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Abstract

In this paper, we introduce a fully automated multi-
stage graphical probabilistic framework to segment brain
tumours from multimodal Magnetic Resonance Images
(MRIs) acquired from real patients. An initial Bayesian tu-
mour classification based on Gabor texture features permits
subsequent computations to be focused on areas where the
probability of tumour is deemed high. An iterative, multi-
stage Markov Random Field (MRF) framework is then de-
vised to classify the various tumour subclasses (e.g. edema,
solid tumour, enhancing tumour and necrotic core). Specif-
ically, an adapted, voxel-based MRF provides tumour can-
didates to a higher level, regional MRF, which then lever-
ages both contextual texture information and relative spa-
tial consistency of the tumour subclass positions to pro-
vide updated regional information down to the voxel-based
MRF for further local refinement. The two stages iterate
until convergence. Experiments are performed on publicly
available, patient brain tumour images from the MICCAI
2012 [11] and 2013 [12] Brain Tumour Segmentation Chal-
lenges. The results demonstrate that the proposed method
achieves the top performance in the segmentation of tumour
cores and enhancing tumours, and performs comparably to
the winners in other tumour categories.

1. Introduction

The segmentation of pathology from healthy tissue in
medical images is particularly challenging given the wide
variability in shape, size, position and texture over a popu-
lation of patient images. Figure 1 shows several MRI im-
ages of brain tumours, exhibiting large variation in appear-
ance. Furthermore, brain tumours tend to have different
boundaries in the different contrasts [1]. The problem is
compounded by image acquisition biases, magnetization in-
homogeneities, normalization errors, incorrect registration,
etc. Consequently, significant challenges arise when adopt-
ing traditional machine learning techniques to model and

Figure 1. T2 MRI depicting tumours in different patient brain im-
ages. Note that the tumour size, position, texture and appearance
are very different in different patient images.

learn these variabilities.
In the case of brain tumour segmentation, several tech-

niques exist to separate the tumour from healthy tissue, such
as locating outliers of the registration of healthy atlases to
the tumour [2], or learning textural patterns that are com-
mon to tumours [3]. An important and even more challeng-
ing task is to segment and classify the various components
of the pathology, such as the subclasses of a brain tumour
(edema and tumour core, which includes solid tumour, en-
hancing tumour and necrotic core). Some techniques exist
to distinguish the different tissues based on local intensity
and texture features [4, 5, 6]. However, in the context of
medical pathology, local features can be noisy and consid-
ering them in isolation can lead to multiple false positive hy-
potheses. Furthermore, local features are very vulnerable to
the intensity normalization stage (especially given the vari-
ability of scanners and image acquisition parameters). As a
result, too much dependence on local intensity values alone
is risky. Higher level textures provide good coarse informa-
tion, but techniques that are based on textures alone are less
able to capture accurate boundary information.

In this paper, we develop a new, iterative, multi-stage
graphical model, in order to leverage both local, voxel-level
observations and class information, along with contextual
regional information, based on textures and relative sub-
class spatial positioning. Initially, a Bayesian classification
of the main tumour area is derived based on Gabor, multi-
scale texture information. The classifier is designed so as to
separate the tumour regions from the healthy tissues, with-
out too much emphasis on the different types of tumour tis-

4321



sue. Further computation is focused on the area of high
tumour probability. An iterative, multi-stage Markov Ran-
dom Field (MRF) framework is used to classify the tumour
subclasses. At the voxel level, we utilize an adapted MRF
which uses both local information, as well as neighbouring
class and intensity features. This leads to over-segmentation
and numerous false positive tumour subclass regions. A
higher level MRF leverages both contextual texture infor-
mation as well as the relative spatial consistency of the tu-
mour subclass positions, in order to improve the classifica-
tion. At this level, each node represents a subclass region
hypothesis and the graphical model takes the form of an ir-
regular lattice. Once computed, the higher level, regional
information is then passed back down to the voxel-based
MRF for further refinement and the two stages iterate until
convergence. The main advantage of this iterative model is
that the non-lattice region-level MRF corrects the local mis-
characterizations of tissue types that typically occur due to
noise, inhomogeneities and normalization problems. It also
adds spatial and textural coherence to the segmentation. An
overview of the technique is shown in Fig. 2.

We provide an empirical evaluation of our approach on
publicly available patient brain tumour images from the
MICCAI 2012 [11] and 2013 [12] Brain Tumour Segmen-
tation Challenges, comparing it to the top performing tech-
niques from these challenges. The results demonstrate that
the proposed method is performs best in the segmentation
of tumour cores and enhancing tumours, and comparably to
the past winners in the other tumour categories.

2. Methodology
In the case of pathology in medical images, there are of-

ten several contrast images of the patient available. For ex-
ample, for patients with brain tumours, there are often MRI
volumes with different contrasts (T1, T2, etc). Hence, ev-
ery voxel has a corresponding N -dimensional vector, con-
sisting of its intensity in the different contrasts. The goal
is to segment various subclasses of the tumour, in our case
tumour core, edema, enhancing tumour, and necrotic core.
We now describe in detail the different stages of our model.

2.1. Customised Gabor features

Each contrast is processed using multi-window, 2D dis-
crete Gabor transforms of the form suggested in [7]. For
each slice of MRI, we have a set of R window func-
tions whose template gr[x, y; a, b, n1, n2,m1,m2, σxr , σyr ]
is given by:

e
−
(

(x−n1a)
2

σxr
2 +

(y−n2a)
2

σyr
2

)
e−j2π

(m1bx+m2by)
L , (1)

where L is the total number of voxels in the slice in the X
and Y directions, x and y are spatial coordinates within the

Figure 2. Flowchart depicting the various stages of the classifi-
cation technique. In the MRF classification and expert labels,
red represents necrotic core, green represents edema, dark blue
represents solid tumour and light blue represents enhancing tu-
mour. The Bayesian classifier produces probabilities for tumour
vs. non-tumour at every point. The adapted voxel-based MRF is
performed next, providing an initial segmentation of the different
region classes of the tumour, based on grouping voxel labels. At
the next higher level, contextual regional information is used to
penalize unlikely region and spatial transitions between regional
classes (e.g., some of the red area islands in the dark blue area
disappear). Finally, after several iterations between the different
MRF stages, the algorithm converges to a more likely set of labels
at every voxel. Note the correction of the dark blue island that lies
in the middle of the main light blue region.

slice, a and b are the magnitudes of the shifts in the spatial
and frequency domains respectively, n1,2 and m1,2 are the
indices of the shifts in the position and frequency domains
respectively, and σxr and σyr are variance parameters of the
r-th window. Let G be the Gabor matrix whose columns are
generated by picking all possible shift values for both a and
b for all the R windows, with every x and y represented in
each column. The filter bank coefficients c are obtained by
convolving each contrast volume slice by slice with G. We
use the same G matrix for all contrasts.

Training: Each voxel in the training volumes is categorized
for the purpose of this stage into one of two classes: tu-
mour or healthy tissue. We fix the remapping window, and
vary the analysis window gr[·] over the parameters (σxr and
σyr ), aiming to maximize the distance between healthy tis-
sues and tumours. More formally, let {ft} and {fh} be the
sets of voxels belonging to the tumour class and the healthy
class respectively. The corresponding tumour coefficients
ct in the combined space are obtained by a convolution of
the Gabor filters centred at the tumour voxels. Similarly,
the ch are obtained with Gabor filters centred at the healthy
voxels. Ideally, the coefficients of the tumour and healthy
class should be as different as possible. To achieve this goal,
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the following optimization problem needs to be solved:

arg max
σx,σy

∑
j,k

|cj − ck|, ∀cj ∈ {ct}, ∀ck ∈ {ch} (2)

where σx and σy are the vectors containing the values of σxr
and σyr ,∀r = 1, . . . R. We solve this optimization using
graph cuts [9].
Classification: Each test volume is decomposed into its
multi-window Gabor filter bank output, IG, using convo-
lution at each voxel as described above. The class of each
voxel i, Ci, is then estimated using Bayesian classification:

P (Ci|IGi ) ∝ P (IGi |Ci)P (Ci), (3)

where IGi is the set of Gabor coefficients for voxel i.
Through this approach, we obtain an initial estimate of the
probability of the class of each voxel, given the texture fea-
tures in the Gabor space.

2.2. Adapted Markov Random Field

The main purpose of this stage is to distinguish the dif-
ferent sub-types of tumour tissue and refine the boundaries
of the tumour. The MRF is designed specifically to model
probabilistically the differences in intensity between a voxel
and its neighbours, in order to preserve the correct tumour
boundaries. It uses larger clique sizes than in standard mod-
els, which typically use only pairs of voxels. This is due to
the need to account for context information.

More precisely, let Ci be the class label of voxel i, which
can have one of M possible values. We denote by Ii the
vector of intensities recorded at voxel i in the different con-
trasts. Let Ni be the set of all voxels neighbouring i in the
different cliques in which i participates. Let ∆INi denote
the vector of differences in intensity between voxel i and its
neighbouring voxels fromNi, and let CNi denote an assign-
ment of classes to the voxels in Ni. Then, the probability of
class Ci at voxel i is modelled as:

P (Ci | Ii,∆INi) =
∑
CNi

P (Ci,CNi | Ii,∆INi) (4)

∝
∑
CNi

P (Ii,∆INi|Ci,CNi)P (Ci,CNi)

=
∑
CNi

P (∆INi|Ii, Ci,CNi)P (Ii|Ci,CNi)P (CNi|Ci)P (Ci)

∝
∑
CNi

P (∆INi|Ci,CNi)P (Ii|Ci)P (CNi|Ci)P (Ci) (5)

In this equation, P (Ci) is the prior probability of class Ci,
P (Ii |Ci) models the intensity at a voxel given the class,
P (∆INi |CNi , Ci) models the intensity difference between
a voxel and its neighbours given the classes in the neigh-
bourhood, and P (CNi |Ci) models the likelihood of class

transitions. In the last line we made two conditional in-
dependence assumptions. The simplification P (∆INi |
Ii, Ci,CNi) ' P (∆INi | Ci,CNi) is understandable con-
sidering that the difference between the voxel and its neigh-
bours is dependent on the classes present in the neighbour-
hood but not on the absolute intensity value of the voxel.
The assumption P (Ii | CNi , Ci) ' P (Ii | Ci) means
that the intensity of voxel is conditionally independent of
its neighbours’ intensities given the class label, which is in-
tuitively clear as well.

To infer the class labels, the energies at all voxels i have
to be minimized simultaneously. The energy at voxel i is
given by:

U(Ci|Ii,∆INi) = − lnP (Ci)− lnP (Ii|Ci)−

−
∑
j

(lnP (∆Ii,j|Ci,Cj)− αm(Cj , Ci)) , (6)

where the summation is over all cliques j in which voxel
i participates, P (∆Ii,j |Ci,Cj) models the difference in
intensity between i and the voxels in the j-th clique given
classes Ci and Cj , m(Cj , Ci) is the potential of transition-
ing from Ci to Cj and α is a weighting parameter1 used
to handle variations between inter-slice distance and intra-
slice distance. Note that this equation corresponds to a de-
composition of the summation in Eq. (5), in which we ex-
plicitly list all cliques in i’s neighbourhood.

Training: During training, the tumour region is masked
out using the expert classification labels. The remaining
tissues are non-linearly registered to a brain tissue atlas,
allowing us to generate separate labels for grey matter,
white matter, and cerebrospinal fluid. We consider an 8-
neighbourhood around the voxel in the axial plane as well
as the corresponding voxels in the slices above and below.
The neighbourhoodNi consists of all size 2, 3, and 4 cliques
that contain voxel i. Multivariate Gaussian distributions
are used to model both class intensities and intensity dif-
ferences between various classes. The class transition prob-
abilities are extracted from the frequency of co-occurrence
of different class combinations in the training volumes.

Classification The probabilities computed by the previ-
ous layer through Eq. (3) are used as priors for the tumour
and the edema classes. The voxels which are more likely to
be pathological according to these estimated probabilities
are masked out, and healthy atlases are registered to the re-
maining regions to get the prior probabilities of the different
types of healthy tissues, as described above. Iterated condi-
tional modes (ICM) [10] are the used to minimize the total
energy. We note that this approach works well here because
the initial class labels based on the Gabor features provide
a good starting point for the optimization.

1In all experiments, α = 1
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2.3. Regional MRF

This stage defines an MRF in which each node represents
a “region” of the image. A region encompasses a set of vox-
els with the same current label (as provided by the second
stage), which are contiguous in 3D. Each region node is
connected to all other region nodes with whom it shares a
border. More precisely, regions i and j are connected if at
least one voxel of region i is adjacent to some voxel in re-
gion j. The number of possible neighbours of a region is
not limited. The result of this construction is an irregular,
non-lattice-based MRF.

The parameters of the MRF are designed to capture 3
types of information. The first component is based on the
intensities and textures at every voxel in the region. The
second component is the tissue prior at every voxel based
on the Bayesian tumour probabilities. The third component
captures the interaction between the node and its neigh-
bours. The interaction energy is based on the number of
voxels of the two regions that are adjacent to each other,
modified by the likelihood of transition between the two re-
gions. The total energy at the voxel is a sum of the inten-
sity and texture similarities at the voxel with the class under
consideration, the prior probability of the class at the voxel,
and the interaction energy that depends on the number of
voxels adjacent to each other, modulated by the number of
adjacent voxels of the two classes.

More precisely, for a region j, we consider both inten-
sity information, Ij , as well as texture information, given
by texture features Gj . The probability of class Cj ∈
{0, . . . ,M − 1} at region node j can be modelled as:

P (Cj|Ij ,Gj ,∆INj ) =
∑
CNj

P (Cj ,CNj|Ij ,Gj ,∆INj )

∝
∑
CNj

P (Ij ,Gj ,∆INj|Cj ,CNj )P (Cj ,CNj )

=
∑
CNj

[
P (∆INj|Gj , Ij , Cj ,CNj )P (Gj|Ij ,CNj , Cj)

P (Ij|Cj ,CNj )P (CNj|Cj)P (Cj)
]
. (7)

We use the same simplifying assumptions as in the previous
stage, and furthermore assume that: P (Gj|Cj ,CNj , Ij) =
P (Gj|Cj) (i.e. the texture features only depend on the class
at the node and they obey a naive Bayes assumption with
respect to the intensity features at the node). Incorporation
all conditional independence assumptions in the formula,
we gat:

P (Cj|Ij ,Gj , INj ) ∝ P (Cj)P (Gj|Cj)P (Ij|Cj)∑
CNj

P (∆INj|Cj ,CNj )P (CNj|Cj) (8)

The equivalent MRF energy equation for each region is

given by:

U(Cj|Ij ,Gj ,∆INj )=−[lnP (Cj) + lnP (Ij|Cj) + lnP (Gj|Cj)

+
∑
k

lnP (∆Ij,k|Cj ,Ck)]− αψ(Ck, Cj)], (9)

where the summation is over all cliques k in which region j
participates, and ψ(Ck, Cj) is the potential of transitioning
from Cj to Ck. We now describe how the different required
components of this formula are modelled for the regions.
Computation of Ij

This is computed as the mean intensity over the voxels
of region j.
Computation of ∆INj

We consider all voxels of region j that have one of more
voxels of region k adjacent to them. To compute ∆INj ,
we consider neighbouring voxels at the border of the two
regions. For every voxel in region j that has a neighbour-
ing voxel in region k, we compute the intensity difference.
∆INj is computed as the mean of these intensity differences
of all pairs of adjacent voxels from the two regions.
Computation of Gj

Gj are the texture features computed at every voxel. To
compute them, we use all the Gabor coefficients computed
at stage 1 from windows for every voxel s within region
j such that the Gabor windows at voxel s lie completely
within the region (i.e., if the decay of the window is to less
than a thousandth compared to the peak at all the border
voxels). In other words, all possible windows are checked
at every voxel. If the window lies completely within the re-
gion, the Gabor coefficient produced by that window is cho-
sen, otherwise, it is discarded. Gj is mean of the regional
texture computed for region j.
Training and classification: The Gabor features Gj , in-
tensities Ij , and intensity differences ∆INj of all the dif-
ferent tissue classes and class combinations are modelled as
multivariate Gaussians. The region class transition poten-
tial is computed from the frequency of co-occurrence of the
regions in the training set. Training proceeds otherwise as
described in the previous section.

We only consider cliques of size 2. The neighbourhood
of a region consists of every other region to which it is ad-
jacent. We start with the labels obtained by the adapted
intensity-based MRF and apply ICM for the inference, as
these labels are often a good starting point.

2.4. Iterative inference

Once the regional model performs its computation, we
have additional information which needs to be passed back
to the voxel-based MRF, in order to improve the outcome.
In addition to the class labels, we also pass down the tex-
ture features at every voxel, computed as described above.
The voxel-level MRF used from this stage onwards is very
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similar to the adapted MRF, except that it also incorporates
the texture features. Hence, the energy is given by:

U(Ci|Ii,Gi,∆INi) = −[lnP (Ci) + lnP (Ii|Ci) + lnP (Gi|Ci)

+
∑
j

(logP (∆Ii,j|Ci,Cj)− αm(Cj , Ci))], (10)

where Gi is the textural feature computed at the regional
MRF level.

Once the voxel-level MRF re-computes the class labels,
the regional model is re-computed, and the iterative infer-
ence proceeds as described above. The process stops when
the changes observed in the class probabilities between two
consecutive stages are smaller than a threshold.

3. Experiments and Results
We trained our algorithm on all 20 high grade and 10 low

grade real clinical tumour volumes available from the MIC-
CAI 2012 Brain Tumour Segmentation Training dataset
[11]. The datasets include MRI with several different con-
trasts: T1, T2, T1 after gadolinium enhancement (i.e. T1c)
and FLAIR. All volumes were pre-processed with bias
field correction and were normalized. The volumes include
four tumour labels: necrotic core, edema, solid tumour and
enhancing tumours, for high grade and low grade tumour
cases. Training was performed separately for the high grade
and low grade tumour cases due to their differences in ap-
pearance. The result of our segmentation framework is a
label at every voxel in the 3D MRI volumes. The frame-
work provides 8 possible labels: the four previously men-
tioned tumour tissues, and four healthy tissues (grey matter,
white matter, cerebrospinal fluid and partial volume 2). Af-
ter training, our technique was evaluated on two different
challenge data sets. The first was the MICCAI 2012 Brain
Tumour Segmentation Challenge dataset available at [11].
This data set consists of 11 high grade and 4 low grade clin-
ical tumour cases. The second set was the MICCAI 2013
Brain Tumour Segmentation Challenge data set available
at [12], consisting of 10 high grade clinical tumour cases.
The resulting labels were uploaded to the challenge web-
sites, and all evaluations were performed by the online sys-
tem. The metric used to evaluate segmentation results were
based on Dice similarity coefficients. Although the labels
for all the tumour subclasses were produced by the pro-
posed framework, the online evaluation system provided
only three evaluation metrics for each algorithm: the Dice
coefficients for the entire tumour (i.e. all the tumour sub-
classes combined including edema), the tumour core (com-
prised of necrotic core, solid tumour and enhancing tumour)
and the enhancing tumour alone. The class labels were
computed on a Dell Optiplex 980 I7 machine. The entire

2Partial volume is a class corresponding to voxels that comprise a mix-
ture of grey matter and cerebrospinal fluid

Figure 3. (a) (b) (c) (d)
Top row, high grade tumour case, bottom row, low grade tumour
case. (a) The unlabelled T2 slice, (b) the unlabelled T1 MRI slice
after injection of a contrast agent (c) expert labelling and (d) labels
produced by our algorithm (red = necrotic core, green = edema,
dark blue = solid tumour, light blue = enhancing tumour). Note
that these correspond closely with the experts’ labels.

process of segmentation takes roughly 75 minutes per vol-
ume.

Our choice of b for the Gabor filters was such as to pro-
vide 6 equally spaced orientations between 0 and π radians
(sufficient in practice) and a = 1.

3.1. Qualitative Results

Fig. 3 shows the results of our algorithm on a slice from a
low grade tumour and one from a high grade tumour, against
the experts’ segmentation, along with the corresponding un-
labelled T1c and T2 slices. Visually, in both cases, it can
be seen that our results are comparable to the experts’ la-
belling.

3.2. Quantitative Results

Tables 1 and 2 show the results of our technique on real
glioma cases (both high grade and low grade) and com-
pare it against the two top performing algorithms in the two
challenges (BRATS 2012 and BRATS 2013), based on Dice
similarity coefficients. Our algorithm outperforms the win-
ning algorithm by about 25% in the case of tumour cores
and about 5% for enhanced tumours in the case BRATS
2012. In the case of the BRATS 2013, our algorithm out-
performs the winner for tumour cores by about 10% and for
enhanced tumours by about 9%. The tables also show that
our performance for the entire tumour is comparable to the
winners in the two challenges.

4. Conclusions and future work
In this paper, we presented a new iterative, multi-stage

graphical model framework aimed at segmenting pathology
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Method Complete Tumour Enhancing
Tumour Core Tumour

Zikic. et. al. [5] 0.75 0.54 0.41
Zhao. et. al. [13] 0.82 0.55 0.41
Iterative Multilevel-MRF 0.73 0.70 0.452

Table 1. Comparison of the segmentation results of the proposed
method, ”Iterative Multilevel-MRF”, and the top two methods par-
ticipating in the BRATS Challenge 2012, as presented on the live
challenge website [11] for entire tumour, tumour core and en-
hanced tumour for real, clinical cases. Shown are average Dice
similarity coefficient values. The winners of the challenge in each
category are highlighted in bold. Our technique outperformed the
winner by about 25% for tumour cores, and by about 5% for en-
hancing tumours.

Method Complete Tumour Enhancing
Tumour Core Tumour

Tustison. et. al. [14] 0.87 0.78 0.74
Meier. et. al. [15] 0.82 0.73 0.69
Iterative Multilevel-MRF 0.86 0.86 0.77

Table 2. Comparison of the segmentation results of the proposed
method, ”Iterative Multilevel-MRF”, and the top two methods par-
ticipating in the BRATS Challenge 2013 as presented on the web-
site [12] against the experts’ labels for the complete tumour, tu-
mour core, and enhancing tumour for real, clinical cases. Shown
are average Dice similarity coefficient values. The winners of the
challenge in each category are highlighted in bold. Our technique
performs comparably to the winners of the challenge for the entire
tumour and outperforms the top method by about 10% better for
tumour cores, and by about 5% for enhancing tumours.

from medical images. The model was designed to leverage
the strengths of both a local, voxel-based MRF and a con-
textual, regional (non-lattice based) MRF, in order to pe-
nalize implausible regional labels and label combinations,
while also attaining accurate boundaries. The framework
was applied to the challenging problem of segmenting mul-
tiple brain tumour subclasses in real clinical patient MRI.
The approach was trained and tested on public databases
from the MICCAI BRATS challenge, and was shown to
outperform the winning approaches for the case of tumour
core and enhancing tumour segmentation, while performing
comparably in the other segmentation tasks.

Here we focused on brain tumour segmentation, but the
framework we presented is general and can be applied to
other challenging segmentation tasks. We are currently
adapting this approach to the challenging problem of seg-
menting lesions in brain images from patients with Multiple
Sclerosis. In this context, pathologies tend to be smaller and
quite similar to the surrounding tissue, so we are exploring
alternative texture features. In general, the choices of infer-
ence method and of modelling both the features and their
distributions deserve further investigation.
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