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Abstract

It is often desirable to evaluate images quality with a
perceptually relevant measure that does not require a refer-
ence image. Recent approaches to this problem use human
provided quality scores with machine learning to learn a
measure. The biggest hurdles to these efforts are: 1) the
difficulty of generalizing across diverse types of distortions
and 2) collecting the enormity of human scored training
data that is needed to learn the measure. We present a
new blind image quality measure that addresses these dif-
ficulties by learning a robust, nonlinear kernel regression
function using a rectifier neural network. The method is
pre-trained with unlabeled data and fine-tuned with labeled
data. It generalizes across a large set of images and dis-
tortion types without the need for a large amount of labeled
data. We evaluate our approach on two benchmark datasets
and show that it not only outperforms the current state of the
art in blind image quality estimation, but also outperforms
the state of the art in non-blind measures. Furthermore, we
show that our semi-supervised approach is robust to using
varying amounts of labeled data.

1. Introduction
A simple, scalar measure of perceptual image quality can

inform a number of algorithms in computer vision and com-
puter graphics. Such a measure can be used for evaluat-
ing image processing methods, driving image compression
techniques, or filtering out low quality images before image
recognitions tasks. Computing perceptual image quality is
challenging due to variations in image content and the un-
derlying image distortion process.

Blind measures of image quality, i.e., those that do not
require groundtruth reference images, are challenging to
create but are much more desirable than those that require a
reference image. Recent approaches have used labeled data
and machine learning to model perceptual image quality.
Such methods first extract hand-crafted features from im-
ages and then learn a mapping of these features to subjective
quality scores by kernel or nearest neighbor regression.

For the regression model to work well, the kernel func-
tion needs to be highly informative with respect to the image
distortions alone and not be affected by other aspects such
as the image content. Previous methods often define this

function in the original or a linearly compressed space (e.g.
PCA) of raw features and therefore critically rely on the de-
sign of the features to de-correlate image distortion from
image content. In practice, however, the features often cap-
ture a combination of similarity in distortion and image con-
tent, thus making discrimination on distortion alone quite
challenging. Though previous methods show good perfor-
mance on datasets of small numbers of distortion types [13],
they usually perform poorly on datasets with more distor-
tion types [10], as images with different distortions overlap
in the feature space in a way that is not separable with the
linear models used in previous work.

The performance of previous methods also degrades sig-
nificantly when labels are sparse, as is the case with many
machine learning methods. Using more training data helps,
but the collection of large datasets for image quality assess-
ment (IQA) is non-trivial and expensive [13], as the de-
graded images need to be collected across a wide range of
image quality, content, and type of degradations, thus re-
sulting in millions of trials. Furthermore, each degraded
image requires the evaluation of many subjects to eliminate
bias across subjects and content. Meanwhile, all experi-
ments need to be conducted under a controlled environment
and therefore cannot easily be migrated to a crowd-sourcing
platform. As a result, the current standard blind image qual-
ity assessment datasets [13, 10] are all generated from a rel-
atively small number of natural images.

In this paper, we present a neural network approach to
alleviate these problems. Specifically we define the kernel
function as a simple radial basis function on the output of
a deep belief network of rectified linear hidden units [9, 2].
We first pre-train the rectifier networks in an unsupervised
manner and then fine-tune them with labeled data. Finally
we model the quality of images with Gaussian Process re-
gression. Our approach outperforms both blind and non-
blind methods (Fig. 1) – this is the first blind measure we
are aware of that outperforms non-blind measures on per-
ceptual image quality datasets.

The key advantage of our model is that its success mostly
relies on an unsupervised pre-training stage. Unlabeled data
is easy to generate en masse and thus our approach ben-
efits from using a large amount of data that much more
densely samples the space of distortion types and image
content. This enhances generalization power in both di-
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Figure 1: Best performance of our method and state-of-arts
IQA measures on the LIVE and TID2008 dataset. All meth-
ods using 20% of the labeled data set for training and learn-
ing based method use the remaining 80% for testing. Higher
Spearman correlation is better.

mensions, and we show that our resulting measure performs
well even with fairly small labeled training sets across many
distortion types, which is a significant advantage over pre-
vious work. Specifically, our contributions include: 1) a
state of the art image quality assessment method that signif-
icantly outperforms existing measures on a wide range of
distortion types, and 2) a regression method that is robust to
using a small amount of labeled training data.

2. Related work

Blind image quality assessment Much effort in blind im-
age quality assessment has been devoted to crafting fea-
tures to de-correlate distortion information from image con-
tent [14, 6]. Yet the learning models of these approaches
are strikingly simple. As a result, there is usually an image
content dependent bias among distortion types. Moorthy
and Bovik [8] proposed to address the problem by identi-
fying the distortion types first, but the classification prob-
lem becomes harder with many distortion types. Tang et.
al [14] suggests these biases can be eliminated to a great
extent by correlating quality scores with thousands of fea-
tures. However, this measure still exhibits some bias on
image content. While previous work has focused mostly on
the features used for image quality assessment, we focus on
using more sophisticated learning methods and overcoming
the burdens associated with training data.

The difficulty of acquiring many labels is increasingly
drawing the attention of the research community. One way
to overcome this is by supervised learning. Mittal et. al [7]
train a Gaussian model of carefully designed features. How-
ever, the simplicity of the Gaussian model makes it prone
to fail as the number of distortion types increase. Xue et.
al [16] train a regression model, but replace the human
scores with a non-blind quality measure. Our use of unla-
beled images in the pre-training stage is similar in spirit, but
our goal is to improve the performance when labels are lim-
ited rather than design a method that uses no human scores
at the cost of worse performance. Ye et.al [17] also uses
unlabeled distorted images but only use them to generate

distortion-specific codewords and not to learn the mapping
to image quality. Therefore, their method does not address
the case where labeled image quality data is sparse.

Deep neural networks Restricted Boltzmann machines,
deep belief networks and their variations are proven to be
compact universal approximators [4, 12] and achieve im-
pressive performance in various field of applications as a
way to model, visualize, and infer complex nonlinear data.
A very important finding we exploit in this work is that
the training of such neural networks can be decomposed
into unsupervised pre-training and a supervised refinement
stage [3]. Pre-training builds a robust probabilistic model
for the input data and usually achieves great performance
because the model has good generalization power. This
property motivated us to perform semi-supervised learn-
ing [18] using such models, so that we can exploit unlabeled
images to deal with the limited availability of human scores
for image quality assessment.

We are specifically inspired by the work of Salakhutdi-
nov and Hinton [11], which uses a binary deep belief net-
work to formulate a Gaussian process kernel and recognizes
face orientations and digits from labeled data. Our learning
model extends this work to semi-supervised rectifier net-
works, and we apply this technique to overcome the chal-
lenges of blind image quality assessment.

3. Overview

The goal of the proposed framework is to provide a mea-
sure of image quality from the relevant features extracted
from images. Specifically, for the purpose of this paper we
extracted the same set of image features as the LBIQ mea-
sure [14]. These features include univariate and cross-scale
histograms and statistics of complex wavelet transform of
images (the real part, absolute value, and phase) as well as
a few direct blur and noise measures. Finally, the input data
is whitened via a discrete cosine transform before it is used
in our proposed system.

We choose the LBIQ features over other features as
LBIQ has the best average performance across both the
LIVE and TID datasets, as seen in Fig 1. Particularly, LBIQ
performs well in two difficult scenarios we are specifically
interested in: 1) when label are sparse (Fig. 8) 2) when there
are many distortion types (Fig. 9).

Overall, our model is a multi-layer network that learns
a regression function from images to a single scalar qual-
ity score for each image, as in [13, 10]. Fig. 2 shows the
configuration of our model. There are two specific compo-
nents of the model: the first component is a Gaussian Pro-
cess that regresses the final quality score given activations
from a trained neural network. The second component is a
neural network whose goal is to provide a feature represen-
tation that is informative for image quality assessment.
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Figure 2: Configuration of our model. The number of hidden units are determined by cross-validation.

The neural network is a deep belief network (DBN) [4]
of three layers. The bottom most layer (Fig. 2) is the in-
put layer with Gaussian visible units (i.e. activation is lin-
ear to input A(z) = z) and connects to the second layer
of rectified linear hidden units (ReL, i.e. activation recti-
fies negative input to zero A(z) = max(z, 0)). Note that
these two layers are comprised of restricted Boltzmann ma-
chines (RBMs) that enocdes the input data with the hidden
layer activities. We propose to use seven different group-
ings of features and train a separate RBM for each of the
features. This enables us to reduce not only the number of
free parameters but also the computational cost of training.
The output of these RBMs are concatenated as the input to
the next layer, which is just a single RBM with ReL units
in both layers (720 inputs and 600 outputs for the case of
Fig. 2). The detailed input and hidden dimensionality is in-
dicated in Fig. 2.

Intuitively, the rectifier network that we propose per-
forms a non-negative factorization of the input features. The
ReL units we use introduce non-linearity to the model, and
the hard threshold we use encourages zeros in the unit re-
sponses. We have also tried to train an alternative model
of standard binary hidden units, but it needs several mag-
nitudes more units to express the same data because the re-
sulting model includes many units of shared weights and
different bias offset. Since ReL units are an approximation
of such an ensemble of binary units [9], we find using ReL
units a natural choice.

Our parameter learning for the neural network is inline
with that of Hinton et.al [3], where they propose training
similar models with an greedy layer-wise unsupervised pre-
training stage followed by a supervised fine-tuning stage.
In the pre-training stage, we learn a generative model of
the unlabeled input features. Consequently, the objective of
pre-training is simply to adjust the parameters to maximize
the likelihood of the unlabeled data. Eventually when the
RBMs reach their equilibrium state, the hidden units that

are activated by the visible units can reproduce the visible
data in turn. On the other hand, the fine-tuning stage fur-
ther strengthens the discriminative power of the model by
aligning the network output with the available labels of the
training data. Specifically, in the fine-tuning stage, we ad-
just weights to maximize the Gaussian process likelihood
on the labeled data set. We provide the details of these two
stages of the training algorithm in Sec. 4 and Sec. 5.

One of the most critical parameters in the proposed
model is the number of hidden units in each layer. We
determined the number of hidden units in the RBMs by
cross-validation. Specifically, we divided the data into
a training and validation set whose reference images are
disjoint. Then, for each RBM in the network, we first
trained a series of models of different number of hid-
den units with the training set and then evaluated the
reconstruction on the validation set. We choose the
number of hidden units of Gaussian-ReL RBMs in the
range of {5, 10, 20, 30, 40, 50, 60, 80, 100, 120, 150, 200},
and the number of hidden units of the top RBM with ReL
visible units in the range of {100, 200, 300, . . . , 1000}. The
model with the smallest reconstruction error was chosen as
the optimal model.

The validation set is also used for monitoring the training
of the neural network model. As the neural network may
over-fit to the training set in both the pre-training and fine-
tuning stage, we stop the learning process when we observe
that the reconstruction error (in the pre-training stage) or
the regression performance (in the fine-tuning stage) starts
to decrease.

3.1. Using unlabeled data

As noted previously, image quality assessment methods
generally suffer from lack of sufficient training data. How-
ever, it has been shown that learning in multi-layer models
can benefit from using unlabeled data for structuring their
mid-level representations [18].



Figure 3: Examples of reference images in the unlabeled
dataset we simulate.

The key requirement of semi-supervised learning is that
the simulated and labeled data set should have an identical
and independent distributions. That is to say the distortion
types and levels should be the same as the labeled data set,
and the reference images should be about the same size as
those in the labeled data set. It is straightforward to expand
the data coverage from reference images under this assump-
tion.

We crawl 80 high quality images from internet (as shown
in Fig. 3) and simulate distortions of various levels and
types on these images. This considerably expands the train-
ing data along the dimension of reference images. In com-
parison, the LIVE and TID2008 data sets generate distorted
images from only 20 − 30 images. Note that a consider-
able portion of that data is used for performance evaluation
and not available for training. So the actual labeled train-
ing set is at most about 20 reference images × 5(LIVE) or
17(TID2008) distortion types × 4− 5 distortion levels.

Prior to simulating distortions, we first reduce the size of
images to 512 × 384 pixels to match the resolution of the
labeled data. In experiments for the LIVE dataset, our unla-
beled data is limited to the five included distortion types. In
experiments for the TID2008 dataset, we simulate 13 of 17
distortion types in the TID dataset. The 4 distortion types
that we did not simulate are non eccentricity pattern noise,
local block-wise intensity change, global intensity shift, and
contrast change. We exclude these types from the model
because the LBIQ features we use are invariant to these dis-
tortions and the inclusion of them hinders pre-training. 1 In
total, this results in an an unlabeled dataset of 5200 distorted
images generated from 80 distortion-free images.

4. Pre-training without labels
In the pre-training stage, we learn a generative model of

the features using the neural network representation. Such a
generative perspective is feasible due to the fact that we can
simply view the deep belief network as a stack of RBMs.
The seven RBMs connecting the hidden input layer and the
first hidden layer learn a generative model of each of the in-
put image features. Similarly, the next hidden layer learns
the joint distribution of all features. Note that we can con-
tinue to add more hidden layers and model even higher-level

1For fairness of evaluation, we only ignore these types during pretrain-
ing and include all distortion types in the fine-tuning and evaluation stage.

Input: B random batches of training samples v1, v2, . . . vB ;
Output: model parameters Θ = {θ1, θ2, . . . , θK};
Parameters: learning rate η, momentum τ ;
initialize Θ (see text for details);
for t = 1 . . . T do

for v+ = v1, . . . , vB do
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√∑
t ∆θ

(t)
k ;

add momentum ∆θ̂
(t)
k = ∆θ

(t)
k + τ∆θ

(t−1)
k ;

adjust model θk = θk + ∆θ̂
(t)
k γk, k = 1 . . .K;

Figure 4: Pretrain RBMs of linear visible and ReL hidden
units.

representation of features. However, we limited ourselves to
two hidden layers as our experiments (see Sec. 6.1) did not
show an advantage for a deeper model architecture with the
specific features we used.

We pre-train the model greedily in a layer-by-layer man-
ner. Specifically, we first train the seven Gaussian-ReL
RBMs in the bottom layer and then the ReL-ReL RBM in
the top-layer by maximizing the likelihood of the data by
stochastic gradient descendant.2 The top level RBM of rec-
tified input is parameterized by network weights W, hid-
den layer bias λ, and visible layer bias b. The Gaussian-
rectified RBMs are parameterized by network weights and
biases W, λ, and b as well as visible unit variance σ.

Fig. 4 and 5 outlines the steps to learn these parame-
ters given a number of samples for the input layer v+. The
high-level idea is to optimize the model parameters. The
core part is to compute the gradient of likelihood by 1-step
contrastive divergence (CD-1), which uses Gibbs sampling
to approximate the intractable true gradient. Specifically,
we simulate the model driven by the input data v for 1.5 cy-
cles and collect mean activation of visible and hidden units
h+, h−, and v− for the first and last upward half-cycle, and
the gradients are computed from the difference in statistics
between two cycles

CD(z) = E+ (z)−E− (z) . (6)

2In fact, the likelihood of RBMs of ReL unit is not well defined, but
the contrastive divergence gradients of such RBMs are well defined by
interpreting the ReL units as sum of binary units of shared weights – see
[9] for details.



Input: B random batches of training samples v1, v2, . . . vB ;
Output: model parameters Θ = {θ1, θ2, . . . , θK};
Parameters: learning rate η, momentum τ ;
initialize Θ (see text for details);
for t = 1 . . . T do

for v+ = v1, . . . , vB do
compute hidden unit mean h+ = max(Wv+ + λ, 0) ;
compute visible unit mean v− = max(W>h+ + b, 0);
compute hidden unit mean h− = max(Wv− + λ, 0);
compute CD-1 gradients ∆θ(t):

∆W = CD
(
v>h

)
, (4)

∆λ = CD (h) , ∆b = CD (v) (5)

compute ADAGRAD learning rate γk = η/

√∑
t ∆θ

(t)
k ;

add momentum ∆θ̂
(t)
k = ∆θ

(t)
k + τ∆θ

(t−1)
k ;

adjust model θk = θk + ∆θ̂
(t)
k γk, k = 1 . . .K;

Figure 5: Pretrain RBMs of ReL visible and hidden units.

We refer readers interested in deeper technical details, such
as the probabilistic model of RBMs and derivation of CD-1
gradients, to the work by Hinton and et. al [3].

In our implementation, we set the bias on the hidden
units to zero. The bias and conditional variance on the vis-
ible units and units are initialized as the mean and variance
of the training data. The bipartite weights of the RBM are
initialized from random samples in the uniform distribution
U(−0.005, 0.005) for all RBMs.

We randomly divide the training data into B = 5
batches. The step-size for adjusting each parameter is deter-
mined by ADAGRAD[1] which depends on a global learn-
ing rate η = 0.005 for Gaussian-RBMs and a much smaller
rate of η = 0.0005 for the top-level RBM. To accelerate
learning, we add momentum to the gradient with τ = 0.9.
The training generally converges in T = 1000 epochs.

5. Learning image quality with labeled data
Given the pre-trained deep belief network of L layers,

we can generate mid-level representations corresponding to
the labeled distorted image data x for which we know their
ground truth quality scores y. We then model the joint dis-
tribution of y and x as via a Gaussian process regression
formulation using a simple squared-exponential kernel

Kij = exp

(
− 1

2D
|h(L)
i − h

(L)
j |

2

)
. (7)

where D is the dimension of the neural network output.
The vector h(L)

i corresponds to the activation of the neu-
ral network network due to input xi

h
(l)
i = max(W(l)v

(l)
i + λ(l), 0) (8)

v
(l)
i = h

(l−1)
i ,v

(0)
i = xi. (9)

We adjust the weights of the neural network and hyper-
parameters of the Gaussian process δ to maximize the log
likelihood function

L = log p(x, y) ∝ −1

2
log |Kδ| −

1

2
y>(Kδ)−1y, (10)

where Kδ = K + δI. (11)

The parameter δ denotes the regression noise model vari-
ance for the GP likelihood.

The partial derivatives of the log likelihood can be ana-
lytically computed by the chain rule.

∂L
∂δ
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∂Kδ
) (12)
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where S(z) is the step function whose value is 1 when z > 0
and 0 otherwise, and
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∂h
(l+1)
i

∂h
(l)
i

= W(l)>S(W(l)h(l) + λ(l)) (17)

Again, we use a momentum of 0.9 to accelerate train-
ing. We perform gradient descent to fine tune the model by
adjusting the parameters with a constant rate τ = 0.01.

Prediction: During the testing phase, we again use the
deep belief network to compute the mid-level representa-
tion and then make a prediction about the image quality via
Gaussian Process regression. The regression module then
predicts the image quality scores yn for features xn of un-
seen images as a Gaussian distribution of mean

ȳn = K(h(N)(xn),h(N))>(K + δI)−1y. (18)

6. Results
In this section, we empirically evaluate our model in su-

pervised and semi-supervised settings and also present an
evaluation of generalizing across distortion types. We per-
form evaluation on the LIVE and TID2008 datasets. In
the semi-supervised setting, we use simulated data (as dis-
cussed in Sec. 3.1) to pre-train the model. The criterion we
use for evaluation is Spearman correlation that reflects how
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Figure 6: Performance of our fine-tuned and pretrained
model and two state-of-art methods on the LIVE dataset.

well rankings are preserved in the predicted measure. To
eliminate bias due to division of the data, we perform a re-
peated random subsampling experiment of 1000 trials in all
experiments on both the LIVE and the TID2008 datasets.
We use mean Spearman correlation to evaluate the quality
of estimate. Larger correlation indicates higher relevance.

6.1. Performance under supervised setting

We first evaluate our model assuming sufficient labeled
data are used for training on the LIVE dataset. Distorted
images of 23 out of 29 references are used for training and
the remaining images are used for testing.

We evaluate the performance of two variations of our
model as well as two state-of-art blind measures:
• A pretrain-only model is learned by first pretrain-

ing the neural network layer by layer and then maxi-
mize the Gaussian process likelihood by adjusting the
hyper-parameter δ only.
• Our final fine-tuned model as described in Sec. 3.
• The baseline LBIQ measure performs SVM regres-

sion after PCA of the same features as our measure.
• The BRISQUE measure[6] performs SVM regres-

sion on a different set of features, and is the one of
best-performing blind measures to our knowledge.

Fig. 6 shows the Spearman correlation between the pre-
dicted quality measure and the groundtruth human quality
scores on the 5 distortion types as well as the overall corre-
lation. We observe that even without fine-tuning, overall our
model performs significantly better than the LBIQ model.
This indicates the non-linearity of the RBM model greatly
contributes to the success of our model and verifies our as-
sumption that the unsupervised pre-training only can lead
to good features for regression. With refinement, our model
performs even better and achieves a performance slightly
better than the state-of-art BRISQUE measure (0.965 v.s.
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Figure 7: Performance of pre-trained model on LIVE
dataset with different neural network depths.

0.939). This supports our argument that a good learning
model plays a critical role in image quality measures.

Second, we investigate how the performance of the
model relates to the depth of the neural network. We com-
pare our three-layer model with a four-layer model with an
additional layer of 600 hidden units (the number of hid-
den units is decided by cross-validation) and a two-layer
model that simply feeds the output of the seven RBMs to
the Gaussian process model. We observe that the three-layer
model performs slightly better than the other two. This indi-
cates that it is necessary to have a mid-layer representation
to combine the seven RBMs together, but the non-linearity
captured by the three-layer model is sufficient to represent
the structure of the specific data and features we use.

6.2. Performance with semi-supervised setting

We first conduct experiments to investigate the perfor-
mance variation of our model and state-of-art models with
different amount of labeled and unlabeled data. In each
trial, we pretrain our model with unlabeled distorted images
of {5, 20, 80} reference images and fine-tuned by labeled
distorted images of {3, 7, 11, 15, 19, 23} reference images.
For the comparison algorithms (LBIQ and BRISQUE), we
perform regression on the same labeled images alone.

Fig. 8 plots the performance degradation with the reduc-
tion of labeled data for our method (under three conditions
of amount of unlabeled data used) and those from previ-
ous work. We make two observations about the results.
First, our model appears more robust than the LBIQ and
BRISQUE measure with the decrease of labeled data. To
achieve a performance comparable to state-of-art (Spear-
man correlation ≥ .9) BIQA measures, both LBIQ and
BRISQUE needs at least labeled distortion image of 15 ref-
erence images, yet with sufficient unlabeled data, our model
performs well with just labeled images of 7 references, and
the performance of our semi-supervised model with just
3 labeled images is still in the reasonable range(0.85 −
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Figure 8: Performance variation on LIVE dataset with dif-
ferent amount of labeled data for our method and two pre-
vious methods: BRISQUE and LBIQ.

0.9). Second, with increasing unlabeled data to pretrain
the model, the regression performance steadily improves.
When pretraining with unlabeled data of 20 reference im-
ages, the performance is nearly as good as when pretraining
with the entire unlabeled dataset of 80 references.

Finally, we compare the performance of our model and
the state-of-art methods on the TID2008 dataset3. A re-
peated random subsampling experiment of 1000 trials is
conducted for fair comparison. Due to the difficulty of this
dataset, we use the entire unlabeled dataset for pretraining
and distortion images of 20 reference images for testing. As
shown in Fig. 9, the overall performance of our method is
0.841, and it is much better than state-of-the-art methods:
LBIQ is 0.74 and BRISQUE is 0.61. Though it is not as
good as the original LBIQ metric for a few distortion types.
This is because the Gaussian process in trying to reconcile
among the 17 distortion types, sacrifices the performance
on individual distortion types. 4

6.3. Generalization across distortion types

Finally, we explore the ability of our model to generalize
across distortion types.

We first visualize the low-dimensional embedding of the
LIVE and TID2008 dataset in Fig. 10 to gain some intu-
ition on why generalization across distortion types are pos-
sible. We scatter the eigenspace projection of the neural net-
work output of LIVE and TID2008 dataset and color code
the corresponding distortion types or subjective image qual-
ity. Fig. 10 shows not only continuity in subjective image
quality in the eigenspace but also a clustering across simi-

3We exclude the 25th image of the dataset from testing because it is a
synthetic image and its feature significantly differs from natural images.

4We have also tried to pick images of distortion types that are well
modeled by the LBIQ features for training and all images for testing. This
results in better performance than LBIQ in the specific distortion types we
use for training but worse overall performance.
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Figure 9: Performance of LBIQ, BRISQUE and our method
on the TID2008 dataset. Our model is trained using 80 ×
13 × 5 unlabeled and 20 × 17 × 5 labeled images. LBIQ
and BRISQUE are trained using the same labeled data.
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Figure 10: Kernel eigen-space embedding of the LIVE and
TID2008 dataset. Similar distortion types are clustered to-
gether and quality changes smoothly in this eigenspace.

lar distortion types (different types of noise, distortion, and
compression). This indicates that the quality measure of a
distortion type can be generalized from labels for similar
distortion types.

To validate this idea, we perform a “leave-one-distortion-
type-out” experiment on the LIVE dataset. For each distor-
tion type, we use all data for other distortion types to train



distortion type Spearman correlation
1 JPEG2000 0.9580
2 JPEG 0.9512
3 White noise -0.4879
4 Gaussian blur 0.9692
5 Fast fading 0.9436

Figure 11: Spearman correlation of predicted and subjective
quality in leave-one-distortion-type-out setting.

the model and estimate the quality measure of the left-out
distortion type. As shown by Fig. 11, the blur and compres-
sion types are predicted well. Yet the white-noise type is
poorly measured because it is very different from others.

7. Conclusions and Future Work
State-of-art image quality assessment techniques use

kernel regression methods to measure image quality using
training sets of distorted images. The success of such meth-
ods rely on the kernel function to adequately embed the
training data into a quality-relevant sub-space. It also re-
quires a reasonable amount of training data to exemplify
the image quality measure.

We propose to represent the kernel function for image
quality assessment with a rectifier neural network. The
many degrees of freedom and non-linearity of such a model
allows it to represent the structure of image distortions with
flexibility. The ability to perform unsupervised pre-training
of the model allows us to use a large volume of unlabeled
image data to train the model without being restricted by
the limited access to human scores. Experiments show that
our method leads to significant improvement over previ-
ous methods (both blind and non-blind) for two challenging
datasets, and robustness to reduction of labels.

Our work shows the potential to exploit advanced learn-
ing models to overcome challenges in blind image quality
assessment. We believe an adequate learning model is as
important as other aspects of IQA measures, such as feature
crafting and pooling, which have been deeply explored.

Although the model we propose may generally benefit a
wide range regression-based IQA metrics, our exploration
is currently limited in two aspects. First, we have only ap-
plied our model to a specific set of features [14]. We be-
lieve that by building on an existing, well known feature
set makes the learning contribution clear, and making the
learning algorithm the only variable was best scientifically.
We believe though that our model can benefit a wide range
of handcrafted features as long as they sufficiently express
the structure of the data. Therefore as future work, we think
using other existing features, combined, or new features is
a good direction; as is investigating the benefits of specific
features by looking at the weights of the top level RBM.

Second, we only increase unlabeled samples in the di-
mension of reference images. Therefore, it is not clear
whether or how our method can be extended to handle the

increase of distortion types. However, we do show that our
current model can handle some unseen distortion types to
some extent as it exploits statistical co-dependencies across
various kinds of distortions. Exploring and addressing the
above limitations is a promising direction for future work.

References
[1] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient

methods for online learning and stochastic optimization. J.
of Machine Learning Research, 12:2121–2159, July 2011.

[2] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier
neural networks. In NIPS’2010 Workshop on Deep Learning
and Unsupervised Feature Learning, Apr. 2010.

[3] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algo-
rithm for deep belief nets. Neural Computation, 18(7):1527–
1554, 2006.

[4] G. E. Hinton and R. Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. Science, 2006.

[5] C. Li and A. C. Bovik. Content-partitioned structural simi-
larity index for image quality assessment. Image Communi-
cation, 25(7):517–526, 2010.

[6] A. Mittal, A. Moorthy, and A. Bovik. No-reference image
quality assessment in the spatial domain. Image Processing,
IEEE Transactions on, 21(12):4695–4708, 2012.

[7] A. Mittal, R. Soundararajan, and A. Bovik. Making a com-
pletely blind image quality analyzer. Signal Processing Let-
ters, IEEE, 20(3):209–212, 2013.

[8] A. K. Moorthy and A. C. Bovik. A two-step framework for
constructing blind image quality indices. IEEE Signal Pro-
cessing Letters, 17(5):513–516, 2010.

[9] V. Nair and G. E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In ICML, 2010.

[10] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian,
M. Carli, and F. Battisti. Tid2008 - a database for evaluation
of full-reference visual quality assessment metrics. Advances
of Modern Radioelectronics, 10:30–45, 2009.

[11] R. Salakhutdinov and G. Hinton. Using deep belief nets to
learn covariance kernels for gaussian processes. In NIPS,
2007.

[12] R. Salakhutdinov and G. Hinton. Semantic hashing. Int. J.
Approx. Reasoning, 50:969–978, July 2009.

[13] H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik.
LIVE image quality assessment database release 2. http:
//live.ece.utexas.edu/research/quality.

[14] H. Tang, N. Joshi, and A. Kapoor. Learning a blind measure
of perceptual image quality. In Computer Vision and Pattern
Recognition, IEEE Conference on, pages 305–312, 2011.

[15] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image
quality assessment: From error visibility to structural simi-
larity. IEEE Trans. on Image Processing, 3:600–612, 2004.

[16] W. Xue, L. Zhang, and X. Mou. Learning without human
scores for blind image quality assessment. In CVPR, 2013.

[17] P. Ye, J. Kumar, L. Kang, and D. S. Doermann. Unsupervised
feature learning framework for no-reference image quality
assessment. In CVPR, pages 1098–1105, 2012.

[18] J. Zhu. Semi-supervised learning literature survey. 2008.


