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Abstract

Most of the previous work on video action recognition
use complex hand-designed local features, such as SIFT,
HOG and SURF, but these approaches are implemented so-
phisticatedly and difficult to be extended to other sensor
modalities. Recent studies discover that there are no uni-
versally best hand-engineered features for all datasets, and
learning features directly from the data may be more advan-
tageous. One such endeavor is Slow Feature Analysis (SFA)
proposed by Wiskott and Sejnowski [33]. SFA can learn the
invariant and slowly varying features from input signals and
has been proved to be valuable in human action recognition
[34]. It is also observed that the multi-layer feature repre-
sentation has succeeded remarkably in widespread machine
learning applications. In this paper, we propose to com-
bine SFA with deep learning techniques to learn hierarchi-
cal representations from the video data itself. Specifically,
we use a two-layered SFA learning structure with 3D con-
volution and max pooling operations to scale up the method
to large inputs and capture abstract and structural features
from the video. Thus, the proposed method is suitable for
action recognition. At the same time, sharing the same mer-
its of deep learning, the proposed method is generic and
fully automated. Our classification results on Hollywood2,
KTH and UCF Sports are competitive with previously pub-
lished results. To highlight some, on the KTH dataset, our
recognition rate shows approximately 1% improvement in
comparison to state-of-the-art methods even without super-
vision or dense sampling.

1. Introduction

Recognizing human action in realistic videos is challeng-
ing while has widespread applications, including unusual
activity detection [21], human computer interactions (HCI)
and so forth. Modern feature extraction methods or hand-

designed features are innovating this task and achieving
remarkable performance. However, these hand-designed
features, such as HOG/HOF[16] and HOG3D[13], are de-
signed with specific purpose. They may not be able to be
generalized to other datasets in real-world scenarios since it
is rarely known which features are important to the task at
hand. Even with the manual assistance in selecting features
and methods, accurate human action recognition is still a
highly cumbersome task due to complex background, dif-
ferent illumination environment and significant intra-class
variations. Given that human beings are able to reliably
know what the video tells without assistance, why can’t
computers?

Learning features directly from the data could be a fea-
sible solution since the learned features are expected to be
more generalizable than hand-designed ones. We therefore
can see growing interests in development of unsupervised
feature learning methods recently; these include Slow Fea-
ture Analysis (SFA) [33], Deep Belief Nets (DBN) [7, 8]
and other methods[19, 2, 25]. SFA intends to capture the
invariant and slowly-varied features from input signals, and
has been successfully applied to the self-organized recep-
tive field of cortical neuron from synthetic image sequences
[33], and to robust recognition of whole objects [6]. For
human motion analysis, SFA can be adopted to reduce the
semantic gap between the quickly varying image input sig-
nals and the slowly varying action categories. Deep learn-
ing models [7, 2, 8] have shown promising and plausible re-
sults in various applications. These methods focus on learn-
ing to extract multiple layers of features which can hier-
archically represent the contents with increasingly abstract
at each level. The convolutional neural networks (CNN)
[18] is an important type of deep models in which train-
able filters and local neighborhood pooling are applied al-
ternatingly on the raw data, resulting in a hierarchy of in-
creasingly complex features. Inspired by the achievement
of deep learning in visual recognition and the fact that us-
ing SFA alone, which can be seen as one-layer SFA, may
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not work well for the complex video action recognition,
we integrate SFA into a two-layered neural network, termed
as deeply-learned SFA (DL-SFA) to extract the hierarchical
’slow’ features of the video. The proposed DL-SFA adopts
the notion of 3D convolution, max-pooling to capture ab-
stract, structural and translational invariant features. It is
worth noting that the deep architectures already consist of
feature detector units; and that lower layers detect simple
features and feed into higher layers, which in turn detect
more complex features. This indicates that the DL-SFA can
be learned in a fully unsupervised manner, unlike the pre-
vious hand-designed methods which require an additional
feature detector in the learning process [5][24].

To make a fair comparison, a standard processing
pipeline is followed as described in Wang et al.[31], but
only replacing the first stage of feature extraction with our
method. By doing this, we can understand the contribution
of the deeply-learned slow features compared with other
hand-designed features. Our method is evaluated on three
well-known human action recognition benchmark datasets:
Hollywood2 [23], KTH [28] and UCF Sports[27]. Accord-
ing to the experimental results, our method outperforms
most of the published methods using either hand-designed
[31][27] or learned features [11] on challenging datasets
even without supervision or dense sampling.

2. Previous Work
Over the past years, the low-level 2-D features, such as

SIFT [22], HOG [16] and SURF [1] have been successfully
employed in static images, and some have been extended
to 3-D for action recognition. Usually these methods have
two steps: feature detection and feature extraction. Feature
detection extracts interesting or saliency points by applying
Harris (spacial)[24], Harris3D [15] (spacial-temporal), tem-
poral Gabor filter [5], or Hessian [32] detector. HOG/HOF
[16] and other techniques such as HOG3D [13] are all the
feature extraction methods. Despite the noticeable suc-
cess of the existing low-level features in particular datasets,
choosing features that work on the data at hand is still very
challenging. To this end, Wang et al.[31] recently com-
bine various low-level feature detection, feature extraction
methods and benchmark their performance on several ac-
tion recognition datasets. They employ the same state-of-
the-art processing pipeline with vector quantization, fea-
ture normalization and χ2-kernel Support Vector Machines
(SVMs). The only difference in this pipeline is the method
of feature detection and feature extraction in order to eval-
uate the performance of variable detectors and descriptors
along with their combinations. This paper also demon-
strates that regular sampling consistently outperforms all
the test space-time detector and there are no global features
which work well on all datasets.

Recently, a novel and interesting work [34] proposed by

Zhang et al. shows the effectiveness of slow features for ac-
tion recognition. They develop three new supervised SFA
learning strategies, including the supervised SFA (S-SFA),
the discriminative SFA (D-SFA) learning, and the spatial
discriminative SFA (SD-SFA), to address the classification
task and enhance the selectivity of the learned slow features
to different actions. However, their method is designed par-
ticularly for the KTH which may not be able to handle more
complex datasets, such as Hollywood2 or UCF Sports. In
addition, this method needs foreground and label informa-
tion while training SFA kernels, and therefore may not be
well-suited in general action recognition applications. As
the authors extracted the slow features from the input data
directly and only once, [34] can be somehow thought of as
one-layer SFA, a special case of our proposed DL-SFA.

Another intriguing work is invariant spatio-temporal fea-
tures for action recognition using Independent Subspace
Analysis (ISA) proposed by Quoc et al. [17]. The authors
present an extension of the ISA to learn invariant spatio-
temporal features from unlabeled video data. It is similar to
this work in that ISA is combined with deep learning tech-
niques such as stacking and convolution to learn hierarchi-
cal representations. More specifically, both [17] and our
method integrate existing (shallow) feature learning meth-
ods into a deep and convolutional feature extraction archi-
tecture. The difference is that [17] used ISA, while our
method considers SFA. Objective function of ISA makes its
learned feature representations tend to be invariant to spa-
tial translation of stimuli, but highly sensitive to velocity
change of the stimuli. Different from ISA, SFA is an inter-
esting technique which aims at learning a mapping function
from the noisy and quickly varying sensory data to a more
stable and slowly varying feature representation, which is
deemed to be a better representation of motion pattern. The
notion of slowness in SFA includes not only spatial invari-
ance, but also other high-frequency oscillations of input sig-
nals, such as velocity difference of a same action category
performed by different human subjects. It may remain an
open question about which feature learning method, ISA or
SFA, is more useful for action recognition. However, ac-
cording to our internal experiments on Hollywood2 dataset
in which we use the source codes from the authors’ website
and set the parameters consistent with [17], the performance
of Hierarchical ISA will reduce by about 8% − 10% with-
out dense sampling. This reflects the advantage of our use
of SFA over [17].

Recently, biologically-inspired networks or deep mod-
els that can learn features automatically from the hierarchi-
cal structure become dominant in machine learning area.
These methods are generic since the features are directly
learned from the raw pixels automatically. A novel convo-
lutional GRBM method [29], an extension of convolutional
RBMs [20] to 3D, is proposed for learning spatio-temporal

4322



Figure 1. Schematics of the optimization problem solved by SFA.
The SFA learns the functions gj that transforms x(t) to slowly-
varying output signals yj(t) = gj(x(t)), so as to represent the
input x(t) in a more abstract way.

(a) (b)
Figure 2. Visualization of the slow feature functions learned from
Hollywood2 dataset. (a) The optimal excitatory stimuli and (b) the
optimal inhibitory stimuli.

features. [12] proposes to use a modified CNN for action
recognition, operating on spatio-temporal outer boundaries
volume. Jhuang et.al [10] present a biologically-motivated
system in which an array of motion-direction sensitive unit
is analyzed first. Ji et al. [11] propose a 3D CNN for ac-
tion recognition with combination of multiple hand-wired
features as input. Nonetheless, these methods either use the
label information or hand-crafted features as the input.

3. Algorithm
In this section, we first give a brief introduction of slow

feature analysis (SFA), mainly focusing on why the learned
’slow’ features are effective in human motion analysis and
how we use SFA to extract these features from image se-
quences (video). Then we elaborate the proposed DL-SFA
algorithm for human action recognition.

3.1. Slow Feature Analysis

One can treat perception as the problem of reconstruct-
ing the external causes of the sensory input to allow gener-
ation of adequate behavior. For example, when looking at a
picture on a computer screen, we see the objects and their
relative positions in the image, rather than the colors of the

individual pixels. An important idea in the field is that ob-
jects in the world have a common structure, which results in
statistical regularities in the sensory input. Using these reg-
ularities as a guide, the brain is able to form a meaningful
representation of the environment.

Many researchers have tried to develop algorithms to
mimic the functions of visual cortex neurons using differ-
ent computational principles. The slowness principle is one
of them. For instance, behaviorally relevant visual elements
(objects and their attributes) are visible for extended peri-
ods of time and change with time in a continuous fashion,
on a time scale of seconds. On the other hand, the primary
sensory signal, like the responses of individual retinal re-
ceptors or the gray-scale value of a single pixel in a video
camera, are sensitive to very small changes in the environ-
ment, and thus vary on a much faster time scale. If explicitly
representing the original visual elements, the internal repre-
sentation of the environment in the brain should vary on a
slow time scale again. This difference in time scales leads
to the central idea of the slowness principle: by finding and
extracting slowly varying output signals from the quickly
varying input signal , we seek to recover the underlying ex-
ternal causes of the sensory input [4]. Fig. 1 (vivid example
from [14]) shows one example of what SFA does.

Given an input signal x(t) = [x1(t), . . . , xI(t)]
T with

tε[t0, t1] indicating time, SFA finds out a set of functions gj
for j = 1, . . . , J such that yj(t) = gj(x(t)) for all j trans-
forms the severely changed signals into the signals varying
as slowly as possible; that is, SFA solves the following op-
timization problem:

min
gj ,∀j

J∑
j=1

E[ġ2j (x(t))] (1)

s.t. E[gj(x(t))] = 0, E[g2j (x(t))] = 1, (2)

E[gi(x(t))gj(x(t))] = 0, (3)
∀j 6= i, i = 1, ..., J. (4)

where ġj denotes the operator of computing the first-order
derivative of gj(x(t)) with respect to t and E denotes the
sample mean operator over time t. The objective reduces
the temporal variation of yj(t) by minimizing (1); that is,
the mean of the power of the first-order derivative of yj(t).
The constraint (2) enforces that the output yj(t) should have
zero mean and unit variance, and the constraint (3) restricts
that the J outputs y1(t), ..., yJ(t) are mutually uncorrelated.
Problem (1) has a closed-form solution if gj is linear in
x(t); e.g., gj(x(t)) = wT

j x(t) where wj is a weighting
vector or sort of temporal filter. As such, SFA turns out to
solve a generalized eigenvalue problem [33]:

E[ẋ(t)ẋ(t)T ]W = E[x(t)x(t)T ]WD, (5)

where the weighting vectors W = [w1, ...,wJ ] ∈ RI×J

are identical to the generalized eigenvectors and D is a di-
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Figure 3. DL-SFA learning architecture for human action recognition. This architecture contains one convolution layer, two max-pooling
operations, the process of reorganizing/reformatting and two SFA learning layers. Details are presented in the main text.

agonal matrix of the generalized eigenvalues. The order
of slow features is determined by the eigenvalues, where
the most slowly varying signal has the lowest index; please
see [33] for details. The above SFA learning is expected to
discover mapping functions between input image sequences
that vary quickly and the corresponding high-level semantic
concepts that vary slowly. We illustrate the optimal excita-
tory stimuli and the optimal inhibitory stimuli learned from
the Hollywood2 dataset in Fig. 2. They correspond to the
stimuli that elicit in the considered function, the highest and
the lowest response, respectively. The optimal stimuli have
the shape of localized gratings and largely resemble those
of simple cells and complex cells.

3.2. Deeply-Learned Slow Feature Analysis (DL-
SFA)

In this section, we elaborate how to incorporate SFA into
the deep video feature learning structure. Applying SFA di-
rectly to the whole video volume is very time-consuming
because the video sequences usually have high resolution
with a large number of frames. Besides, learning a sin-
gle global kernel from an entire action sequence may not
be useful because of the complex variations in the high-
dimensional image space. We, therefore, propose to use
a local-based hierarchical approach to recognize human ac-
tions, that is sampling cuboids from the video sequence in-
stead of using entire video as the training data. The whole
learning diagram is presented in Fig. 3. In the beginning,
a large number of local cuboids are collected by randomly
sampling from within a large collection of video sequences.
According to Berkes and Wiskott’s work [3], we reorganize
each input vector by δt successive frames, so SFA counts
the temporal information in the neighbor frames. Fig. 4
visualizes the reorganizing procedure. Then these spatial-
temporal volumes are fed into a succession of SFA learning

time 

… 

v1 
 input vectors, each contains       

continuous-time patches                   

v2 v3 vd 

… 

Learning 

tδ
d

Figure 4. Video cuboid reorganizing procedure. Each cuboid con-
tains d+ (δt− 1) frames and then are reformatted to d input vec-
tors at each time including δt successive patches (in this example
δt = 3). Hence, at last the original d + (δt − 1) frames will be
reformatted to d input vectors with δt successive patches.

system to learn the first layer and second layer SFA ker-
nels, respectively. During stacking the second layer onto the
first one, it has a convolution layer in which a 3D convolu-
tion is performed using the learned SFA kernels of the first
layer and sliding it around over every pixel in the original
video sequence both in spatial and temporal domain. The
3D convolution is achieved by convolving a 3D kernel with
the cuboid formed by stacking multiple contiguous frames
together. Formally, the cuboid unit at position (x, y, z) in
the jth feature map of the ith layer with activation function
is denoted:

cx,y,zi,j,k = tanh(

KWi
−1∑

w=0

KHi
−1∑

h=0

KTi
−1∑

t=0

ww,h,t
i,j c

(x+w)(y+h)(z+t)
(i−1),k ),

(6)
where tanh is the hyperbolic tangent activation function, k
indexes the sample number in the (i − 1)th layer, ww,h,t

i,j

is the value of the jth SFA kernel at the position (w, h, t)
with the size of KWi

,KHi
,KTi

in the ith layer, respec-
tively. The output of convolutional video cuboid features
is given by the maximum activation which can be defined
as the max-pooling layer. The max pooling is applied to all
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convolutional local features to obtain the robust representa-
tion,

cx,y,zi,k = max
j

(cx,y,zi,j,k ) (7)

After convolution and pooling, the k-th cuboid in the i-th
layer is denoted as:

Ci,k = {cx,y,zi,k | 0 ≤ x ≤Wk − 1, 0 ≤ y ≤ Hk − 1,

0 ≤ z ≤ Tk − 1}, (8)

where Wk, Hk, Tk denote the width, height and number of
frames of the video cuboid, respectively. Then Ci,k will
pass through a 2× 2 spatial max-pooling. This can charac-
terize the slow features of video volume from both spatial
and temporal dimensions. The utilization of max-pooling is
useful here for two reasons. Firstly, since max-pooling re-
duces the learned features to one or a small number of fea-
tures, it will reduce the computational complexity for upper
layers. And secondly, it provides a form of translational in-
variance. In the pooling operation (spatial), the resolution
of the feature maps is reduced by pooling over local neigh-
borhood on the feature maps in the previous layer, thereby
increasing invariance to distortions on the inputs and mak-
ing the next layer capture more abstract details. The orig-
inal video sequences are convolved with the learned first-
layer SFA kernels and max pooled to generate the training
data for the second layer. During the testing, we apply the
DL-SFA kernels consecutively so as to obtain the features
that are more abstract to represent the video sequence. The
feature extraction procedure of DL-SFA is presented in Fig.
5. In order to obtain an abstract and robust descriptor of
the video volume, we combine the features from both the
first and second layer. Then we construct a codebook for
the descriptor and use Vector Quantization to build the Bag
of Visual Words (BoW) representation. We train the code-
books by clustering on the regularly collected video cuboids
of the whole training video sequences using k-means imple-
mented in [30]. According to our investigation, we could
achieve the best performance when codebooks equals 4000.
The whole procedure is shown in Algorithm 1.

Some exemplar features of Hollywood2 dataset ex-
tracted from the first layer of our structure are visible in
Fig. 6. They demonstrate that the first layer mostly detect
the edge and the contour. Besides, in the listed consecu-
tive features of one cuboid, the temporal consistency is well
kept which make our algorithm work well in detecting the
meaningful features for video.

4. Experiments
In this section, the numerical results of different action

recognition algorithms on three datasets are presented. Af-
ter extracting local feature descriptors, vector quantization
by k-means and classification by χ2 kernel SVM is per-
formed. We only replaced the feature extraction stage with

SFA Extractor 

Video Cuboid

SFA Extractor

Local feature 

2,1C

1 1C ， 1 2C ， 1 3C ，

2,3C2,2C 2, KNC

1, KNC

1 2 3[ , , , ]Kf f f f

Figure 5. Features extraction structure of DL-SFA for videos.
Herein, C1,1, C1,2, · · ·C1,NK and C2,1, C2,2, · · ·C2,NK are the
first layer and seconde layer cuboids as indicated in the paper,
where NK is the number of cuboids generated. The local features
combine the features extracted from the first-layer and second-
layer.

Figure 6. Examples of the features extracted using our first-layer
SFA from the Hollywood 2 dataset (in order to have a better vi-
sualization we use higher resolution than the original one). On a
given row, each frame corresponds to one spatial frame with time
index fixed, so that times goes from left to right.

the DL-SFA descriptor and other feature descriptors so as
to make the comparison reasonable.

In the experiment we set the first layer’s cuboids sam-
pling size as 14× 14 multiplies 17 consecutive frames. The
cuboids sampling size is 7× 7 times 17 consecutive frames
in the second layer. In the reorganizing process we accept
δt = 8 in order to balance the motion information and com-
plexity. Finally we store 300 and 200 features for the first
layer and the second layer, respectively. Here we carry out
our experiments on three human action recognition datasets.

Hollywood2 action dataset is collected from 69 Hol-
lywood movies which are divided into 33 training movies
and 36 testing movies. Hollywood2 provides a dataset with
12 classes of human actions: answering phone, driving car,
Eat, fighting person, get out of the car, hand shaking, hug
person, kissing, running, sitting down, sitting up and stand-
ing up. This dataset (some samples shown in Fig. 7), is
more challenging than other datasets because it has more
complex backgrounds and context environments. In our ex-
periments, we use 823 video sequences as the training data
and 884 video sequences for testing. The performance is
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Algorithm 1 DL-SFA for Action Recognition
Input: All the training video sequences and testing video
sequences.

Training Procedure:
1. Randomly sample cuboids from unlabeled training
video sequences and reorganize them according to Fig.
4, generating C1,k for k = 1, ..., S ; S indexes the num-
ber of sampling cuboids;
2. Learn the first layer SFA kernels W1 [Eq. (1)-(5)];
3. Convolve the training video sequences with W1 and
then max pooling to get the C2,k (Eq. (6)-(8));
5. Learn the second layer SFA kernels W2 [Eq. (1)-(5)];

Testing Procedure:
1. Regularly and non-overlapped scanning testing video
sequences with SFA kernel W1 to generate the first layer
feature fL1. Then convolve SFA kernel W2 to the
cuboid which has been processed through convolution
and max pooling to obtain the second layer feature fL2.
Then the video sequences can be represented as a bag
of local spatio-temporal features, denoted by {f(i,j), i =
1, ...,K, j = 1, ..., NK}, where f(i,j) = [fL1

(i,j) fL2
(i,j)]

where K is the number of video sequences and NK is
the number of cuboids in the Kth testing video.

2. Quantization into V = v1, v2, · · · vK visual words
and features are assigned to the closest vocabulary word
using Euclidean distance.

3. Classification using non-linear support vector ma-
chine with χ2 kernel:

K(Hi, Hj) = exp(− 1

2A

K∑
n=1

hin − hjn
hin + hjn

)

where Hi = {hin} and Hj = {hjn} are the frequency
histograms of word occurrences for training data and test-
ing data over the visual words. A is the mean value of
distances between all the samples.

Output: The classification results: mean AP which is
the mean of average precision over all classes. Accuracy
which is the average accuracy over all classes.

evaluated by the mean average precision for all the classes.

KTH action dataset contains six types of human ac-
tions: walking, jogging, running, boxing, hand waving and
hand clapping which are performed several times by 25 sub-
jects in four different scenarios: outdoors, outdoors with
scale variation, outdoors with different clothes and indoors.
The background is homogeneous and static. Thus the per-
formance reported has been very high. In the implementa-
tion, we also follow the original experiment setup as indi-

cated in [28] and report the average accuracy over all the
classes as the performance measure.

UCF Sports action dataset consists ten different hu-
man actions: swinging (on the pommel horse and on the
floor), diving, kicking, weight-lifting, horse riding, running,
skateboarding, swinging (at the high bar), golf swinging and
walking. This dataset contains 150 video sequences in to-
tal which show large intra-class variabilities. In the experi-
ments we follow the protocol in [31]: extending the dataset
by adding a horizontally flipped version of each sequence
to the dataset. Similar to the KTH, we train a multi-class
classier and report the average accuracy over all classes.

Table 1, Table 2 and Table 3 present the performance
results of the Hollywood2, KTH and UCF Sports, respec-
tively. Since all the experiments in the table follow the
same pipeline, the performance results become compara-
ble. When testing, we only apply non-overlapped sampling
with regularly scanning. Our method is totally unsuper-
vised without taking any advantages of label information or
interesting region. However, our method outperforms all
the hand-designed methods compared in the experiments
on three datasets due to the complex video representation
of the DL-SFA. We also present a comparable performance
with state-of-the-art Hierarchical ISA in which it does dense
sampling, interesting points detection [17] (for KTH) and
norm-thresholding (for KTH). We even achieve better per-
formance than [17] on KTH and UCF datasets. Particular
for KTH, ours is 93.5% while the performance of [17] is
91.4% (dense sampling without norm-thresholding). How-
ever, it exists a small gap between our method and [17] on
Hollywood2 dataset. Here we should state again that the
performance of [17] largely relies on the dense sampling
and some other tricks. Without these tricks the performance
will be about 8% ∼ 10% worse than the paper has reported.
We can also expect our performance to be better after ap-
plying some tricks such as regularly dense sampling or in-
teresting points detection.

4.1. Deep learning structure

In the tables , the experimental results of one-layer un-
supervised SFA learning based feature extraction are also
presented for three datasets. All the results in the tables
show that our deeply-learned SFA is better than using un-
supervised SFA directly to the video. The performance gap
can be 9.4%, 5.2% and 6.8% for Hollywood2, KTH and
UCF Sports, respectively. This result is also consistent with
the conclusion summed up in [9] that the hierarchical layer
learning is better than shallow learning (such as one layer).
This also reflects that the features of higher layer (second
layer or higher) can provide a vivid representation which
the one-layer features can not.
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AnswerPhone FightPerson ShakeHands Running  

Situp Standup Kiss HugPerson 

Figure 7. Sample frames from video sequences of Hollywood2

4.2. Max pooling

To some extent, action recognition in videos share sim-
ilar issues with object recognition in static images. Both
tasks have to deal with significant intra-class variations,
back-ground clutter, occlusions and so forth. The stan-
dard implementation is pooling all local features to obtain
a robust and general video representation. In the proposed
method, max pooling is used to obtain spacial and temporal
invariant features. What is more, it reduces the computa-
tional complexity for the next layer.

Table 1. Mean AP on the Hollywood2 dataset.
Algorithm Mean AP

Hessian[32] + ESURF [16] 38.2%
Harris3D [24] + HOG/HOF [16] (from [31]) 45.2%

Dense + HOG3D [13] 45.3%
Hessian[32] + HOG/HOF [16] 46.0%
Cuboid [5] + HOG/HOF [16] 46.2%

GRBM [29] 46.6%
Dense + HOG/HOF [16] 47.7%

Hierarchical ISA [17] 53.3%
One Layer SFA 38.7%

Our Method (DL-SFA) 48.1%

Table 2. Average accuracy on the KTH dataset.
Algorithm Accuracy

Hessian[32] + ESURF [16] 81.4%
pLSA [26] 83.3%

Dense + HOF[16] 88.0%
Cuboid [5] + HOG3D [13] 90.0%

GRBM [29] 90.0%
3D CNN [11] 90.2%

Hierarchical ISA with dense sampling[17] 91.4%
HMAX[10] 91.7%

Harris3D [24] + HOG/HOF [16] (from [31]) 91.8%
Harris3D [24] + HOF [16] (from [31]) 92.1%

Hierarchical ISA with dense sampling [17] 91.4%
One Layer SFA 87.9%

Our Method (DL-SFA) 93.1%

Table 3. Average accuracy on the UCF sports dataset.
Algorithm Accuracy

Hessian[32] + ESURF [16] 77.3%
Harris3D [24] + HOG/HOF [16] (from [31]) 78.1%

Hessian[32] + HOG/HOF [16] 79.3%
Dense + HOF [16] 82.6%

Cuboids [5] + HOG3D [13] 82.9%
Dense + HOG3D [13] 85.6%
Hierarchical ISA [17] 86.5%

One Layer SFA 79.8%
Our Method (DL-SFA) 86.6%

5. Conclusion

In this paper we propose a hierarchical deeply-learned
SFA (DL-SFA) structure to extract more abstract and ro-
bust features in comparison with shallow SFA for video vol-
umes. Our structure incorporates the concept of convolution
and max pooling which make our algorithm have the prop-
erty of translation invariance and hierarchy. This hierarchi-
cal ’slow’ features make the final performance comparable
if not better than state-of-the-art method.

Experiments are carried out on three realistic human ac-
tion datasets with identical processing pipeline. The results
present the efficiency of our method. Since our method does
not need any assistance of label information in the training
processing, this paper also suggests that learning features
directly from the raw video data is a very important trend
for action recognition. In addition, in this paper, balancing
the performance and complexity, we only consider a 2-layer
SFA. We expect to obtain a better performance and a more
abstract video representation when proper layers added.
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