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Abstract

We derive an easy-to-implement and efficient algorithm
for solving multi-label image partitioning problems in the
form of the problem addressed by Region Competition [19].
These problems jointly determine a parameter for each of
the regions in the partition. Given an estimate of the pa-
rameters, a fast approximate solution to the multi-label sub-
problem is derived by a global update that uses smoothing
and thresholding. The method is empirically validated to
be robust to fine details of the image that plague local so-
lutions. Further, in comparison to global methods for the
multi-label problem, the method is more efficient and it is
easy for a non-specialist to implement. We give sample
Matlab code for the multi-label Chan-Vese problem in this
paper. Experimental comparison to the state-of-the-art in
multi-label solutions to Region Competition shows that our
method achieves equal or better accuracy, with the main
advantage being speed and ease of implementation.

1. Introduction

Low level processing of images into multiple regions,
i.e., image segmentation, is a common pre-processing task
in a number of applications in computer vision. In these
problems, it is required to partition the image domain, i.e.,
label the image, into multiple regions of homogeneous fea-
tures represented by parameters. In many cases, the pa-
rameters that determine the partitioning of the domain are
not known and must be estimated with the labels in a
joint multi-label and parameter estimation problem. Re-
gion Competition [19] and multi-phase piecewise constant
Mumford-Shah [18] are such problems, which this paper
addresses. Note the algorithm introduced here does not
apply to piecewise smooth Mumford-Shah (e.g., [10, 17]).
While these problems are classical, they remain difficult to
optimize so as to achieve a desired optimizer, and therefore,
they have been the subject of much research.

Existing methods to solve joint multi-label and parame-

ter estimation problems can be divided into two categories.
The first category is local methods, which use local label
updates based on steepest descent (e.g.,[19, 18]). They are
beneficial when good initialization is available. The sec-
ond category is global methods, which are based on global
solutions to the multi-label sub-problem using relaxations
(e.g., [6, 14]). These are useful in the case that one does not
want to bias the solution to the initialization as much. Lo-
cal methods are sensitive to fine details of the image, while
global methods are less sensitive to fine details of the im-
age. In applications where there are a large number of la-
bels and/or images (e.g., multi-label co-segmentation [12] -
simultaneously segmenting a group of images into multiple
regions), it is beneficial to derive faster to solutions than ex-
isting techniques. Further, existing methods are relatively
sophisticated for a non-specialist, relying on advanced opti-
mization techniques, thus making implementation difficult.

In this work, we derive a new method for joint multi-
label and parameter estimation problems that apply to prob-
lems solved by Region Competition. We call the method
Fast-Label. Fast-Label uses global iterative updates rather
than local updates of local methods, and thus they are less
sensitive than local methods to fine irrelevant details of the
image. The advantage over existing global methods is both
computational speed and ease of implementation. Fast-
Label can be coded efficiently in a few lines of Matlab code,
making it easy for a non-specialist to code and modify. Al-
though Fast-Label uses global updates to approximate a so-
lution, we do not have theoretical guarantees of a global
optimum. However, extensive experiments show there is
no compromise in the accuracy of the partitioning when
compared to global methods. In some cases, we even ob-
tain higher segmentation accuracy. The advantage in speed
makes Fast-Label feasible in applications with many images
and labels, e.g., [12] (see also Section 4.2).

Our work is based on the simple idea that without reg-
ularization in the labels, the globally optimal labeling can
be computed given the parameters in a simple thresholding
step. Our method is then designed to approximate the ef-
fects of regularization by rewriting the regularization in a
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form that resembles the joint problem without regulariza-
tion. A simple additional thresholding step then approxi-
mates the effects of regularization. Our work relates to the
work of [15, 8], where the main idea is to be able to approx-
imate a curve evolution arising from gradient descent of an
energy with simple operations of thresholding and smooth-
ing. While some of our ideas are based on those works, we
are not interested in approximating the effects of gradient
descent flows, as those are susceptible to undesirable local
minima. We are interested in using some of those ideas to
derive global iterative updates given the parameters. This
leads to robustness to fine structure, and a fast method.

2. General Multi-label Problem
We consider the following energy:

E({Ri, pi}Ni=1) =
N∑
i=1

∫
Ri

F (I(x); pi) dx+

α

∫
Ri

WRi
(x) dx (1)

where the first term of the energy represents the data fidelity
term (or label cost) and the second term is regularization.
The Ri ⊂ Ω are the regions to be determined and they are
such that their interiors are mutually disjoint and their union
forms the domain of the image Ω. I : Ω → Rk is the
image. The parameters pi can either be finite (e.g., Rk) or
infinite dimensional (probability distributions in the range
space of the image). The goal of the multi-label problem is
to optimize the energy in Ri (given N ), and the parameters
pi are unknown.

An example of a commonly used F is F (I(x); pi) =
|I(x)− pi|2 where pi ∈ Rk. This is considered in [18] and
a special case of [19] when the noise model of the inten-
sity inside the regions are assumed Gaussian and the noise
variance is the same in each Ri. Another example is prob-
ability distributions, pi : Rk → [0, 1], of an image feature
within region Ri, as in Region Competition. In this case,
F (I(x); pi) = − log pi(I(x)) where pi(I(x) is the proba-
bility that I(x) fits distribution pi.

We consider the following class of regularizers:

WRi(x) =
1

σ
φ(x)(Gσ ∗ 1Rc

i
)(x), (2)

where Gσ is the Gaussian kernel of standard deviation σ,
1Rc

i
is the indicator function on Rci = Ω\Ri, and φ : Ω →

R+. To gain intuition for this regularization, consider when
φ = 1. For a point x ∈ Ri, WRi

(x) will be close to zero
when all points in a disc, centered at x, of radius about σ are
also insideRi. It is close to 1 when most points around x are
outside Ri. Therefore, the term enforces spatial regularity.
The greater σ, the greater neighborhood size for enforcing

spatial regularity. In the limit when σ → 0, one can show
that ∫

Ri

WRi
(x) dx→ 1

2

∫
∂Ri

φ(x) ds(x), (3)

where s denotes the arc-length parameter. Details are in
Appendix A. Hence in the case that φ = 1,

N∑
i=1

∫
Ri

WRi(x) dx→
∑
i∼j

Len(∂Ri ∩ ∂Rj) +
1

2
Len(∂Ω),

(4)
where the summation on the right is over all adjacent pairs
of regions, and Len(·) denotes length. Thus, when φ = 1,
the regularization reduces to the standard length regulariza-
tion, commonly used in segmentation algorithms. The case
when φ varies spatially implies penalizing length less at lo-
cations where φ is small.

The use of the regularizer (2) is for two reasons. First,
it leads to an efficient approximate optimization, as we will
see in the next section. Second, it imposes regularity in
larger neighborhoods that is commonly used in literature,
which is beneficial for segmentation. Further, the approxi-
mation does not compromise on accuracy of the segmenta-
tion as we show. The length penalty is an arbitrary choice of
regularization whose main purpose is to achieve spatial reg-
ularity, and spatial regularity can be imposed in a number
of ways, including our choice of regularization.

Remark 1 An example of φ that is not uniform is φ(x) =
exp (−β|∇I(x)|) where ∇I(x) denotes the gradient of the
image. This choice of φ implies that regularization is ap-
plied less in regions where the gradient is large, i.e., edges.

Another way of inducing spatial regularity without the
use of the regularization term WRi

is to choose α = 0,
and then choose F to be spatially regular. For example,
suppose that Fo is a not spatially regular, then smoothing
F (I; pi) = Gσ∗Fo(I; pi) provides spatially regularity. This
implies a spatially regular solution for Ri, without explicit
regularization term in the energy.

3. The Fast-Label Algorithm
3.1. Approximate Optimization

We now consider an approximate scheme to optimize the
energy given in (1) that converges rapidly in practice, and
gives a good segmentation. The algorithm follows an EM
algorithm for optimization where we optimize in pi given
Ri, and then inRi given pi. Given theRi, the parameters pi
can be usually solved in closed form by solving the equation

∂

∂pi

∫
Ri

F (I(x); pi) dx = 0. (5)

For example, in the case that F (I(x); pi) = |I(x) − pi|2,
we find that pi = 1/|Ri|

∫
Ri
I(x) dx. To optimize in Ri,



we first gain intuition about our method from the case when
α = 0. In this case, given an estimate for pi, it is easy to see
that a global optimal for Ri (this is an exact solution not an
approximation) is

R′i =

{
x ∈ Ω : i = arg min

j
F (I(x); pj)

}
. (6)

To give an approximation when α 6= 0, we assume that we
have an initial estimateR′i, i = 1, . . . , N of the regions that
is close to the optimum of E, holding pi fixed, e.g., (6). We
then replace WRi with WR′

i
in E. Then a global optimizer

of E with this choice of W is

Ri =

{
x ∈ Ω : i = arg min

j
F (I(x); pj) + αWR′

j
(x)

}
.

(7)
Our optimization is then summarized as follows:

1. Choose an initialization for {Ri}Ni=1 (see Section 3.2
for practical choices).

2. Compute the optimal parameters pi for the current re-
gions Ri using (5).

3. Compute

R′i =

{
x ∈ Ω : i = arg min

j
F (I(x); pj)

}
. (8)

4. Compute WR′
i

:

WR′
i
(x) =

1

σ
φ(x)(Gσ ∗ 1R′c

i
)(x). (9)

5. Update Ri :

Ri =

{
x ∈ Ω : i = arg min

j
F (I(x); pj) + αWR′

j
(x)

}
.

(10)

6. Repeat steps 2-5 until Ri does not change.

The computational complexity of our method is O(NM)
where N is the number of labels and M is the number of
pixels in the image. Gaussian convolution can be done ef-
ficiently (in linear time) using an approximation with a low
order IIR filter [7], which we use in the experiments.

A Matlab implementation of the scheme above for the
multi-label Chan-Vese model, i.e., Region competition [19]
assuming Gaussian intensity statistics with means varying
with regions, and standard deviation constant among re-
gions, is in Figure 1. It shows the ease of Fast-Label. Fast-
Label converges rapidly and achieves an accurate segmen-
tation.

In the case that α = 0, and spatial regularity is obtained
by smoothing F (as discussed in the previous section), steps

function L=multilabel_cv(I,N,alpha,sigma,iters)
% Multi-label Chan-Vese Matlab code

p=min(I(:)):(max(I(:))-min(I(:)))/(N-1):max(I(:));
f=zeros([size(I),N]);
H=zeros([size(I),N]);

h=fspecial(’gaussian’,ceil(sigma*[5,5]),sigma);

for i=1:iters,
for j=1:N,
if i>1, p(j)=mean( I(find(L==j)) ); end
f(:,:,j)=(I-p(j)).ˆ2;

end
[mf,L]=min(f,[],3);

for j=1:N,
H(:,:,j)=imfilter(1-double(L==j),h);

end
[mf,L]=min(f+alpha*H,[],3);

end

Figure 1. MatLab Code for Fast-Label in the case of the multi-
label problem solved by Region Competition [19] (Chan-Vese).
Not only is the code easy to implement, but the method also con-
verges quickly, and attains as good or better solution than any
state-of-the-art method for Region Competition. Although at first
glance, it appears that a memory requirement of 2N times the size
of the image is required, this can be avoided and only 4 times the
size of the image is required (independent of N ). This can be
achieved with a few additional lines of code.

4 and 5 are not needed, R′i = Ri, and eq. (8) is replaced
by the smooth F . This scheme is advantageous in that the
parameter α is eliminated. We tested this scheme, and the
results are similar to the approach above, although the two
approaches are not equivalent mathematically.

It should be noted that in the case that F = 0, φ = 1,
N = 2, and σ → 0, the algorithm defaults to an algorithm
for approximating mean curvature flow considered in [15].
Indeed, in [15], the characteristic function of an initial re-
gion R, i.e., 1R − 1Rc is smoothed and thresholded, and it
is shown that such a scheme applied successively approxi-
mates mean curvature flow. In [8], the idea is generalized to
data driven energies so as to approximate gradient descent
flows. The main difference in our scheme is to use a good
initialization to the problem, i.e., eq. (8), and then add in
the effects of the regularization in the second step eq. (10)
to achieve an approximate global solution given the param-
eters, not to approximate a local gradient descent. Further,
we are not interested in the case σ → 0, rather we use that
as our regularity parameter.

Remark 2 There are two practical issues that we discuss.
First, as the image has finite size, boundary conditions must
be specified for the Gaussian smoothing. In practice, the
best choice compromising accuracy and speed is symmetric
boundary conditions. Also, if σ is chosen extremely small,
then it would be hard to represent the kernel discretely, as
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Figure 2. Segmentation results on MPEG-7 shape image dataset. In each block of 5×3 images, [first row] shows the shape images
with different Gaussian noise variance in an increasing order, [second row] shows the ground truth of the shape, [third row] shows the
segmentation result by our fast-label, [fourth row] shows the segmentation result by split-bregman, and [fifth row] shows the segmentation
result by Graph Cuts.

numerical precision would limit the kernel to a delta func-
tion. This can be corrected with an up-sampling of the im-
age; however, in experiments we seldom run into such a
problem - accurate results are obtained at the native reso-
lution of the image.

3.2. Initialization Method

One of the main issues facing all current methods of joint
multi-label and parameter estimation problems, whether
they be based on local updates or global updates, is initial-
ization. While this issue is typically resolved differently
depending on the particular application, we have explored
two generic initializations, which seem to give promising
results in the experiments that we have performed. One is
a simple quantization of the image(s) into the number of
pre-specified labels. The other is a random initialization:
for each pixel, choose a random number between one and
the number of desired labels to indicate the initial labeling.
Both give accurate results. This is a highly desirable prop-
erty as full automation may be possible.

4. Applications
4.1. Multi-label Segmentation

For a given image I : Ω→ Rk we assume that the image
consists of disjoint regions Ri, i = 1, 2, · · · , N and pi is
a constant, e.g., a piecewise constant model. A multi-label
segmentation is obtained by minimizing the energy (1) with
F (I(x); pi) = |I(x)− pi|2, pi ∈ Rk and φ = 1.

4.2. Multi-label Co-segmentation

One of the benefits of our method is computational
speed. We illustrate an application where speed is ben-

eficial, that is, multi-image, multi-label co-segmentation.
This application may benefit from our efficient method.
One of the latest algorithms for multi-label co-segmentation
is presented in [12]. Suppose that we have K images
Ij , j = 1, . . . ,K, the objective of co-segmentation is to
identify regions that have similar properties among differ-
ent images. These regions are also required to partition each
image into regions of homogeneous features. We assume
that there are at most N distinct regions in each image. We
denote by Rji the ith region in image j. It is assumed that
Rji , j = 1, · · · ,K have a common probability distribution
pi of features. Thus, Rji , j = 1, · · · ,K are corresponding
regions across the images in the collection. The goal is to
partition each of the images based on the (unknown) distri-
butions pi. The MAP estimate leads to the following energy
(to be optimized in the regions and distributions):

K∑
j=1

N∑
i=1

∫
Rj

i

− log pi(Ij(x)) + αWRj
i
(x) dx. (11)

For fixed Rji , the optimal estimate of the distributions is

pi(r) =
wi(r)∫

R wi(r
′) dr′

, wi(r) =

K∑
j=1

∫
{Ĩj=r}∩Rj

i

ds(x)

|∇Ij(x)|
,

(12)
where ds denotes the arc-length parameter. The estimate of
the regions are then

R̃ji =

{
x ∈ Ω : i = arg max

k
pk(Ĩj(x))

}
(13)

Rji =

{
x ∈ Ω : i = arg max

k
pk(Ĩj(x))e

−αW
R̃

j
k

(x)
}
.

(14)
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Speed Accuracy Parameter
Figure 3. Comparison of State-of-the-Art Methods for Bi-Label Segmentation. Testing is on shape images with varying noise from
the MPEG-7 dataset. [Left] shows the time (in log scale) versus the noise variance indicating the proposed fast-label is about 2-3 times
faster than the Split-Bregman (SB) method [9], and about 10-30 times faster than Graph Cuts (GC) [6]. [Middle] shows the accuracy in
terms of F-measure of all methods versus the noise variance. [Right] shows the optimal weight on regularization for each of the methods
normalized between 0 and 1 versus the noise variance. It can be seen that proposed method has a clear relationship between regularization
and noise level, while the others do not.

Equations (12), (13), and (14) are iterated until convergence
to determine the co-segmentation. Coarse binning of wi
provides robustness to illumination change in images.

5. Experiments
Code for Fast Label is publicly available at the website

http://vision.ucla.edu/˜ganeshs/fast_label/.
In the first experiment, we test Fast-Label in the case

of bi-label segmentation and estimation where p1, p2 ∈ R
and F (I(x); pi) = (I(x) − pi)

2, i = 1, 2, which is the
model considered in [4]. The model assumes that the image
consists of two regions with approximate intensity p1, p2
and a Gaussian noise model. In this experiment, we use the
MPEG-7 shape image dataset and select 60 different shapes.
Ten different levels of Gaussian noise are added to each of
the images forming 600 images. We compare Fast-Label in
speed and accuracy to Split-Bregman (SB) [9], which is a
fast method for implementing the convex relaxation of [4]
considered in [3], and Graph Cuts (GC) [2] without a pe-
nality term for the label cost. Since all methods require a
parameter for regularization, the optimal parameter is se-
lected with respect to the accuracy. We report the average
run time, accuracy in terms of F-measure to ground truth,
and optimal parameter versus the noise levels. All methods
are given the same initialization: one bit quantization of the
image. Selected segmentation results are shown in Figure 2.
Fast-Label is more robust with respect to noise, preserving
details of the shapes, while the numerics of the other meth-
ods break down with larger noises. Figure 3 shows the com-
parison of the methods in terms of speed (left) and accuracy
(middle). Fast-Label is 2-3 times faster than SB and 10-
30 times faster than GC. Our method is as accurate as SB
and GC up to intermediate noise level (2). At larger noise,
the numerics of SB and GC break down, resulting in highly

inaccurate results, while our method remains accurate. Fig-
ure 3 (right) shows the optimal parameter versus noise level
for all the methods (we have normalized the parameters be-
tween 0 and 1 for easy comparison). There is a clear trend
between noise level and our parameter; this is not the case
for SB and GC.

In the second experiment, we test Fast-Label on Brain-
Web [5], a common dataset for evaluation of segmentation
of brain MRI. The task is to label each pixel in an image
with one of 12 labels. In the evaluation, we consider the
most prominent regions, gray and white matter, as regions
of interest. From the dataset, we select four different cases
of 3D brain MRI volumes with various amounts of additive
noise (0.1% to 12%), and segment the images slice-wise.
We compare Fast-Label in speed and accuracy to multi-
label segmentation using α-expansion Graph Cuts (GC) [6],
convex multi-label relaxation (CMR) [16], and multiphase
level sets (MPLS) [18] (implemented using a fast level set
narrowband method). For fair evaluation, the optimal val-
ues for the regularity parameter and the number of labels are
selected based on the average F-measure w.r.t ground truth
of gray and white matter. For all methods, we assume that
the image consists of N regions with approximate intensity
pi in region Ri, and a Gaussian noise model. The initial-
ization for all methods is a quantization of the image into
N -labels. Select segmentation results are shown in Fig. 4.
Fast-Label is more robust to noise than the other methods,
which break down at large noise levels. Quantitative com-
parison of Fast-Label to the others is presented in Fig. 5.
Fast-Label is about 10-100 times faster than GC, 10-1000
times faster than CMR and 100-1000 faster than MPLS.
In terms of the accuracy, our method is as good as GC up
to 0.4% noise variance, but our method becomes more ac-
curate than GC at larger noises, and is more accurate than

 http://vision.ucla.edu/~ganeshs/fast_label/
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Figure 5. Comparison of multi-label segmentation methods on the BrainWeb dataset. [Left] shows the time (in log scale) versus
the number of labels. The proposed fast-label method is about 10-100 times faster than graph cuts [6], 10-1000 times faster than convex
multi-label [17] and 100-1000 times faster than multiphase level sets [18]. [Middle] shows the time versus the image size (1×, 2×, ...,
20×256×256), while the proposed fast-label method is linear in the image size, and graph cuts and convex multi-label are quadratic to
cubic. [Right] shows the optimal F-measure versus noise level.

CMR at all noise levels. MPLS is shown to be the least ac-
curate since it is easily trapped in local minima. The middle
plot in Fig. 5 shows the grow rate of the proposed method,
GC and CMR versus varying image sizes with five labels.
Note that the complexity of GC and CMR in the number
of pixels is between O(N2) and O(N3) whereas for Fast-
Label, it is O(N), and this is verified experimentally.

In the third experiment, we apply Fast-Label to multi-
label co-segmentation on the iCoseg dataset [1]. In iCoseg,
each object class consists of different numbers of images
and each image may have multiple objects of interest. Our
method uses a color histogram as a feature like other meth-
ods. Since there is no prior information regarding the num-
ber of distinct objects within each image, it is necessary to
find the optimal number of labels for each class. It is also
necessary to choose an appropriate regularization, which is
related to the distinctiveness of object feature which may
vary across images within the same class. Thus, the opti-
mal parameters for each object class need to be determined.
The performance of the algorithm is evaluated based on the

score given by 1
K

∑K
j=1 maxi

|T j∩Rj
i |

|T j∪Rj
i |

where T j denotes

the ground truth in image j and Rji denotes region with la-
bel i in image j. Illustrative results of our co-segmentation
algorithm are presented in Figure 6. Within each 3×3 block
of images, the top row shows three examples of the same
class images, the middle row shows the ground truth for
the class object, and the bottom row shows our partition-
ing labels. Table 1 shows quantitative comparison to other
state-of-the-art methods. Results indicate that Fast-Label is,
on average, 9.14 times better than second-best method. In
addition to the improved accuracy, Fast-Label is computa-
tionally more efficient compared to the co-segmentation al-
gorithm presented in [12]. The computational time reported
in [12] varies from 30 mins to one hour for 30 images. Our

method takes 143 secs on average per parameter for 33 im-
ages in MatLab.

6. Conclusion
We have constructed an algorithm, called Fast Label, for

the problem solved by Region Competition, i.e., a class of
joint multi-label and parameter estimation problems. It is
based on global updates of labels, and thus robust to local
image structure that pose difficult for local methods. The
advantage of Fast-Label over other global methods is both
speed and simplicity of our implementation, while not com-
proming accuracy. Extensive experiments on multiple ap-
plications showed these advantages of speed and accuracy
compared to state-of-the-art algorithms.
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A. Analysis of Regularization
We now examine the regularization term with the choice

of (2) as σ → 0. We assume that ∂Ri is a rectifiable set
(that is piecewise differentiable). Note that as σ → 0, for
points x ∈ ∂Ri (where ∂Ri is assumed to be a differen-
tiable curve) it is true that Gσ ∗ 1Rc

i
(x) → 1/2 almost

everywhere (in the measure theoretic sense). This can be
seen as almost everywhere, ∂Ri can be approximated with
its tangent line around the point x ∈ ∂Rci , and thus a small
disc around the point x is bisected by the tangent line of
∂Ri at x. Therefore, half the weight of Gσ centered at x is
on one side of the disc (where 1Rc

i
= 1), and the other half

of the weight of Gσ is on the other side of the disc (where
1Rc

i
= 0). Hence, it is clear that Gσ ∗ 1Rc

i
(x) → 1/2.
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Figure 6. Example results of Multi-Label Co-segmentation on iCoseg Dataset using a color histogram feature. In each block of 3×3
images, [top row] shows three examples within class images, [middle row] shows the ground truth, and [bottom row] shows our fast-label
co-segmentation result. The quantitative evaluation of the results is presented in Table 1.

class images labels ours Joulin et al. [12] † Joulin et al. [11] Kim et al. [13] ‡ Joulin et al. [11]

baseball player 25 5 74.8 62.2 53.5 51.1 24.9
brown bear 5 2 82.1 75.6 78.5 40.4 28.8

elephant 15 6 65.0 65.5 51.2 43.5 23.8
ferrari 11 4 73.0 65.2 63.2 60.5 48.8

football player 33 4 64.3 51.1 38.8 38.3 20.8
kite panda 7 3 81.4 57.8 58.0 66.2 58.0

monk 17 2 85.0 77.6 76.9 71.3 76.9
panda 21 2 64.9 55.9 49.1 39.4 43.5

skating 11 3 82.7 64.0 47.2 51.1 47.2
stonehenge 18 3 90.7 86.3 85.4 64.4 62.3

Table 1. Co-segmentation results of Fast-Label in Comparison to State-of-the-Art on iCoseg dataset. For each object class, the score
is computed by the average intersection over union with respect to the ground truth with the optimal number of labels obtained. The
evaluation results of all other methods that are compared to our method are reported in [12]. † multi-label algorithm. ‡ two-label algorithm.

Next, we see that for x ∈ int(Ri) (interior of Ri), that
Gσ ∗ 1Rc

i
(x)→ 0, and more precisely, we have that

Gσ ∗ 1Rc
i
(x) ≈

{
1/2 dist∂Ri

(x) ≤ σ, x ∈ Ri
0 dist∂Ri(x) > σ, x ∈ Ri

, (15)

where dist∂Ri(x) indicates the minimum Euclidean dis-
tance from x to a point on ∂Ri. Therefore the regularization

term becomes∫
Ri

WRi
(x) dx→ 1

σ

∫
Ri∩{dist∂Ri

(x)≤σ}

1

2
φ(x) dx =

1

2σ

∫ σ

0

∫
Ri∩{dist∂Ri

(x)=r}
φ(x) ds(x) dr →

1

2

∫
∂Ri

φ(x) ds(x), (16)
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Figure 4. Multi-Label Segmentation Results on Brain MRI.
Comparison of Fast-Label to state-of-the-art methods. The results
are optimal in terms of F-measure with respect to the gray and
white matter. [First row] brain MRI image with increasing noise
in order. [Second row] ground truth. [Third row] our fast-label
method. [Fourth row] graph cuts. [Fifth row] convex multi-label
relaxation. [Sixth row] multiphase level sets.

where ds indicates the arc-length element. The equality
from line 1 to line 2 is due to the Co-area formula, and
the last line is due to the Lebesgue differentiation formula.
Therefore, we see that as σ → 0 and φ = 1 that

N∑
i=1

∫
Ri

WRi(x) dx→
∑
i∼j

Len(∂Ri∩∂Rj)+
1

2
Len(∂Ω)

(17)

where Len(·) denotes length, and the notation i ∼ j denotes
that Ri is adjacent to Rj .
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