their correlations after
mapping to spaces (K′, G′) is maximized. In the KCCA
case, these mapping are nonlinear but restricted to belong

1



to their corresponding input and output RKHS spaces, that
is, φ ∈ K and ψ ∈ G. This makes the mapping restrictive
and dependent on the choice of the kernel functions k(·, ·)
and g(·, ·). Other techniques are similar to KCCA and op-
timize different criteria such as Hilbert Schmidt Indepen-
dence Criterion (HSIC) [8, 15] or Kernel Target Alignment
(KTA) [8, 10] ) but have similar drawbacks.

In the third group of work, the problem of learning the
kernel focusses on learning better feature representations
so that standard untuned kernels can be used on them [17].
These methods learn a nonlinear mapping on input features
X (e.g. using Deep Belief Networks) to learn new features
(X ′) such that applying a simple known kernel k′(·, ·) com-
putes the target kernel matrix K′. In this approach the map-
pings are nonlinear and are dependent on the design of the
DBN architecture, and are computationally expensive.

We propose a novel approach for learning kernels which
we refer to as kernel transformations or kernel mappings.
The first contribution of our work is that these kernel trans-
formations (referred to as φ(·) and ψ(·)), simultaneously
map both input and output feature spaces (K and G), to new
RKHS feature spaces (K′ and G′), such that, correlation be-
tween these new features is maximized. The second contri-
bution is that these mappings are general and have explicit
analytical forms in terms of special polynomials, which
map inner products between feature spaces. These poly-
nomials have a power series form with non-negative coeffi-
cients and correspond to concatenating or dropping of poly-
nomial combinations of features from the initial input vec-
tor. Also, their analytical form makes it easy to incorporate
them into kernel-based algorithms. We propose a simple
and efficient algorithm to compute these mappings and to
demonstrate the benefits of learning them in the structured
prediction setting, where simultaneous learning of kernels
on input and output is important and beneficial. We test on
several synthetic and real world datasets for the problem of
structured prediction.

The outline of this paper is as follows. In Section 2,
we present relevant background material on kernel methods
for structured prediction, and the proposed framework for
learning kernel transformations for structured prediction. In
Section 3 and 4 we describe the theory for learning kernel
transformations. In Section 5 we describe algorithms for
structured prediction. In Section 6, experimental results on
synthetic and real-world datasets. Finally, Section 7 and
Section 8 present a discussion and conclusion, respectively.

2. Background

2.1. Kernel Methods for Structured Prediction

In structured prediction problems, we learn a prediction
function f : X → Y , from an input domain X to an output
domain Y . We do this by formulating a meaningful, auxil-

iary evaluation function h : X×Y → R which is maximized
during prediction given the training data, for all possible el-
ements in Y , such that,

y∗ = f(x) = argmax
y∈Y

h(x, y) (1)

Kernel methods for structured prediction [29, 22, 30, 6] can
be seen as solving the above problem for some appropri-
ate choice of auxiliary function h(·, ·) and kernel functions
k(x, ·) : X → K and g(y, ·) : Y → G which map input
and output elements, x ∈ X and y ∈ Y , to RKHS feature
spaces.

Twin Gaussian Processes [6] are a recent and popular
form of structured prediction methods, which model input-
output domains using Gaussian processes with covariance
functions, represented by K and G. These covariance ma-
trices encode prior knowledge about the underlying process
that is being modeled. In many real world applications data
is high dimensional and highly structured, and the choice
of kernel functions is not obvious. In our work, we aim
to learn kernel covariance matrices simultaneously. We use
TGP as an example to demonstrate the benefits of learning
them, although the framework is not limited only to the use
of TGP.

2.2. Kernel Transformations

Traditionally, kernel learning can be seen as one-way
kernel learning, that is, trying to learn a nonlinear mapping
from the input domain (X ) to the feature space K, by esti-
mating the kernel function k(x, ·) : X → K. This can be
seen as a nonlinear mapping from the linear data space X ,
with inner product k(xi, xj) = 〈xi, xj〉K, to a feature space
with k′(xi, xj) = 〈xi, xj〉K′ . In our proposed idea of kernel
transformation, we do the same but by directly operating on
the kernel function k(·, ·), such that, φ : K → K′, where
K′ represents the feature space corresponding to some ap-
propriate target kernel function k′(·, ·). The learned trans-
formation function φ(·) needs to satisfy the positive defi-
niteness preserving property, which means that the result-
ing kernel matrix K′ is positive definite and hence is a valid
feature space with an inner product. As we will see, this
transformation, assuming it exists and is continuous, should
be a polynomial with non-negative coefficients (See Eq. 2).

Learning of kernel transformations can also be done on
both input and output domains, simultaneously (Twin). In
this case, both input and outputs are mapped simultaneously
to new feature spaces represented by RKHS’s K′ and G′.
We learn two kernel transformations φ : K → K′, on input
domain X and ψ : G → G′, on the output domain Y . Also,
both maps φ(·) and ψ(·), should satisfy the above men-
tioned positive definiteness preserving property. All this is
done in a way such that these two new feature spaces K′
and G′, are more correlated with each other, giving better



prediction. Several different criteria have been proposed in
the literature [15, 8, 28, 10]. We choose Hilbert Schmidt
Independence Criterion (HSIC) [14] for reasons explained
later in Section 3.2.

3. Framework
3.1. Polynomial Kernel Transformations

Kernel functions maintain their symmetric positive defi-
nite (SPD) property under certain types of operations [18];
these operations have proven to be useful in designing al-
gorithms for kernel based learning. If Kn×n is a posi-
tive definite kernel matrix, then its combinations K + K
(direct sum), αK (scaling, α > 0), KK = K2 (matrix
multiplication), K ⊗ K (direct product), and K � K =
K(2)(Hadamard/Schur product 1) are also kernel matrices.
These operations are equivalent to applying functions of
the form φ(·) : R → R element wise, on entries [K]i,j
of the kernel matrix K, for example φ(t) = 2t (addition),
φ(t) = t2 (power) and φ(t) = αt (scaling) on a single ker-
nel 2. In general, the following statement is known from
mathematical literature,

Theorem 3.1 (FtizGerald et. al. 1995 [13]). If there exists a
continuous function φ : R → R, such that, K′ = φ([K]i,j)
then K′ is positive definite for any SPD matrix K if and
only if φ(·) it is real entire and of the form below,

φ(t) =

∞∑
i=0

αit
i (2)

with αi ≥ 0 for all i ≥ 0.

The above form indicates that φ(·) is an infinitely dif-
ferentiable (φ(·) ∈ C∞) power series, and all coefficients
αj are non-negative (e.g. φ(t) = et). Now, by Mercer’s
theorem we know that there is a one to one correspondence
between kernel matrices, the RKHS’s they represent, and
the kernel function which represents it. Using this fact, and
for simplicity of exposition, we write φ in three different
but equivalent forms φ : K → K′, or φ : K → K′, or
else φ : R → R. In short, the polynomial φ(·) gives us a
nonlinear map between any two RKHS spaces represented
by K and K′, and with the inner products k(·, ·) and k′(·, ·),
respectively.

So given any input kernel K on input data and a given
target kernel K′, if we can compute (or approximate) φ(·),
then we can use this explicit φ(·) function to map our data
from an initial RKHS K to K′. This unique form of the
polynomial mapping above has been known before but has
never been used in this form for learning, to the best our

1K(i) = K�K . . .K i-times
2A similar generalization exists for operations on multiple kernels, see

[13].

knowledge. In the next section, we derive an approach
to learn/approximate these kernel transformations and later
show how these mappings could potentially help.

3.2. Twin Kernel Transformations (TKT)

Let φ(·) : K → K′ be a kernel transformation, such that
it maps the kernel matrix K to the matrix K′, and simultane-
ously, we assume ψ(·) : G → G′ is a kernel transformation
that maps the kernel matrix G to G′. Using Eq. 2 on the
output kernel we have for the mapping ψ : G → G′,

ψ(t) =

∞∑
j=0

βjt
j . (3)

We are interested in applying these kernel transformations
to both the input and output matrices such that, after appli-
cation, the correlation between the new mapped RKHS fea-
tures is maximized. To measure this correlation we propose
to use the Hilbert Schmidt Independence Criterion (HSIC)
given in [14], which measures this naturally. We restate the
definition of HSIC for convenience below.

Definition 3.1. If we have two RKHS’s K and G, then a
measure of statistical dependence betweenX and Y is given
by the norm of the cross-covariance operator Mxy : G →
K, which is defined as,

Mxy := Ex,y[(k(x, ·)− µx)⊗ (g(y, ·)− µy)] (4)
= Ex,y[(k(x, ·)⊗ g(y, ·))]− µx ⊗ µy (5)

and the measure is given by the Hilbert-Schmidt norm of
Mxy which is,

HSIC(pxy,K,G) := ||Mxy||2HS (6)

The larger the above norm, the higher the statistical de-
pendence between X and Y . The advantages of using HSIC
for measuring statistical dependence, as stated in [14] are as
follows: first, it has good uniform convergence guarantees;
second, it has very little bias even in high dimensions; and
third a number of algorithms can be viewed as maximizing
HSIC subject to constraints on the labels/outputs. Empiri-
cally, in terms of kernel matrices, this is defined below,

Definition 3.2. LetZ := {(x1, y1), . . . (xm, ym)} ⊆ X×Y
be a series of m independent observations drawn from pxy .
An unbiased estimator of HSIC(Z,K,G) is given by,

HSIC(Z,K,G) = (m− 1)−2trace(KHGH) (7)

where K,H,G ∈ Rm×m, [K]i,j := k(xi, xj), [G]i,j :=
g(yi, yj) and [H]i,j := δij −m−1

Now, for well defined and bounded kernels K and G
we have HSIC(Z,K,G) ≥ 0. For the sake of simplicity,



we denote HSIC(Z,K,G) by HSIC(K,G). Using the
above empirical version of the HSIC, we finally define the
following objective function for our problem,

L(α,β) = max
α,β

HSIC(φ(K), ψ(G)) (8)

subject to αi ≥ 0, βj ≥ 0,∀i, j ≥ 0 (9)

Now, solving the above problem for functions φ(·) and
ψ(·), which have infinitely many unknown coefficient’s αi’s
and βj’s, is obviously intractable. Hence, we approximate
our solution by truncation of the input and output mapping
degrees to d1 and d2, respectively. We give a detailed justi-
fication for this for this in Section 4.

4. Learning Twin Kernel Transformations
4.1. Algorithm

In this subsection, we propose a linear algebraic solution
to approximate the nonlinear kernel transformations φ(·)
and ψ(·). Using Eqs. 2 and 3 on kernel matrices K and G
respectively, we get the following Eqs. for φ : K→ K′ and
ψ : G→ G′,

φ(K) =

∞∑
i=0

αiK
(i), αi ≥ 0, ∀i ≥ 0 (10)

φ(G) =

∞∑
j=0

βjG
(j), βj ≥ 0, ∀j ≥ 0 (11)

Assuming that our input and output kernels are bounded
(K ≤M <∞ and G ≤M ′ <∞), we would like our new
mapped kernels φ(K) and ψ(G) to be finite and bounded;
for this to happen, we impose a regularization constraint
on the magnitude of αi’s and βj’s by setting α ∈ ∆d1

and β ∈ ∆d2 , where ∆d = {(x0, x1, . . . , xd)|xi ≥
0 and ||x||2 = 1}. This regularization helps generalization
to unseen test data and avoid scaled increase in the coeffi-
cient values so as to maximize the objective function.

Substituting Eqs. 10 and 11 in Eq. 9, along with the reg-
ularization constraint and defining a C - matrix such that,
[C]i,j = HSIC(K(i),G(j)), we get the final optimization
problem as,

maximize
∞∑
i=0

∞∑
j=0

αiβjCi,j (12)

subject to, α ∈∆d1 ,β ∈∆d2

The C-matrix above is finite-dimensional approximation
of the true infinite-dimensional matrix, and hence, can be
solved using methods from linear algebra. We should also
note that every entry [C]i,j represents a form of higher or-
der cross-covariance between kernel matrices. This form of

C-matrix and has not been used before in kernel learning
literature, to the best of our knowledge.

The justification for approximation to finite degrees is as
follows. Choosing the degree of the mapping functions to
be deg(φ) = d1 and deg(ψ) = d2 amounts to approximat-
ing the C-matrix to have finite dimensions ( (d1+1)×(d2+
1)). Every entry [C]i,j = HSIC(K(i),G(j)) represents
higher order correlations among the polynomial features of
order i and j of input and output, respectively. Therefore,
we are maximizing these higher order correlations among
features by appropriately choosing the coefficient’s αi and
βj . So, the higher the degree we choose, the better it is.

We solve for the unknown’s αi’s and βj’s by using Sin-
gular Value Decomposition (SVD) and choosing α and β
to be the first left and right singular vectors of the C-matrix
(See Theorem 4.2). We note that the solutions vectors α
and β need to be non-negative and have a unit L2-norm.
We show that this is in fact true and our proposed solution
satisfies these constraints.

Note. In the above formation, if we set d2 = 1, then the
solution for the β vector is β = [0, 1]T . This is because α0

and β0 are zero (See Theorem 4.3). Hence, the output ker-
nel mapping corresponds to the identity mapping, ψ(t) = t,
which is equivalent to using no mapping on the output ker-
nel. A similar property holds if we set d1 = 1, then we have
φ(t) = t, which uses no mapping on the input kernel.

Note. Our proposed model is similar to Kernel CCA us-
ing HSIC criterion [8]. In KCCA, we find two nonlinear
mappings φ(·) ∈ K and ψ(·) ∈ G, such that, the statistical
correlations are maximized. In our approach, we are also
looking for nonlinear kernel transformations φ(·) and ψ(·)
between kernel matrices, but that are more general, have an
explicit analytical form, and do not belong to a vector space
(K,G).

4.2. Theoretical Analysis

4.2.1 Some properties of φ(·), ψ(·) and C-matrix

In this section, we characterize some properties of map-
pings φ(·) and ψ(·). We begin by stating the following
lemma about the C - matrix in Eqn. 12 ,

Lemma 4.1. [C]0,j = [C]i,0 = 0 and [C]i,j ≥ 0.

Proof. See supplementary material.

We have the following theorem regarding the solution of
optimization problem 12,

Theorem 4.2. The solution (α∗,β∗) to the optimization
problem in 12 is given by the first left and right singular
vector of the C-matrix

Proof. Using the Perron-Frobenius theorem to square non-
negative matrices CTC and CCT which are nonnegative,



we claim that both CTC and CCT have Perron vectors α∗

and β∗, respectively. Both α∗ and β∗ are the left and right
singular vectors of C and also maximize Eq. 12.

This gives us our required solution to the problem. We
now make an important statement regarding the mapping
coefficients αi’s and βj’s.

Theorem 4.3. If α∗ ∈∆d1 and β∗ ∈∆d2 are maximizers
of optimization problem 12, then the following statements
hold,

1. α∗0 = 0 and β∗0 = 0

2. If [C]i,k decreases/increases with respect to i for all k
then α∗i also correspondingly decreases/increases.

3. If [C]k,j decreases/increases with respect to j for all k
then β∗j also correspondingly decreases/increases.

Proof. See supplementary material.

From the above theorem we observe that for the setting
d1 = d2 = 1 corresponds to identity the mapping, φ(t) = t
and ψ(t) = t. It also characterizes trends in the coefficients
of φ(·) and ψ(·) in terms of the correlations which we ob-
serve empirically.

4.2.2 Computational Complexity

If we ignore the initial kernel evaluation of matrix K and
G which take O(n2) time. The runtime complexity of our
algorithm mainly depends on construction of our C-matrix.
To compute matrices K(i) and G(j) it takesO(n2(d1+d2))
multiplications. To construct the entries of the C-matrix, we
need O(n2d1d2) multiplications. These computations can
be heavily parallelized. Computing the left and right eigen-
vectors of the C-matrix can be done inO(d1d2) time which
is linear in both d1 and d2, and hence is also optimal. Typ-
ically we have d1, d2 << n therefore doing it is efficient.
The space requirement for our algorithm is O(n2(d1+ d2))
to store powers of matrices K and G, which can be cached.
If we compare this to its most closely related algorithm,
KCCA [8] which has time complexityO(n3) this algorithm
is one order of magnitude faster in terms of the number of
data points n.

5. Structured Prediction with STKL
In this section, we devise algorithms for structured pre-

diction using Twin Gaussian Processes with Simultaneous
Twin Kernel Learning. An important benefit of learning
these Kernel Transformations is that they have explicit and
analytic forms making it straightforward to integrate them
into kernel based methods by simply replacing with trans-
formed kernels (φ(K), ψ(G)) .

5.1. Modified Twin Gaussian Processes (TGP)

In Twin Gaussian Processes the choice of the auxil-
iary evaluation function is typically some form of infor-
mation measure, e.g. KL-Divergence or HSIC which are
known to be special cases of Bregman divergences [3]. KL-
Divergence is an asymmetric measure of information, while
HSIC is symmetric in its arguments. We also investigate
both of these criteria against the degree of mapping. This
allows us to show how each information measure is affected
as the mapping degrees d1 and d2 are increased. The rela-
tionship we observe is straightforward and direct, allowing
the choice of d1 and d2 to be made easily. We refer to these
modified TGP’s as Higher Order TGP with KL-Divergence
(HOTGP) and Higher Order HSIC (HOHSIC) for TGP us-
ing HSIC.

TGP with KL-Divergence: In this version of TGP, we
minimize the KL-divergence between the transformed ker-
nels, φ(K) and ψ(G), given the training data (X × Y ) and
test example x∗. The prediction function for HOTGP is,

y∗ =argmin
y
DKL((ψ(GY ∪y)||φ(KX∪x∗)) (13)

The mapping degree of transformations (d1 and d2), has
direct and straightforward effects on the value of KL-
Divergence (increase and decrease respectively); this varia-
tion is explained in detail in the experiments section.

TGP with HSIC (HOHSIC): For this version of TGP
with HSIC criteria, the prediction function maximizes the
HSIC between the transformed kernels φ(K) and ψ(G)
given the training data (X × Y ) and test example x∗. The
prediction function looks as follows,

y∗ =argmax
y

HSIC((ψ(GY ∪y), φ(KX∪x∗)) (14)

In this case, the mapping degrees of the input and output
transformations, d1 and d2, have a similar impact (increase)
on the maximum value of the prediction function.

6. Experiments
We demonstrate empirical results of HOTGP and

HOHSIC on a synthetic dataset and three real-world
datasets. To measure improvement of performance over
the baseline we look at empirical reduction in error
which we call % Gain , defined as, % Gain =(
1− Error(mapping)

Error(no mapping)

)
× 100. In all the experiments, we

use the RBF kernel which is k(xi, xj) = exp(−γx||xi −
xj ||2) and g(yi, yj) = exp(−γy||yi−yj ||2) as an initial ker-
nel on input and output. The bandwidth parameters(γx, γy)
were chosen from papers relevant to these datasets.

6.1. S Shape Dataset

Consider the S-shape synthetic dataset from [4] which
is a 1D input/output regression problem. In this dataset,



500 values of inputs (x) are sampled uniformly in (0, 1)
and then evaluated for r = x + 0.3sin(2πx) + ε, with ε
drawn from a zero mean Gaussian noise with standard de-
viation σ = 0.05. The goal here is to solve the inverse
problem, which is to predict x, given r. The dataset is chal-
lenging in the sense that it is multivalued (in the middle of
the S-shape), discontinuous (at the boundary of univalued
and multivalued region) and noisy (ε = N (0, σ)).

We use the RBF kernel with γx = 0.2 and γy = 20 from
[6] and learn the input and output mapping’s φ(·) and ψ(·)
using our proposed approach. A sample plot of the learned
coefficient’s (αi’s , βj’s) is given in Figs. 1a and 1b. We
clearly observe that α0 = β0 = 0, and the variation of
magnitude of the coefficients with mapping degree d1 and
d2 (See Theorem 4.3).

Figures 2a and 2b show the plot of % Gain vs input
degree (d1) vs output degree (d2). In the case of HOTGP,
the % Gain degrades with an increase in input mapping
degree (d1), while improving with output mapping degree
(d2). This is because of the asymmetric nature of the KL-
Divergence criterion. We are minimizing KL-Divergence in
our prediction function which increases with an increase in
d1 and decreases with an increase in d2, which explains this.
In the other case of HOHSIC, the criterion is symmetric:
there is an increase in %Gain when both input and output
degrees are increased. This correlates well with the formu-
lation of our proposed STKL problem objective. Finally,
Figures 3c-3d and 3a-3b, show the initial and improved re-
gression estimates against the ground truth data (GT) for
HOTGP and HOHSIC, respectively. We can clearly observe
improvements in both cases.

α0α1α2α3α4α5α6α7α8α9α10
0

2 · 10−2
4 · 10−2
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(a) Coefficient αi’s
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0.25
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(b) Coefficient βj’s

6.2. USPS Handwritten Digits Reconstruction

In the problem of handwritten digit reconstruction from
[30], the goal is to predict 16 pixel values in the center of
an image, given the outer pixels. We use 7425 examples
for training (without labels) and 2475 examples (roughly
1/4th for each digit) for testing. Table 2 shows results for
the Mean Absolute Error and compares our approach with
other kernel-based methods. The mapping degrees chosen
for HOTGP are (d1, d2) = (1, 11) and for HOHSIC are

2
4

6
8

10
246810

−5
0
5

10
15
20
25

Input degree (d1) Output degree (d2)

%
G

ai
n

% Gain versus (d1,d2)

0

5

10

15

20

(a) % Gain in Mean Abs. Er-
ror for S-shape dataset with KL-
Div. criterion. %Gain im-
proves with d1 only.

0
2
4
6
8 10

12

0
2

4
6

810
12
−50
5
10
15
20
25
30

o/p degree d1i/p degree d2

%
G

ai
n

% Gain versus (d1,d2)

0

5

10

15

20

25

(b) % Gain in Mean Abs. Error
for S-shape dataset with HSIC
criterion. %Gain increases
with d1 and d2.

(d1, d2) = (11, 11). This was done empirically based on
the prediction criteria as described in subsection 6.1 for the
S-Shape dataset, and then increasing the degrees (d1, d2)
until the %Gain is saturated.

Crit. / Mean Abs. Er (no mapping) (mapping) Gain %

KL-Div 0.2151 0.21078 1.9924 %

HSIC 0.3399 0.3314 2.4842 %

Table 1: Mean Absolute Error for USPS Handwritten digits dataset for
the two criteria, with and without mapping.

Approach MAE Approach MAE

NN 0.341 KRR 0.250
SVR 0.250 KDE 0.260
SOARkrr 0.233 SOARsvr 0.230
HSIC
(wo/map)

0.3399 KL-Div
(wo/map)

0.21508

HSIC
(w/map)

0.3327 KL-Div
(w/map)

0.21084

% Gain 2.4842 % % Gain 1.9924 %

Table 2: Comparison with others models from [5] for USPS digits
dataset. The two lowest errors are emphasized. NN means nearest neighbor
regression, KDE means kernel dependency estimation [30] with 16d la-
tent space obtained by kernel principal component analysis. SOAR means
Structured Output Associative regression [5]. The last row shows the %
Gain for KL-Div and HSIC criteria, with and without mapping.

6.3. Poser Dataset

The Poser dataset contains synthetic images of human
motion capture sequences from the Poser 7 software [1].
The motion sequences includes 8 categories: walk, run,
dance, fall, prone, sit, transitions and misc. There are 1927
training examples coming from different sequences of vary-
ing lengths and the test set is a continuous sequence of 418
time steps. The input feature vectors are 100d silhouette
shape descriptors while the output feature vectors are 54d
vectors with the x, y and z rotation of joint angles. The
final results are shown in Table 4.
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Figure 3: Regression on S-Shape dataset with HOTGP (Fig.3c-3d) and HOHSIC (Fig.3a-3b)

6.4. HumanEva-I Pose Dataset

We demonstrate the performance of HOTGP and
HOHSIC on the challenging HumanEva-I dataset from
[27]. This dataset contains real motion capture sequences
from three different subjects (S1,S2,S3) performing five dif-
ferent actions (Walking, Jogging, Box, Throw/Catch, Ges-
tures). Our models are trained on data from all subjects. We
have input images from three different cameras; C1,C2 and
C3 and HoG features [11] from them. The output vectors
are 60d with the x, y, z joint positions in mm.

We report results using concatenated features from all
three cameras (C1+C2+C2) and also using features from
each individual camera (C1,C2 or C3. See Table 3). We use
an RBF kernel with γx = γy = 10−4 and the (d1, d2) =
(1, 11) for HOTGP and (d1, d2) = (11, 11) for HOHSIC.
The % Gain for each criteria is shown in bold. In the
case of concatenated features (C1+C2+C3), we observe a
% Gain of 5.0796% using HOTGP and 0.2% for symmet-
ric HOHSIC. In all cases we show consistent improvement
in performance. For detailed results on all subjects and all
actions for both criteria, see supplementary material.

Features Crit. w/map wo/ map Gain %

HoG
(C1C2C3)

KL-Div 45.1729 42.8783 5.0796 %

HSIC 171.4085 171.3766 0.018613 %
HoG
(C1)

KL-Div 34.2885 33.4262 2.5147 %

HSIC 171.4085 171.3769 0.018427 %
HoG
(C2)

KL-Div 31.9928 31.5792 1.2928 %

HSIC 171.4085 171.3755 0.019237 %
HoG
(C3)

KL-Div 30.9279 30.4928 1.4067 %

HSIC 171.4085 171.3762 0.018835 %

Table 3: Mean Absolute Error for HumanEva-I dataset for the two crite-
ria, with and without mapping. The mapping degrees for KL-Divergence
are (d1, d2) = (1, 11) and for HSIC are (d1, d2) = (11, 11)

7. Discussion

In Table 4 we summarize all of our results. In general,
we observe the following. Firstly, for HOTGP, we observe
that the higher the mapping degree of ψ(·), the more the de-
crease in error, while in the case of mapping function φ(·),
mapping to higher degrees does not help. This is predictable
because of the asymmetric nature of KL-Divergence. In
the other case of HOHSIC, increasing the degree of both
φ(·) and ψ(·) is helpful as it is a symmetric criteria. The
improvement in HOHSIC is greater because it is more of
an alignment measure, which is unlike KL-Divergence, and
it is also a part of our STKL objective. This proves that
the choice of whether to map input, or output, or both, is
entirely dependent on the criteria of the prediction func-
tion. Regardless, after a choice is made, as a general rule,
having higher mapping degree(s) gives better the optimiza-
tion (minimization/maximization) of the involved predic-
tion function. We also note that, in case of TGP, there is
also a tradeoff between solving a more nonlinear optimiza-
tion problem and using higher degrees for mapping.

8. Conclusions and Future Work

In this paper, we introduce a novel method of Simulta-
neous Twin Kernel Learning which simultaneously learns
polynomial kernel transformations on both input and out-
put so as to maximize their statistical dependence. We
show that our proposed approach is general and includes
one-way kernel learning as special case. These transforma-
tions are analytical and explicit, making it easy to incorpo-
rate them into existing kernel-based frameworks. We em-
pirically demonstrate on a synthetic and several real-world
datasets that we consistently improve accuracy over base-
line results. In future work, we intend to further investi-
gate by looking into multiple kernel extensions of this work
and to provide theoretical and statistical guarantees of our
learned kernels.



% Gain Criterion - (d1, d2) S-shape Poser USPS Digits HumaEva-I (C1+C2+C3) HumanEva-I (C1,C2,C3)

KL-Divergence - (1, 11) 13.8538 %. 6.39 % 1.9924 % 5.0796 % (2.5147 %,1.2928 %,1.4067 %)
HSIC - (11, 11) 25.2555 %. 1.2613 % 2.4842 % 0.0186 % (0.0184 %, 0.0192 %, 0.0188 %)

Table 4: Summary: %Gain for all three datasets with two different criteria with and without mapping (baseline).
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