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Abstract

We consider the problem of localizing a novel image in
a large 3D model. In principle, this is just an instance of
camera pose estimation, but the scale introduces some chal-
lenging problems. For one, it makes the correspondence
problem very difficult and it is likely that there will be a sig-
nificant rate of outliers to handle.

In this paper we use recent theoretical as well as techni-
cal advances to tackle these problems. Many modern cam-
eras and phones have gravitational sensors that allow us to
reduce the search space. Further, there are new techniques
to efficiently and reliably deal with extreme rates of outliers.
We extend these methods to camera pose estimation by us-
ing accurate approximations and fast polynomial solvers.
Experimental results are given demonstrating that it is pos-
sible to reliably estimate the camera pose despite more than
99% of outlier correspondences.1

1. Introduction

A classic problem in computer vision is estimating the
orientation and position of a camera, given positions of a
number of points in 3D and their projections in the cam-
era image. The so-called pose estimation problem has
been solved in many contexts and for many camera mod-
els, see [10].

Another problem that has attracted increasing attention
over the past years is the localization problem, i.e. estimat-
ing the position (and sometimes the orientation) of a viewer
or a camera given image data. A number of approaches
have been suggested for solving this problem. Many have
adopted an image retrieval approach, where a query image
is matched to a database of images using visual features.
Sometimes this is combined with a geometric verification
step, but in many cases the underlying geometry is largely
ignored, see [11, 25, 12].

1This work was supported by the Swedish Research Council (grant no.
2012-4215) and the Swedish Foundation for Strategic Research, within the
programmes RIT08-0043 and Future Research Leaders.

The approach that we pursue in this paper is viewing
the localization problem as a pose estimation problem by
matching an image to a large 3D model of the environment.
In such an approach one crucial step is the robust matching
of image features to features in the 3D model. The ability to
handle massive amounts of outliers in the data is absolutely
paramount.

For many practical applications, using e.g. vehicle
mounted cameras or devices with accelerometers such as
smart phones, we can assume that the direction of the grav-
itational vector is known. This simplifies the problem by
reducing the search space and we show that this enables
tractable, efficient, robust and accurate algorithms for local-
ization. A key observation is that the problem can be recast
as a particular type of registration problem: from points to
cones. We use this formulation and present a number of
algorithms for performing outlier removal and pose estima-
tion in low-order polynomial time.

The main contributions of the paper are

• Reformulating the pose estimation problem as a regis-
tration problem.

• A fast approximate outlier rejection scheme, that en-
ables us to handle large datasets with very large
amounts of outliers.

• An optimal algorithm for inlier optimization, that runs
in polynomial time.

1.1. Related work

A number of solutions have been proposed for solving
the localization problem as a camera pose problem via 2D-
to-3D matching, see [19, 5, 18, 23, 24]. The main focus has
been to develop sophisticated heuristics for finding reliable
matching schemes and avoiding to generate false correspon-
dences. We take a radically different standpoint: Instead we
allow the matching scheme to generate a lot of correspon-
dences - correct or incorrect - in order to make sure that we
do not miss any good correspondences. The focus of our
approach is on the ability to handle large amount of outliers
in a reliable and tractable manner.



Many approaches for robust estimation based on the
RANSAC framework have been proposed over the years,
see e.g. [6]. Although this works well in many cases, one
problem with these approaches is that there is no guaran-
tee that they will obtain a reasonable solution even if there
exists one. It can also be hard to determine if there is no so-
lution at all. In addition, the number of iterations required
to find a solution with high probability tends to make the
approach impractical for the rates of outliers that we con-
sider.

Another approach for handling outliers in a robust way
is the L∞-framework, see [13, 14, 26] including recent ex-
tensions [22, 28]. Many of these approaches work well for
large scale problems, but break down with large rates of
outliers.

Solving computer vision problems using IMU or ac-
celerometer data in addition to visual data has been pro-
posed in a number of previous papers. Some use it together
with RANSAC, [9, 15], while others use it to bootstrap the
filtering process in SLAM type approaches, see [20, 27].

The most similar works to ours include [3, 16, 17, 8]
where the aim is to develop algorithms which provably opti-
mizes a robust error norm. In most cases this simply means
minimizing the number of outliers but some [2] also con-
sider the truncated L2 norm. Several of these approaches
are based on branch-and-bound which has exponential time
complexity. To our knowledge, none of the above ap-
proaches are able to solve the pose problem with a provably
optimal algorithm based on a robust error criterion that runs
in polynomial-time.

2. Problem Formulation

Camera pose estimation is the task of localizing an image
in a 3D model. We will make three assumptions. First of all
we assume that the query image has known orientation with
respect to the ground plane. Typical cases are photos from a
camera mounted on a vehicle or photos from a smart phone
with accelerometers that measure the gravitational vector
when stationary. Secondly, we assume that the direction of
gravity is known in the 3D model. This is the case if the im-
ages used in the reconstruction where equipped with similar
measurements as the query image. Finally, we assume that
the ground plane has been roughly located in the 3D model.
One way to do this is by considering the height of the cam-
eras used in the reconstruction. The rough location of the
ground plane is not necessary for our approach, but it will
increase the speed significantly.

Choose a coordinate system such that the camera is at the
origin and the z-axis points upwards. Let the 3-vector U de-
note a 3D-point and let u be a hypothetical correspondence
in the image. The relative orientation between the camera
and the point is known up to a rotation about the z-axis. In
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Figure 1. The image plane of the camera is depicted with error
ellipses for two example points.

the noise-free case each correspondence should satisfy,

λu = SU � = RU + t, (1)

with

R =

�
R̄ 0
0 1

�
, (2)

where S is a known 3 × 3 rotation matrix (encoding the
known rotation axis) and R̄ is an unknown 2 × 2 rotation
matrix. For ease of notation, and no loss of generality, we
will in the following assume that S is equal to the identity
matrix.

Since finding accurate correspondences is difficult, we
need to solve this problem in a robust way. A common ap-
proach is to simply optimize the number of consistent mea-
surement, i.e. inliers. Allthough this formulation leads to a
challenging optimization problems, using recent advances
in robust estimation it is indeed possible to solve it in poly-
nomial time as function of the number of correspondences.

2.1. A Reformulation

First, we need to define more precisely how to measure
an error. In multiple view geometry, measuring reprojection
errors is normally the preferred choice, as it accurately mod-
els the limited precision of feature detection techniques.

Let the 3D point be rotated and translated to the camera
coordinate system. It is easy to show that the set of points in
R3 that yields a reprojection error smaller than a threshold
�, forms a cone C in R3. A 3D point U is an inlier if

U � = RU + t (3)

lies inside this cone C. Hence we have transformed the
original camera pose problem to a registration problem,
namely that of registering a number of 3D points Ui to the
corresponding cones Ci, see Figure 5.



2.2. Overview of the Approach

In [8] it was shown how the number of outliers can be
minimized in polynomial time. The theoretical result is a
straightforward consequence of the theory of KKT points.
One requirement is that the parameter space should be a dif-
ferentiable manifold embedded in Rm with a set of equality
constraints. The trick is to introduce a dummy goal function
and then construct an algorithm for computing the complete
set of KKT points to the resulting optimization problem.
For the details we refer to that paper. In order to do this, we
need to define a goal function on the parameter space and
then construct a set of solvers. The details of how this is
done is described in Section 4. The main theorem from [8]
shows that one of the solution points generated in this way
will be optimal with respect to the number of outliers. In
this way we can minimize the number of outliers in O(n5)
time.

In many cases this is far too slow to be practical. Hence,
[2] proposes a simple and fast outlier rejection method to
be used as preprocessing step to the optimal estimation. The
technique is specialised to the problems of stitching and 2D-
2D registration, so we need to generalize it to work in our
setting as well. Our method for fast outlier rejection is de-
scribed in Section 3.

This gives us our complete localization pipeline. We
start by matching SIFT features between the image and the
model. We then run Algorithm 1 to quickly eliminate a large
amount of wrong matches. Finally we run Algorithm 2 to
find the best solution. In a number of experiments we show
in Section 5 that this approach works for both very large
models and for outlier rates up to more than 99%.

2.3. A Note on Errors in Orientation

Modern MEMS accelerometers are incorporated in many
of today’s hand-held devices such as mobile phones and
tablet computers. These accelerometers make it possible
to measure the gravitational vector when the device is sta-
tionary. The sensitivity of such measurements has increased
over the last years, and the typical accuracy is around 1mg
which corresponds to an error less than 0.1◦. However
there is also a zero g level error offset which is typically
about 1◦. This can in some cases be calibrated away, if the
same device is used. If there is a slight motion during the
capture of the image, the accelerometer will not correctly
measure the gravitational vector, but this can be compen-
sated for, using the gyroscopes which are present in most
devices. Typical error values are from the ST Electronics
sensor LIS331DLH, see [1] for details.

In our setup these errors can easily be incorporated by
increasing the size of the error cones. If we decompose the
errors in orientation, in tilt and roll angles, errors in tilt will
be most significant. For the roll angle the impact of the error
will increase for points farther from the centre of the image.

3. Fast Outlier Rejection

We will now describe our outlier rejection step.

3.1. Connection to Registration

Assume for a moment that the height of the camera, rel-
ative to the 3D reconstruction, is known. Then we get a
special form of the registration problem from Section 2.1.
In this case, the transformation can be written

R =

�
R̄ 0
0 1

�
, t =




tx
ty
0



 . (4)

As this transformation will never change the height of a
given 3D point

U =

�
v
h

�
, (5)

it will always intersect the corresponding cone at z = h.
Hence we can restrict the cone constraint to this plane and
rather than a cone we get a conic section. The 3D point, U ,
is an inlier if

U � = RU + t (6)

lies inside this conic section. Note that the third coordi-
nate can be dropped. Hence we have a problem of 2D-2D-
registration of points to conic sections.

As we discussed in Section 2, the height will not be
known exactly but only restricted to an interval,

hl ≤ h ≤ hu. (7)

In that case, the registration problem described in Sec-
tion 2.1 is turned into registering points to cones that are
cut by two planes; see Figure 2. As we are looking for
lower bounds on the number of outliers, we are free to con-
sider a relaxation of this problem. Hence we throw away
the height information by projecting the cut-off cones onto
the ground plane. The projected shape is the convex hull of
the conic section at height hl and the conic section at height
hu, but we will get a good approximation using quadrilater-
als, see Figure 2. When the conic sections are not ellipses,
but rather parabolas, or one-sided hyperbolas, we extend the
quadrilaterals to infinity.

Again we have transformed the original camera pose
problem to a registration problem, in this case that of regis-
tering a number of 2D points vi to the corresponding quadri-
laterals Qi.

3.2. Rejection Using Minkowski Sums

The basis of our outlier rejection scheme is a bounding
function of the following kind: If correspondence i is an in-
lier, then there can be no more than Bi inliers. We will soon
see how to achieve such a bound and also how to produce a



lz  h=

z  h= u

Figure 2. Cutting a cone with a number of planes between two
heights z = hl and z = hu and projecting them onto the ground
plane results in a shape (black) that can be approximated with a
quadrilateral (blue).

lower bound, L, on the number of inliers. If Bi < L, then
correspondence i can safely be removed from the problem.

First recall the definition of Minkowski addition from ge-
ometry. The Minkowski difference is defined in an analogue
way.

Definition 1. The Minkowski sum of two sets of position
vectors A and B is the set

{a+ b : a ∈ A, b ∈ B}. (8)

In Figure 3 an example of the Minkowski difference of
two quadrilaterals is shown.

- =

Figure 3. Illustration of the Minkowski difference of two quadri-
laterals. The green outline shows the difference of the red and blue
quadrilaterals.

Recall from the last section that the problem at hand is
registration of points vi to quadrilaterals Qi. For technical
reasons we pick a point qi from each Qi, e.g. the centre of
mass. Let Q̄i = {x : x+ qi ∈ Qi}, i.e. the quadrilateral Qi

translated to the origin.

Theorem 1. Assume there exist planar R, t such that

Rvi + t ∈ Qi (9)

where vi are 2D points and Qi quadrilaterals with centres
at qi, for i = 0, . . . , k. Then there exists R, t� such that
Rv0 + t� = q0 (with zero error) and

Rvi + t− qi ∈ (Q̄i − Q̄0) (10)

for all the other i’s, where Q̄i − Q̄0 refers to the Minkowski
difference of the two quadrilaterals.

Proof. Choose t� = −Rv0 + q0. Then

Rvi + t� − qi = Rvi + t� − qi − t+ t =

= (Rvi + t− qi)− (Rv0 + t− q0). (11)

As (Rvi + t) ∈ Qi, then by definition (Rvi + t− qi) ∈ Q̄i.
A similar argument shows that (Rv0 + t − q0) ∈ Q̄0 and
hence the difference in (11) lies in Q̄i − Q̄0.

This theorem allows us to set the error of one point to
zero, by expanding the uncertainty regions around the other
points. The number of inliers with respect to the Minkowski
differences, given that point 0 is error-free gives us a bound
of the desired type: If correspondence 0 is an inlier, then
there can be no more than B0 inliers.

vi

Q0
Qi-Q0q0

qi

Lower bound

Upper bound

Qi

Figure 4. Propagating the errors from point v0 to vi can be done
using the Minkowski difference of the error. The bounds on the
rotation for a point vi are also shown.

See Figure 4 for a depiction of the setup for one point
vi. Constraining the first point to be error-free fixates the
translation. Hence we have a set of points and a collec-
tion of sets Mi = Q̄i − Q̄0 and we wish to find a rotation
that maximizes the number of points enclosed in their cor-
responding sets. As should be clear from the figure, each
point-to-set correspondence will be consistent with all θ’s
in intervals Ii. By sorting all interval boundaries and going
through the sorted list, we can find an optimal choice of θ.
The computational cost of this is O(n log n). For the angle
with maximally many consistent points, we also reproject
all points yielding a lower bound on the number of inliers.
Assuming that we repeat this for each correspondence we
get a complexity of O(n2 log n).



Algorithm 1 Fast Outlier Rejection
Given a lower bound, L, on the number of inliers, compute
an upper bound B0 assuming that correspondence 0 is an
inlier. If B0 < L remove correspondence 0.

For each i �= 0
Compute Mi ⊃ Q̄i − Q̄0.
Find an interval of angles such that Rvi + t− qi ∈ Mi.

Sort the set of interval boundaries.
For each interval boundary θ(i)

Let b(i) be the number of intervals containing θ(i).
If max b(i) + 1 < L, then remove correspondence 0.

3.3. Technical Details

The starting point for the fast outlier rejection algorithm
is an interval of possible heights for the camera. Naturally a
shorter interval will allow us to remove more outliers. The
full interval is given by estimating the ground plane of the
3D model and assuming that the image was captured be-
tween 0 and 10 metres over the ground. This relatively large
interval is divided into k = 10 subintervals and the outlier
rejection is performed for each of these intervals. Corre-
spondences which are rejected at all heights can be perma-
nently removed from the problem. If we have k height in-
tervals we get a total complexity of O(kn2 log n).

4. Outlier Minimization

As described in Section 2.2 we can find the optimal num-
ber of inliers by extracting all the KKT points to a con-
structed optimization problem. First we decide on a goal
function f on the parameter space. Normally a linear goal
function will yield the simplest equations. For k = 1, . . . , 4
we need to solve the following problem:

Given a subset S of k residuals compute all points
satisfying ri = � for ri ∈ S such that the gradi-
ents of f , the residuals in S and the embedding
constraints are linearly dependent.

We will need a specialized solver for each k. One of the
solution points generated in this way will be optimal with
respect to the number of outliers.

The residual constraint for a point Ui can be formulated
as

U �
i
T
CiU

�
i = 0, U �

i = RU + t. (12)

For our application, each of these problems can be formu-
lated as the solution to a system of polynomial equations.
We will briefly describe how we construct the first two
solvers. We have found that the 1- and 2-point solvers are
of little importance in practice, so we do not describe them
here.

R,t

Figure 5. The registration problem for points lying on cones: Find
a 3D translation and a planar rotation so that the 3D points lie on
or within the cones.

4.1. The 4-Point Solver

The parameter space can be embedded in R5 by setting

R̄ =

�
cos θ − sin θ
sin θ cos θ

�
=

�
a −b
b a

�
(13)

and adding the embedding constraint a2 + b2 = 1. The
first four equations from (12) are in general full second de-
gree polynomials in the five variables (a, b, tx, ty, tz). To-
gether with the embedding constraint this yields a system of
five quadratic equations, which can be solved with the tech-
niques from [4, 7]. This typically yields 28 solutions, but
rarely more than 8 real-valued ones. We have implemented
a solver where the most time consuming step is doing a QR
factorization of a 280×252 matrix. On a desktop computer
the running time for this type of solver is in the order of a
few milliseconds.

4.2. The 3-Point Solver

Although the technique from [8] is based on introduc-
ing a dummy goal function, this function is actually never
used in the 4-solver. This is not the case for the 3-solver.
To get as simple equations as possible we use a linear goal
function, f = a, so that ∇f = [1 0 0 0 0]. This should
be linearly dependant with the gradients of the two regis-
tration constraints (12), and the gradient of the embedding
constraint. This gives a third degree polynomial in the five
variables. Combining this equation with the three registra-
tion constraints (12) and the embedding constraint we end
up with a set of equations that in general give 40 solutions.
Again the most time consuming step in the solver is doing
a QR factorization, in this case of a 1260× 1278 matrix.

4.3. Computational Complexity

Algorithm 2 shows the steps of the outlier minimization
algorithm. As the number of sets of ≤ 4 residuals is O(n4)
we can only do exhaustive sampling of these sets for rel-
atively low number of correspodences. This might seem
very restrictive, but first note that as the fast outlier rejection
method normally removes all but a few of the outliers, it is



the number of inliers which will be relevant with respect to
efficiency. Moreover, in cases with hundreds of inliers, we
will get a good pose estimation even without computing the
globally optimal one. If speed is prioritized over optimality,
another choice is to use ordinary minimal solvers after the
rejection step.

For the experiments, we will sometimes exhaustively
search all the subsets and sometimes stop when we have
detected a good-enough solution (i.e. with enough number
of inliers) or reached a maximum number of iterations.

Algorithm 2 Outlier minimization
Given a set of image points ui and 3D points Ui estimate
the pose that minimizes the number of outliers.

Transform the problem to a point-to-cone registration.
For each subset of correspondences of size ≤ 4:

Use the relevant solver to estimate the KKT points.
For each KKT point (R, t):

Count the inliers and update the best solution.

5. Experiments

We have conducted a number of experiments, both on
synthetic and real data, to test robustness, speed and accu-
racy of the proposed methods.

5.1. City-Scale Localization

To evaluate on challenging real-world data, we have
performed a localization experiment on the Dubrovnik
dataset [19]. It consists of a 3D model with around 2 mil-
lion points reconstructed from 6000 images. Naturally, each
point is also equipped with a SIFT descriptor. Except the
3D model, the dataset also provides 800 test images with
computed estimates of camera positions and orientations.
As these estimates are also based on vision algorithms, they
are not quite ground-truth. In fact they contain some out-
liers.

When building such a 3D model it is possible to also
get a rough estimate of the ground plane and, based on
the estimated matchings, get an interval of possible heights
for Algorithm 1. As the ground plane is not available for
the Dubrovnik dataset we synthesize this information by
picking a ±5 metres interval around the provided estimated
height. Note that the length of this interval will mainly af-
fect the running time and not the accuracy of the final result.

A similar problem is that the dataset contains no orien-
tation measurements. Again we synthesize this informa-
tion using the provided estimated camera orientations and
adding a random rotation distributed uniformly on [0, 1◦];
see Section 2.3 for a motivation.

For each image, correspondences to the 3D model were
established using standard SIFT matching (with matching
ratio 0.9). Then the image was localized by running Algo-
rithm 1 followed by Algorithm 2 with a maximum of 1000
iterations. As discussed in Section 4.3, we stop early if a
reasonable amount of inliers is found.

Table 1 shows a comparison to other methods. In accor-
dance with [19], an image is considered correctly localized
if at least 12 correct inliers are found. For the two images
where this was not the case, we found 8 and 9 inliers re-
spectively and the errors were small. So essentially these
two cases were not failures. Moreover, as our algorithm is
optimal for a given bound on the errors, in our case 6 pixels,
we can say that for these two images there does not exist a
solution with 12 inliers. This is not a contradiction to [18] as
we have a more restricted camera model. Also, since there
are no correspondences provided in the dataset between the
SIFT-points in the query images and the model points, it
is somewhat difficult to compare performance between the
different methods.

The median error of our method is significantly lower
than for the other methods. This shows the advantage of us-
ing measurements from an orientation sensor—even if that
sensor has an error of up to 1◦.

Method # reg. Median # error # error
images error (m) < 18.3 m > 400m

Our 798 0.56 771 3
[24] 795.5 1.4 704 9
[23] 783.9 1.4 685 16
[23] 782.0 1.3 675 13
[19] 753 9.3 655 -
[5] 789 - - -

[18] 800 - - -

Table 1. Results on the Dubrovnik dataset; see [24].

Using a single threaded C-implementation, the median
running time for Algorithm 1 was 5.06 seconds, contain-
ing 4766 point correspondences, so most problems for this
dataset are large. For a more reasonably sized problem of
1000 correspondences, the running time was approximately
0.3 seconds. For the largest problem, with 17199 points, the
execution time was 55.4 seconds. For Algorithm 2, we only
had a Matlab-implementation. With this implementation,
each iteration takes approximately 0.3 seconds. In almost
all cases for this experiment, the first step finds more than
enough inliers for a very good solution, making it unneces-
sary to run the second step.

5.2. Shopping Street Experiment

From 412 images, a 3D model was built using the
method in [21]. A set of 101 Iphone images from the same
street were localized in the 3D model using Algorithm 1



and 2. The gravitational vector was captured by the inter-
nal sensors in the phone. One purpose of this experiment is
to show that the measured gravitational sensor is indeed ac-
curate enough to use for localization. The experiment also
shows that very high rates of outliers can occur in practice.
Due to a significant difference in lighting conditions, the
feature matching was unusually difficult; see Figure 7. To
get any correct matches the SIFT matching ratio was in-
creased to 0.95. Naturally this produced a lot of erroneous
correspondences; see Figure 6.

0% 5% 10%
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Rate of inliers

Figure 1: Histogram of inlier rates for the shopping street
experiment.

0-1 1-2 2-3 3-4 4-5 5-10 > 10

50
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Error (metres)

Figure 2: Histogram of errors for the semi-synthetic shop-
ping street experiment.

1

Figure 6. Rate of inliers for the 101 query images in the shopping
street experiment.

The results are evaluated by counting the number of in-
liers, and by visually verifying the inlier correspondences as
well as the position on the street. In all cases the computed
camera pose was visually correct and in 100 of the images
there were at least 12 inliers. In the last case there were only
10 inliers but the pose was still correct.

Figure 7. One of the SLR images used for building the model (left)
and one of the Iphone test images (right). Note the illumination
difference.

5.3. Semi-Synthetic Experiment

Since we have no way of obtaining ground-truth po-
sitions for the shopping street experiment, we also con-
structed a semi-synthetic setup. The same 3D model as in
the shopping street experiment was used and the same cor-
respondences. However, the image points were recomputed
to have control over the noise. For each image, a subset of
10 correct image points was selected. Gaussian noise with
standard deviation 0.005 was added to the calibrated points
and the gravitational vector was corrupted with a uniform
noise angle on [0, 1◦].

Both for 3-point RANSAC, 2-point (with known verti-
cal direction [15]) RANSAC and Algorithm 2, exhaustive
sampling of all the minimal subsets was performed. The

localization errors in metres for the three methods are com-
pared in Figure 8. In most cases the methods works well,
but the RANSAC methods are more likely to produce large
errors.
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Figure 1: Histogram of inlier rates for the shopping street
experiment.
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Figure 2: Histogram of errors for the semi-synthetic shop-
ping street experiment.
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Figure 8. Histogram over the localization error of the pro-
posed method (green) compared to exhaustive 2-point and 3-point
RANSAC (blue and orange) for the semi-synthetic experiment.

5.4. Timing Comparison

Another experiment was performed on a subset of the
test images from the Dubrovnik dataset. Taking a number of
images, all but 10 inliers were removed. Then Algorithm 1
was run with varying number of outliers. The execution
times as a function of the number of outliers can be seen
in Figure 9. As a comparison, we have run a 3-point pose
solver (implemented in C) and a 2-point (plus up-direction)
pose solver (implemented in Matlab), in RANSAC loops.
The number of RANSAC iterations was chosen such that
the probablity of getting at least one outlier-free minimal
set was 0.99. Algorithm 1 is much faster than RANSAC
for high rates of outliers. This is expected as our outlier
removal runs in O(n2 log n) compared to 3-point RANSAC
which increases as O(n4) for this experiment. Comparing
execution times to the 2-point RANSAC is unfair since the
implementation used is very inefficient. Simulations of a
C-implementation indicate that the solver is approximately
as fast as Algorithm 1; being faster for low rates of outliers
and slightly slower for higher rates.

0 500 1000 1500 2000 2500
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Figure 9. Execution times for a 3-point RANSAC loop (orange
dashed line), a 2-point RANSAC loop (blue dotted line) and the
proposed outlier removal step (green line). The x-axis shows the
number of outliers. The number of inliers was fixed to 10.



6. Conclusions

We have in this paper presented a pose estimation frame-
work that can handle large amount of outliers in the data.
It assumes knowledge about the orientation of the camera
relative to the ground plane. This information is readily
available for many practical applications using e.g. cameras
mounted on vehicles or hand held devices such as smart
phones with gravitational sensors. The experiments show
that using this information we significantly improve both
localization accuracy and robustness to outliers.
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