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Abstract

In statistical analysis of video sequences for speech
recognition, and more generally activity recognition, it is
natural to treat temporal evolutions of features as trajec-
tories on Riemannian manifolds. However, different evolu-
tion patterns result in arbitrary parameterizations of these
trajectories. We investigate a recent framework from statis-
tics literature [ 15 ] that handles this nuisance variability us-
ing a cost function/distance for temporal registration and
statistical summarization & modeling of trajectories. It
is based on a mathematical representation of trajectories,
termed transported square-root vector field (TSRVF), and
the 1.2 norm on the space of TSRVFs. We apply this frame-
work to the problem of speech recognition using both au-
dio and visual components. In each case, we extract fea-
tures, form trajectories on corresponding manifolds, and
compute parametrization-invariant distances using TSRVF's
for speech classification. On the OuluVS database the clas-
sification performance under metric increases significantly,
by nearly 100% under both modalities and for all choices of
features. We obtained speaker-dependent classification rate
of 70% and 96% for visual and audio components, respec-
tively.

1. Introduction

In this paper we focus on problems that deal with reg-
istration, comparison and summarization of trajectories on
nonlinear manifolds. An important issue in the analyses is
that trajectories are often not observed at standard times but,
in fact, at random times. One motivation of this problem
comes from activity recognition where features extracted
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from video frames are naturally represented as elements of
nonlinear manifolds, and the temporal evolutions of activ-
ities can be treated as trajectories on those manifolds. For
example, if one restricts to shapes of silhouettes in images,
then an activity is a parametrized path on the shape space
of contours [18]. However, as highlighted in [18, 21], the
execution rate of activities is often arbitrary and that results
in random parameterizations of corresponding trajectories.
This parameterization variability results in artificially in-
flated distances between trajectories, even those within the
same class, and distorts computations of summary statis-
tics such as mean trajectory and variance along trajectories.
Thus, temporal alignment and removal of temporal variabil-
ity are important in statistical modeling of activities.

Figure 1. Left: a trajectory on S?; Right: mean and point-wise
variance of this trajectory observed under arbitrary parameteriza-
tions.

The need for warping/alignment while analyzing trajec-
tories can be motivated with a simple example. Consider
the trajectory on a unit sphere shown in the left part of Fig.
1. We simulate a set of random evolution rates along this
trajectory and generate several observations of this trajec-
tory at these random times. These simulated trajectories are
identical in terms of the points traversed but their evolu-
tions, or parameterizations are quite different. The results



of cross-sectional mean and variance are shown in the right.
We draw the sample mean trajectory in black and the sam-
ple variance at discrete times using tangential ellipses. Not
only is the mean quite different from the original curve, the
variance is artificially exaggerated due to randomness in ob-
servation times. If we have observed the trajectory at fixed,
synchronized times, then this problem will not exist.

In particular, we are interested in the problem of speech
classification using close-up videos of human facial move-
ments. Speech classification is important because it allows
computers to interpret human speech and take appropriate
actions. The goal here is to develop efficient algorithms
that input speech data and provide human-like interpreta-
tions. Applications of speech recognition can be found in
systems for helping hearing-impaired, biometric security,
human-machine interactions, manufacturing, home security
systems, and so on. It should be emphasized that speech
recognition can be performed with multiple modalities — the
common speech data consists of both audio and visual com-
ponents. In case the audio information is either not avail-
able or is corrupted by noise, it becomes important to un-
derstand the speech using only the visual data. This leads to
the problem of visual speech recognition (VSR), which is
also known as automatic lipreading. Previous work on VSR
can be divided into two categories: sequential inference ap-
proaches and spatial-temporal descriptor approaches. Se-
quential inference approaches extract features from frames
and recognize the sequence of features via state-based se-
quential inference models. Hidden Markov model (HMM)
has often been used to perform VSR, e.g. [12]. Spatial-
temporal descriptor approaches incorporate the temporal
consistency among subsequent frames to capture the dy-
namics. These include the temporal derivatives [4] and local
spatial-temporal descriptors (STD) [19].

The process of visual speech recognition is to under-
stand the words uttered by speakers, derived from the visual
cues. Movements of the tongue, lips, jaw, and other speech
related articulators are involved to make sound. Speech
is therefore a dynamic process involving these articula-
tors. However, different speakers have varying appearances
of their articulations due to different pronunciation habits.
Even the same speaker can speak at different speeds in dif-
ferent situations. In addition, the imaging environments
greatly affect the pose of producers, illumination and the
image quality of the sequence to be analyzed. As a result,
the overall appearance of two instances of the same utter-
ance may vary considerably, though the intrinsic dynamics
of movement are generally similar.

The theoretical framework used here has been introduced
recently in statistics literature [ | 5] but our goal here is to ex-
plore its applicability for computer vision problems, specif-
ically in visual speech recognition. This is the first demon-
stration of the use of this mathematical theory for a com-

puter vision problem. Our goal is to address temporal align-
ment of two sequences and not to find the best features.
We do not claim that the particular features used in the al-
gorithms here are optimal for classification. The temporal
alignment would be useful irrespective of the choice of fea-
tures. The paper is organized as follows. In Section 2, we
summarize the general mathematical framework proposed
in [15] for registration and comparison of trajectories. In
Section 3, algorithms for computing Karcher mean and vari-
ance are provided. In Section 4, features for audio-visual
speech recognition and their underlying spaces are intro-
duced. In Section 5, experimental results involving OuluVS
data are presented.

2. Mathematical framework

This material has been presented in a statistics paper ear-
lier but is repeated here for convenience. Further details
may be found in [15].

Let o denote a smooth trajectory on a Riemannian mani-
fold of interest M, where M is endowed with a Riemannian
metric (-,-). Let M denote the set of all such trajectories:
M ={a:[0,1] = M|« issmooth}. Also, define I" to be
the set of all diffeomorphisms of [0,1]: T’ = {vy : [0,1] —
[0,1]]v(0) = 0, v(1) = 1, ~ is adiffeomorphism} with the
ending points are preserved. It is important to note that I"
forms a group under the composition operation. If « is a tra-
jectory on M, then ooy is a trajectory that follows the same
sequence of points as « but at the evolution rate governed by
~. More technically, the group I" acts on M, M xT" — M,
according to («, ) = « o . Given two smooth trajectories
a1, az € M, we want to register points along the trajecto-
ries and compute a time-warping invariant distance between
them. For performing comparison of trajectories, we need
a metric and, at first, we consider a more conventional solu-
tion. Since M is a Riemannian manifold, we have a natural
geodesic distance d,,, between points on M. Using d,,, one
can compare any two trajectories: oy, as : [0,1] — M, as

do(on, ) = / dlca () ca()dt . (1)

Although this quantity represents a natural extension of
dy from M to M, it suffers from the problem that
di(a1,a9) # dy(aq o y1,a9 0 42) in general. It is not
preserved even when the same y is applied to both the tra-
jectories, i.e. d; (a1, a9) # dy (a7 0, ag o 7y) generally. If
we have an equality in the last case, for all +’s, then one can
develop a fully invariant distance and use it to register tra-
jectories properly, as described later. So, the failure to have
this equality is in fact a key issue that forces us to look for
other solutions in situations where trajectories are observed
at random temporal evolutions.



2.1. Previous work

The fact that M is a Riemannian manifold presents a
formidable challenge in developing a comprehensive frame-
work. But this is not the only challenge. To clarify this
part, let us consider this question: How has this registra-
tion and comparison problem been handled for trajectories
in Euclidean spaces? In case M = R, i.e. one is inter-
ested in registration and modeling of real-valued functions
under random time-warpings, the problem has been studied
by many authors, including [16]. [13] proposed a solution
that applies to curves in arbitrary R™. One can also borrow
solutions from problems in image registration where 2D
and 3D images are registered to each other using a spatial
warping instead of a temporal warping (see e.g. LDDMM
technique [1]). A majority of the existing methods in Eu-
clidean spaces formulate an objective function of the type:

min,, ( S len () — as(y())[2dt + )\R(w)), where | - | is
the Euclidean norm, R is a regularization term on the warp-

ing function «, and A > 0 is a constant. In case of a Rie-
mannian manifold, one can modify the first term to obtain:

min (/01 dm (01 (1), a(y()))?dt + )\R(W)) )

v

The main problem with this procedure is that: (a) it is not
symmetric, i.e. the registration of a; to a is not the same
as that of s to ag, as pointed out by [3] and others, and (b)
the minimum value is not a proper distance, so it cannot be
used to compare trajectories. This sums up the fundamental
dilemma in trajectory analysis — Eqn. 1 provides a metric
between trajectories but does not perform registration and
Eqn. 2 performs registration but is not a metric!

2.2. Rate-invariant comparison and registration

We introduce a representation of trajectories that will be
used to compare and register them. We will assume that for
any two points p, ¢ € M, we have an expression for parallel
transporting any vector v € T),(M) along the geodesic from
p to g, denoted by (v),_,4. As long as p and g do not fall
in the cut loci of each other, the geodesic between them is
unique and the parallel transport is well defined. The mea-
sure of the set of cut locus on the manifolds of our interest
is typically zero. So, the practical implications of this lim-
itation are negligible. Let ¢ be a point in M that we will
designate as a reference point. We will assume that none of
the observed trajectories pass through the cut locus of ¢ to
avoid the problem mentioned above.

Definition 1 For any smooth trajectory o € M, the trans-
ported square-root vector field (TSRVF) is a parallel trans-
port of a scaled velocity vector field of o to a reference point
¢ € M according to:

d(t)a(t)%c

ha(t) =
==&

€ T.(M),

where | - | is define by the Riemannian metric on M and the
tangent space at c is denoted by T.(M), as shown in the left
of Fig.2.

Figure 2. Left: TSRVF; Right: induced metric d.

Since « is smooth, so is the vector field h,. Let H =
{ha|la € M} be the set of smooth curves in T.(M) ob-
tained as TSRVFs of trajectories in M. If M = R"™ with the
Euclidean metric then h is exactly the square-root velocity
function defined in [13].

The choice of reference point ¢ used in Definition 1 is
important in this framework and, in principle, will affect
distances. But our experiments suggest that the results of
registration and classification are quite stable with respect
to this choice. An example is shown later in Fig. 4. Another
remark is that instead of parallel transportation of scaled ve-
locity vectors along geodesics, one can translate them along
trajectories themselves, as was done in [7], but that requires
c to be a common point of all trajectories.

Since a TSRVF is a path in 7,.(M), one can use the 1.2
norm to compare such trajectories.

Definition 2 Letr oy and as be two smooth trajectories on
M and let h,, and h,, be the corresponding TSRVFs. The
distance between them is:

1
2

Aoy ) = < a0 e <t>|2dt>

The distance dj,, being the standard 1.2 norm, satisfies sym-
metry, positive definiteness, and triangle inequality. The
main motivation of this setup — the TSRVF representation
and L2 norm — comes from the following fact.

Theorem 1 For any ay,as € M and v € T, the distance
dp, satisfies dp(hayoys Pagoy) = dn(hay s hay). In geomet-
ric terms, this implies that the action of I' on H under the
L2 metric is by isometries.

It can be proved easily by plugging in the expression of
hao~ and changing variables. Next we define a quantity that
can be used as a distance between trajectories while being
invariant to their temporal evolutions. To set up this def-
inition, we first introduce an equivalence relation between
trajectories. For any two trajectories «; and «g, we define
them to be equivalent, a; ~ o, if they have the same start-
ing point and the TSRVF of one can be time-warped into



the TSRVF of the other using a sequence of warpings. It
can be easily checked that ~ forms an equivalence relation
on H (and correspondingly M).

Since we want our distance to be invariant to time-
warpings of trajectories, we wish to compare trajectories
by comparing their equivalence classes. Thus, our next step
is to inherit the distance dj, to the set of such equivalence
classes. Towards this goal, we introduce a set " as the
set of all absolutely continuous, non-decreasing functions
v : [0,1] — [0, 1] such that v(0) = 0 and (1) = 1. This
set T'is a semigroup with the composition operation (it is
not a group because the elements do not have inverses).
The group I is a subset of I'. The elements of ' warp
the time axis of trajectories in M in the same way as ele-
ments of I', except they allow certain singularities. For a
TSRVF h,, € H, its equivalence class, or orbit under f‘, is
given by [ha] = {haoy|ha € H, v € T'}. It can be shown
that the orbits under I are exactly the same as the closures
of the orbits of I, defined as [ha]o = {haoy|y € T}, as
long as « has non-vanishing derivatives almost everywhere.
(The last condition is not restrictive since we can always
re-parameterize o by the arc-length.) The closure is with
respect to the L2 metric on .

Now we are ready to define the quantity that will serve
as both the cost function for registration and the distance
for comparison. This quantity is essentially d;, measured
between not the individual trajectories but their equivalence
classes, as shown in the right of Fig. 2.

Definition 3 The distance ds on H/ ~ (or M/ ~) is the
shortest dy, distance between equivalence classes in H.:
dS([h(h]v [haz]) = inf _ dh(halo"/u h@2072) . 3)
Y1,72€l

Now, since I' is dense in f, for any & > 0, there exists a v*
such that:

|dh(h0¢1’h0¢20’y*) - dé‘([hoél]’ [haz])| <9.

This v* may not be unique but any such v* is sufficient for
our purpose. Furthermore, since v* € T, it has an inverse
that can be used in further analysis.

Since the action of I' is by isometries (Theorem 1) and
the equivalence classes form closed sets, it can be shown
that d is a proper distance, i.e. it satisfies symmetry, pos-
itive definiteness and triangle inequality, on the set H/ ~.
Additionally, it satisfies an important invariant property. For
any v1, 72 € I', we have:

ds([haloﬁ]? [ha20’72]) = ds([hal], [haz})'

In calculation of ds between any two paths, we need to
solve for the optimal correspondence between them accord-
ing to:

3

~v* = argmin (/0 [hes () = ha, ('y(t))\/ﬁ(t)|2dt> .4

veT

The minimization over I' in Eqn. 4 can be solved in practice
using the dynamic programming (DP) algorithm [2]. Here
one samples the interval [0, 1] using T discrete points and
then restricts to only piecewise linear v that passes through
that T x T grid. The search for the optimal trajectory on
this grid is accomplished in O(7?) steps. T = 50 is used
in this paper. While it is possible that the optimal mapping
~* lies on the boundary of I', the DP algorithm provides an
approximation using a piecewise linear map on a finite grid.

If we compare Eqn. 4 with Eqn. 2, we can immediately
see the advantages of the proposed framework. Both equa-
tions present a registration problem between o1 and o, but
only the minimum value resulted from Eqn. 4 is a proper
distance. Also, the optimal registration in Eqn. 4 remains
the same if we change the order of the input functions. That
is, the registration process is inverse consistent!

3. Summarization/Registration of multiple tra-
jectories

An additional advantage of this framework is that one
can compute an average of multiple trajectories and use it
as a template for classification. Furthermore, this template
can, in turn, be used for registering multiple trajectories. As
stated before, this material has been presented in a statis-
tics paper earlier but is repeated here for convenience. We
will use the notion of the Karcher mean to define and com-
pute average trajectories. Given a set of sample trajectories
a1, ...,y on M, we represent them using the correspond-
ing pairs (a1 (0), hay ), (@2(0), hay ), - - -y (0 (0), by, ). We
will compute the Karcher means of each component
in their respective spaces: (1) the Karcher mean of
a;(0)s are computed with respect to d,,, in M, and (2)
the Karcher mean of h,,s are with respect to d in
M/ ~. The latter Karcher mean is defined by: h, =
argming, 13/~ Y iy ds([hal, [Pa;])?. Note that [h,] is
actually an equivalence class of trajectories and one can se-
lect any element of this mean class to help aligning multiple
trajectories. The standard algorithm to compute the Karcher
mean in [8, 15] is adapted to this problem as follows:

Algorithm 1 Karcher mean of multiple trajectories:
Compute the Karcher mean of {«;(0)}s and set it to be

1(0).

1. Initialization step: Select  to be one of the original
trajectories and compute its TSRVF h,.

2. Align each h,,, i = 1,...,n, to h, according to Eqn.
4. That is, solve for v using the DP algorithm and set
Q; = oy o7y}

3. Compute TSRVF's of the warped trajectories, hg,, i =
1,2,...,n, and update h,, as a curve in T,(M) ac-
cording to: hy,(t) = 237" he, (1) .



4. Define 1 to be the integral curve associated with a

time-varying vector field on M generated using h,,,

ie. d‘;gf) = |hyu ()] (R (t))ems pu(r)» and the initial con-

dition (0).

s Compute B = Y0 du((hlha))? =
S dn(hy, ha,)? and check it for convergence.
If not converged, return to step 2.

This algorithm provides two sets of outputs: an average
trajectory denoted by the final x4 and the set of aligned tra-
jectories {&;}s. Therefore, this actually solves the problem
of aligning multiple trajectories too. For each aligned tra-
jectory &;(t) at time ¢, the vector v;(t) € T),)(M) is com-
puted such that a geodesic that goes from u(t) to &;(t) in
unit time has the initial velocity v;(¢). This is also called
the shooting vector from u(t) to &;(t). Let K(t) be the
sample covariance matrix of all the shooting vectors from
wu(t) to @;(t). The sample Karcher covariance at time ¢
is given by K (t) = L5 30 v (t)v; (t)", with the trace

p(t) = trace(K (t)). This p(t) represents a quantification
of the cross-sectional variance, as a function of ¢, and can
be used to study the level of alignment of trajectories. As
a simple illustration, we randomly simulate s and apply
them to a trajectory of 3 x 3 covariance matrices. For dis-
play, each covariance matrix is depicted using an ellipsoid.
The simulated trajectories and ~’s are shown in Fig. 3 (a)
and (b). Then we compute the sample mean in two cases:
without registration and with registration. The mean after
registration in Fig. 3 (d) is a much better representation of
data because the simulated trajectories are in fact the same,
while the mean without registration in (c) losses the pattern
of data. The comparison of p’s in the two cases before and
after are shown in Fig. 3 (e). The extraneous temporal vari-
ability is removed due to the registration. In addition, the
sample mean is used to register five trajectories in the data
and it results in the same trajectories as the mean in (d).

4. Features for audio-visual speech recognition

As we mentioned before, speech recognition is a bimodal
process, involving audio and visual components. Next,
we extract different features for both modalities respec-
tively, and particularize the framework to the corresponding
spaces.

4.1. Feature for audio speech recognition

The first step in any automatic speech recognition sys-
tem is to extract features, i.e. identify the components of the
audio signal that are good for identifying the linguistic con-
tent and discarding all the remaining data that carry infor-
mation like background noise, emotion, etc. Mel Frequency
Cepstral Coefficients (MFCCs) are commonly used as fea-
tures in automatic speech and speaker recognition. For each
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frame, we first extract the feature of MFCCs which is a vec-
tor of coefficients. Then, the vector is scaled to be of unit
norm, which makes the underlying space a unit sphere. Sta-
tistical methods for unit vectors have been studied exten-
sively in fields of directional statistics and the landmark-
based shape analysis of objects ([5]).
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Figure 4. Registration of two trajectories on S°.

To apply this framework, we use the standard Euclidean
Riemannian metric. For any two points p, ¢ € S™ (p # —q)
and a tangent vector v € T,(S™), the parallel transport
(v)p—sq along the shortest geodesic (i.e. great circle) from
pto g is given by v — \2p<121q|>2 (p + q). Given two trajectories
on S™, we use their TSRVFs and DP algorithm in Eqn. 4 to
find the optimal registration between them. As an example,
we show the results of registering two trajectories on S? in
Fig. 4. The parameterization of trajectories is displayed us-
ing colors. In the top row, the left column shows the given
trajectories a; and «g, the middle column shows «; and
a o v* and the right column shows v* using ¢ = [0, 0, 1].
The correspondences between two trajectories are depicted
by black lines connecting points along them. Due to opti-




mization of vy in Eqn. 4, the d;, value between them reduces
from 1.67 to 0.36 and the correspondences become more
natural after the alignment. We also try different choices
of ¢ (¢ = [0,0,-1],[-1,0,0],[0,1,0]). The registration
results are very close despite different ¢’s as shown in the
bottom row.

4.2. Feature for visual speech recognition

As we mentioned earlier, in case of the audio information
is not available or listeners have incapabilities, visual infor-
mation becomes important for speech recognition. Feature
selection always plays an important role in image detection
and classification. In this paper, we choose the covariance
features for VSR. The covariance features have been widely
used and proved as desired for detection and classification.
Tuzel et al. [17] first introduced them for texture classifica-
tion and later on extended them to tracking problems [11].
A covariance matrix of image features such as pixel loca-
tion, intensity and their derivatives, is constructed to repre-
sent the image. For an image I, let {2z }x—1..., be the d-
dimensional feature vector at a point indexed by k in I. The
image I is represented with the d X d covariance matrix of
the feature points.

Several advantages of using covariance matrices as im-
age descriptors had already been discussed in [17]. First,
a single covariance matrix is typically enough to represent
the image in different views and poses. Second, the covari-
ance descriptor gives a natural way of combining multiple
features which might be correlated. Third, the dimension of
the covariance matrices is low compared to others. The ma-
trix P has only (d%+d) /2 different values due to symmetry,
while the representation of using raw values will need n x d
dimensions.

One difficulty in analyzing covariance matrices is that
the space of such matrices is not a vector space. There-
fore, the traditional methods for image classification do not
apply. Instead, we study these covariance matrices on a
Riemannian manifold. Pennec et al. and others [9, 10]
formulated this manifold as the space of nonsingular co-
variance matrices, i.e. symmetric positive definite (SPD)
matrices. Let P(d) be the space of d x d SPD matri-
ces and P(d) = {P | P € P(d)anddet(P) = 1}.
The space P(d) is a well known symmetric Riemannian
manifold, i.e. the quotient of the special linear group
SL(d) = {G € GL(d) | det(G) = 1} by its closed
subgroup SO(d) acting on the right and with an SL(d)-
invariant metric, see [6]. Although several distances have
been proposed to study elements of SPD space, very few
of them come from Riemannian metrics. Furthermore, the
commonly used Riemannian metric does not allow simple
expression for parallel transport. So, we use the Rieman-
nian metric introduced in [14] since the expression for par-
allel transport are readily available. The Lie algebra of P(d)

is 71(P(d)) = {A | AT = A and trace(A) = 0}, where [
denotes the d x d identity matrix and the inner product on
T1(P(d)) is (A, B) = trace(ABT). The tangent space at
P € P(d) is Tp(P(d)) = {PA | A € T;(P(d))} and
(PA, PB) = trace(ABT). This Euclidean metric is one of
the very few metrics that are invariant to the action of SL(d)
on P(d). Based on this unique metric, we have derived the
required tools as follows:

e Exponential Map: Given P € P(d) and V €
Tp(P(d)), expp(V) = VPe2P'V P,

o Inverse Exponential Map: For any Py, P> € P(d),
expp! (Py) = Pylog(y/ Py ' PEP).

e Parallel Transport: For any P, P, € P(d), the par-
allel transport of V' € Tp, (P(d)) from P; to P, is
P,TEB Tho, where B = PV, Ty = PR PPy

and Py = /P P3P

In the experiments, we first compute a covariance matrix
for each frame of video. To achieve enhanced robustness,
especially against the diversity among different capturing
environments, the covariance matrix is further normalized
to a correlation matrix, where the underlying space is ex-
actly P(d). A natural choice of reference point ¢ used in
Definition 1 is the identity matrix I« 4. For any correlation
matrix P € P(d), the parallel transport of V' € Tp(P(d))
from P to Igxg4is P~V according to the equations above.

5. Experimental results

In this section, we evaluate our framework on the com-
monly used OuluVS dataset [19]. The OuluVS database in-
cludes 20 speakers uttering 10 phrases: Hello, Excuse me, [
am sorry, Thank you, Good bye, See you, Nice to meet you,
You are welcome, How are you, Have a good time. Each
person spoke each phrase 5 times. All image sequences in
the OuluVS dataset are segmented, having the mouth re-
gions determined by the manually labeled eye positions in
each frame [20]. Some examples of image sequences are
shown in Fig. 5.

There are two evaluation protocols commonly adopted
on the OuluVS dataset: the Speaker-Independent Test (SIT)
and Speaker-Dependent Test (SDT). SIT uses the sequences
from all speakers as a whole for evaluation whereas SDT
separately evaluates the sequences of each speaker. In this
paper, we focus on SDT to evaluate the performance. For
each speaker, we compute the distance matrices and com-
pare the rate based on rank-1 Nearest Neighbor (NN) clas-
sifier, without and with temporal alignment. The perfor-
mance can be further improved using better classifiers such
as SVM.



Figure 5. Example frames: First and second row: two down-
sampled image sequences of the same speaker uttering the phrase
”Nice to meet you”; Third and fourth row: examples of two
phrases ”Good bye” and "How are you”, respectively by differ-
ent speakers.

5.1. Performance of audio speech recognition

In this part, we extract the MFCCs from each frame,
which has the dimension of 48. The underlying space be-
comes S*7 after scaling the vectors to unit length. Then each
audio can be represented as a trajectory on S*7. By applying
the proposed framework, we register and compute distances
between trajectories of each person. Fig. 6 shows that the
pattern becomes more clear after alignment for speaker 2.
This is because the sequences in each class move closer af-
ter the alignment. Fig. 7 (a) shows that the classification
rate increases in all of speakers after temporal alignment.
The average rate increases from 55.4% to 96.0%, as shown
in Table 1. The result suggests that the classification and
recognition of speeches with different execution rates will
benefit a lot from our method.

10 20 30 40 50 10 20 30 40 50
Figure 6. Distance matrix of audio features for speaker 2 (left:
without alignment; right: after alignment.)

5.2. Performance of visual speech recognition

In this experiment, our definition of covariance
descriptor P for each frame is restricted to the
mouth region. Seven features are extracted, including
{29, 1(2,9), |95, 182],1ZL|, |2 ]}. A T x 7 covariance
matrix of these features is formed and normalized to a corre-
lation matrix. Then for each video, we construct a trajectory
of 7 x 7 correlation matrices. Note that one can also choose

other features and obtain an improvement due to temporal
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Figure 7. Comparison of SDT performances: (a) audio features;
(b) visual features.

alignment. We have chosen current features to demonstrate
this improvement, even though these features may not be
optimal in the application. We apply the framework to the
space of correlation matrices and perform registration and
comparison. Zhao et al. [19] had reported the SDT perfor-
mance of their method on the OuluVS dataset. The rate is
70.2% based on a subset of the whole dataset, around 800
sequences by removing the short videos due to the restric-
tion of their method. Although our method does not have
such constraint, to compare in a fair way, we also remove
one short video in each class for each person. Then the
SDT test is performed on the remaining 800 videos. We
obtain an average classification rate of 70.6% after align-
ment, as shown in Table 1. It is shown in Fig. 8 that the
alignment has removed the temporal variabilities and dis-
tinguished different classes for speaker 18. Also, the SDT
performance has been improved in all of subjects, as shown
in Fig. 7 (b). Besides, we extract LBP features as intro-
duced in [19] and compute pairwise distances using these
features. The classification rate increases from 43.3% to
60.5% after alignment. In summary, in all cases of differ-
ent features, the performances have drastic increases due to
temporal alignment.

Figure 8. Distance matrix of visual features for speaker 18 (left:
without alignment; right: after alignment.)

Finally, we obtain an overall performance of 97.6% by
using an weighted matrix D = wD, + (1 — w)D,,, where
D, and D, denotes the distance matrices obtained using
audio and visual components, respectively. w = 0.85 is
selected here. The details of classification performances are
given in Table 1.



Table 1. Comparison of SDT performance on the OuluVS data.

Method Visual | Audio Joint

Zhao et al. [19] 70.2% NA NA
Our method before a.lignment 33.8% | 554% | 57.6%
after alignment | 70.6% | 96.0% | 97.6%

In addition, we compute the Karcher mean and variance
on this real dataset. Fig. 9 shows two examples of comput-
ing the mean trajectory: one for the seventh class of speaker
1 and the other for the first class of speaker 2. In each exam-
ple, we compute the mean trajectory of five sequences and
compare p’s under two cases: without registration and with
registration. It is shown that we obtain significant variance
reductions after registration in both examples.

— Without alignment — Without alignment
— After alignment 250l [ ——Ater alignment

30

25

20|

Figure 9. Comparison of p’s in two examples. Left: the seventh
class of speaker 1; Right: the first class of speaker 2.

6. Conclusion

We apply the general framework proposed in [15] to the
problem of visual speech recognition. The proposed metric
is proper and invariant to temporal evolutions, which allows
us to register and compare trajectories simultaneously. We
study the problem of speech recognition in both modalities:
audio and visual components. Experimental results on the
OuluVS data show that there are significant improvements
of classification due to the temporal alignment. The benefit
of having a proper metric also allows us to compute sample
means and covariances, which could be used for classifica-
tion and registration of multiple trajectories. In future work,
we would like to extend the framework to other applications
with different underlying manifolds, such as human activity
recognition and medical imaging.
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