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Abstract

This paper addresses the problem of assigning object
class labels to image pixels. Following recent holistic for-
mulations, we cast scene labeling as inference of a condi-
tional random field (CRF) grounded onto superpixels. The
CRF inference is specified as quadratic program (QP) with
mutual exclusion (mutex) constraints on class label assign-
ments. The QP is solved using a beam search (BS), which is
well-suited for scene labeling, because it explicitly accounts
for spatial extents of objects; conforms to inconsistency
constraints from domain knowledge; and has low computa-
tional costs. BS gradually builds a search tree whose nodes
correspond to candidate scene labelings. Successor nodes
are repeatedly generated from a select set of their parent
nodes until convergence. We prove that our BS efficiently
maximizes the QP objective of CRF inference. Effectiveness
of our BS for scene labeling is evaluated on the benchmark
MSRC, Stanford Backgroud, PASCAL VOC 2009 and 2010
datasets.

1. Introduction
This paper addresses the problem of scene labeling,

where the goal is to label each image pixel with a class label
from a set of classes. The classes of interest include objects
and scene surfaces (e.g., grass, sky). Real-world images
present significant challenges for scene labeling, since ob-
jects may appear at different scales, under occlusion, and in
a wide range of spatial configurations in the scene.

Prior work has demonstrated that holistic reasoning
about occurrences of all classes, their co-occurrences, and
spatial layouts offers a viable framework for scene labeling
(e.g., [31, 30, 32, 8, 9, 28, 13, 18, 34, 15, 29]). These ap-
proaches typically model the scene by a conditional random
field (CRF) grounded onto superpixels (or image patches).
In this way, they adopt common recognition strategies: a)
Smoothness – neighboring image regions may be occupied
by the same object, and b) Context – neighboring image re-
gions may be occupied by frequently co-occurring objects.

Motivated by the success of these approaches, we rep-
resent the scene as a fully connected CRF grounded onto
superpixels, and formulate scene labeling as assignment of
class labels to superpixels in CRF inference. Following a
well-established line of research [26, 12, 17, 34, 11], we
cast CRF inference as quadratic program (QP). In compar-
ison with existing liner programming counterparts, QP in-
volves computing comparatively less variables, provides a
separable constraint set in optimization, and allows for a
differentiable large-margin parameter estimation.

Our key contribution is a beam search algorithm (BS)
for QP-based CRF inference. BS is well-suited for scene
labeling, because it:

1. Accounts explicitly for spatial extents of objects;
2. Solves QP entirely in the discrete domain conforming

to useful domain constraints;
3. Does not require common convexification and relax-

ation of QP, and ultimate discretization of the contin-
uos solution;

4. Has low computational costs, allowing for a large num-
ber of CRF nodes, and a full-node connectivity, as of-
ten needed for modeling long-range dependencies be-
tween objects in the scene.

BS starts from an initial labeling of superpixels corre-
sponding to the initial state, as illustrated in Fig. 1. Then, it
gradually builds a search tree, where tree nodes correspond
to search states, i.e., candidate scene labelings. The tree
depth is incremented as new successor states are generated
from a subset of states at the current depth. The search con-
tinues until convergence, when no “better” successors can
be generated. BS is defined by the following three func-
tions: Successor – for stochastic exploration of the search
space by randomly generating successor states, given par-
ent states; Heuristic – for selecting a set of B “best” cur-
rent states for exploration, whereB is the input beam-search
width parameter; and Score – for selecting the “best” state
as the solution.

The Successor function explicitly accounts for spatial
extents of objects by jointly flipping the class labels of a
connected component of superpixels when generating new

1



Figure 1. BS: States in the search tree correspond to candidate
scene labelings. The tree is gradually expanded by generating suc-
cessor states from a subset of B best states (black) estimated by
the Heuristic function. The Score function selects the optimal leaf
state (red) as the solution of CRF inference.

states. The Heuristic function is efficiently computed as a
difference between the CRF’s conditional log-likelihoods
of the parent and successor states. It is efficient because
it takes into account only (a few) changes in superpixel la-
beling between the states, instead of all superpixels. Finally,
the Score function efficiently evaluates the CRF conditional
log-likelihood of leaf states, and selects the state with the
largest Score as an optimal solution. Note that, by construc-
tion, the leaves are guaranteed to have the largest Score val-
ues among all states in the search tree, and thus it suffices
to look for the solution only among the leaf states.

We present effectiveness of our BS for scene labeling on
the MSRC [28], Stanford Backgroud [8] , PASCAL VOC
2009 and 2010 [3] datasets.

In the sequel, Sec. 2 points out our contributions rela-
tive to prior work; Sec. 3 formulates CRF; Sec. 4 specifies
CRF inference as QP; Sec. 5 formulates BS; Sec. 6 defines
the CRF potentials, and describes how to learn the poten-
tials and mutex constraints from training data; and Sec. 7
presents our results.

2. Prior Work and Our Contributions
This section reviews related work and points out our con-

tributions in terms of: i) Enforcing hard constraints in CRF
inference; ii) Directly solving QP in the discrete domain;
and iii) Low complexity of our BS.

Accounting for domain constraints between objects in
the scene is important, because they can help resolve com-
peting hypothesis in inference. In this paper, we focus on
the mutual-exclusion (mutex) constraints that prohibit cer-
tain label assignments (e.g., the sky cannot occur below
grass). CRF represents domain constraints with features
which are weighted to form potential functions. For en-

forcing constraints in CRF inference, the feature weights
should be sufficiently large so as to penalize scene labelings
that violate the constraints. However, since the weights can-
not be infinite, in some cases CRF inference may overrule
the constraints, yielding non-sensical results.

We address this problem by keeping separate domain
constraints from the other potential functions of CRF aimed
at encoding smoothness and context. We cast CRF infer-
ence as a QP with quadratic constraints. Specifically, we
use the smoothness and contextual potential functions of the
CRF to express the QP objective, and separately use mutual-
exclusion constraints of the domain to express the quadratic
constraints of the QP.

CRF inference as QP typically requires convexification
of the QP objective to allow using standard convex op-
timization algorithms [26, 12]. Convexification can be
avoided, e.g., by using message-passing [16], or grad-
ual progression between linear programming and QP [17].
However, these approaches are not suitable for our fully
connected CRF, since their complexity depends on the num-
ber of CRF edges. Existing semidefinite programming ap-
proximations of QP are also inappropriate, because the ma-
trix of our QP’s quadratic objective cannot be assumed as
being (“close to”) positive semidefinite.

Importantly, most QP solvers relax the optimization con-
straints to the continuous domain. This would be unsuit-
able, because domain constraints may be violated under
continuous relaxation. In contrast, our BS does not use con-
tinuous relaxation, but directly solves QP in the discrete do-
main, strictly enforcing domain constraints.

Our approach is related to Swendsen-Wang (SW) cut [1],
which iterates Metropolis-Hastings reversible jumps. Each
jump randomly cuts graph edges and flips the labels of a
connected group of nodes for a faster exploration of the
search space than other MCMC algorithms. However, SW
evaluates CRF in each visited state, which is expensive for
large graphs as ours. Also, in practice, SW iterations are
often interrupted before convergence, due to long running
times. In contrast, our BS is efficiently guided by a heuristic
function to select “good” candidate solutions, and guaran-
teed to converge fast to a local maximum.

Search-based structure prediction methods are gaining
momentum in computer vision [10, 5, 14, 24], but they have
never been used for scene labeling. Their key limitation is
the requirement to approximate the loss function, and thus
guide the search. Inspired by HC-Search [25, 2], we in-
stead use a rank-based search strategy that makes search
decisions by comparing relative values of the search states
assigned by the Heuristic function. As in [25, 2], we use the
Heuristic function to guide the beam search, and the Score
function to identify the solution. The key difference is that
we derive the Heuristic and Score from the original (CRF-
based) optimization objective, whereas these two functions



are learned separately in a distributed learning architecture
of [25, 2].

3. The CRF Model
Images are partitioned into superpixels, which are used

to ground our CRF of the scene. In particular, superpixels
are organized in a graph, G = (V,E). V is a set of nodes,
i = 1, . . . , n, |V | = n, corresponding to superpixels. E is a
set of edges (i, j) ∈ E that capture dependencies between
pairs of superpixels i and j. In this paper, we consider a
fully connected graph, where edges connect all node pairs
E = V × V , |E| = n2.

The CRF associates an indicator random variable Xi

with every node i ∈ V . Each Xi takes values from a set
of object class labels L = {1, 2, ..., k}, where |L| = k.
When Xi = i′ ∈ L then CRF assigns class label i′ to su-
perpixel i. The set of all random variables is denoted as
X = {Xi : i ∈ V }. The conditional log-likelihood of the
CRF is specified as

logP (X|G) =
∑
i∈V

φi(Xi = i′)

+
∑

(i,j)∈E

φij(Xi = i′, Xj = j′)− logZ,

(1)
where {i′, j′} ∈ L, and Z is the partition function. The
unary potential φi(Xi = i′) is defined as a log-likelihood
of Xi having label i′ ∈ L. The pairwise potential φij(Xi =
i′, Xj = j′) represents a joint log-likelihood of Xi and
Xj having labels i′ and j′, respectively. In the following,
we will use shorthand notation φii′ = φi(Xi = i′), and
φii′jj′ = φij(Xi=i

′, Xj=j
′). Sec. 6 specifies the unary

and pairwise potentials.
We formulate our scene labeling problem as finding the

MAP assignment X̂ = arg maxX P (X|G). In the following
section, we explain how to conduct this inference.

4. CRF Inference as QP
This section formulates the MAP assignment problem as

QP. We begin by deriving the quadratic objective of QP, and
then extend that formulation to include domain constraints.

It is convenient to express logP (X|G), given by (1),
in terms of binary random variables xii′ ∈ {0, 1} over
superpixel-label pairs. When Xi = i′ we have xii′ = 1,
and when Xi 6= i′ we have xii′ = 0. A column vec-
tor of all (n · k) binary random variables is denoted as
x = [. . . xii′ . . . ]

>. Thus, the MAP assignment problem
can be posed as

max.
∑

i∈V ;i′∈L
φii′xii′ +

∑
(i,j)∈E;i′,j′∈L

φii′jj′xii′xjj′

s.t. for all i ∈ V,
∑
i′∈L

xii′ = 1, x ∈ {0, 1}n·k
(2)

The quadratic objective of (2) can be compactly ex-
pressed as x>Φx, where Φ is an (n·k)×(n·k) affinity ma-
trix whose elements are the unary and pairwise potentials.
The off-diagonal elements of Φ are defined as Φ(ii′),(jj′) =
φii′jj′ , and the main diagonal elements of Φ are defined as
Φ(ii′),(ii′) = φii′ .

As mentioned in Sections 1 and 2, our next goal is to in-
corporate domain constraints in QP, which are expected to
improve the quality of solutions by eliminating illegal con-
figurations from consideration. In this paper, we focus on
the mutual-exclusion (mutex) constraints that prohibit cer-
tain non-sensical label assignments. For example, suppose
that a QP solver considers a hypothesis that a superpixels i
and j get assigned candidate class labels i′ = “grass” and
j′ = “sky”, where i is located at the top of the image, and j
at the bottom. As common-sense knowledge rules out that
grass can occur above the sky in natural scenes, if i gets as-
signed label i′ = “grass”, i.e., xii′ = 1, then j must not
be assigned label j′ = “sky”, i.e., the QP solver must set
xjj′ = 0. This type of reasoning can be formalized as the
equality constraint: xii′ · xjj′ = 0. Intuitively, this equality
constraint strictly enforces that only one of the two labels
are allowed for the two superpixels.

Following the approach of [21], all mutex constraints can
be compactly represented as

x> M x = 0, (3)

whereM is an (n·k)×(n·k) binary constraint matrix. When
its elements are set to one, M(ii′),(jj′) = 1, then the corre-
sponding label assignments are prohibited xii′ ·1 ·xjj′ = 0.
Conversely, when M(ii′),(jj′) = 0 then superpixels i and
j may be assigned any arbitrary class labels from L, be-
cause the quadratic equality constraint still remains satis-
fied, xii′ · 0 · xjj′ = 0. Note that M is typically sparse.
Sec. 6 specifies M for each image.

Further, it is convenient to merge the set of linear con-
straints of the problem in (2) — namely that for all i ∈ V ,∑

i′∈L xii′ = 1 — with the quadratic equality constraints
in (3). For every superpixel i, we set all the corresponding
elements of matrix M to one, M(ii′),(ij′) = 1, if i′ 6= j′.
This prohibits illegal assignments of multiple distinct la-
bels to a single superpixel, since for all i we will have
xii′ · 1 · xij′ = 0, if i′ 6= j′.

By using the affinity matrix Φ, and the constraint matrix
M , from (2), we finally derive the following QP:

max. x>Φx

s.t. x>Mx = 0, x ∈ {0, 1}n·k .
(4)

Note that (4) does not relax the original problem in (2).
While the constraints in (4) and (2) are not equivalent, the
objective and constraints of (4) make the problem of (4)
equivalent to that of (2). The constraints in (2) enforce that



every superpixel is assigned exactly one label. The con-
straints in (4) only enforce that every superpixel is not as-
signed multiple labels. But the objective of (4) will not be
maximum if a superixel is unlabeled.

In the following section, we specify our new algorithm
for solving the QP problem in (4).

5. Beam Search

Given an image and its superpixels, the search starts
from their initial labeling x0, and gradually builds the
search tree with new states x. At every tree depth, BS con-
siders at most B best states for further exploration, based
on Heuristic values of these states. Exploration consists of
stochastically sampling successor states from the selected
parent states, which increments the current tree depth. The
sequential tree expansion stops when no successor state
gives a positive Heuristic value. Below, we formally define
the elements of our search framework.

State-space: The state-space is defined as Ω = {x :

x ∈ {0, 1}nk , x>Mx = 0}. The states correspond to
candidate scene labelings respecting mutex constraints.

Successor function, Γ : x → x′, generates new states
x′ from x. Γ modifies a given state x by jointly changing
the labels of a group of superpixels in x, resulting in x′

which strictly satisfies mutex constraints. Thus, Γ defines:
i) How to select a set of superpixels to be re-labeled; and
ii) How to determine their new labels, as explained below.
Fig. 2 illustrates an example of generating a new state.

For choosing a set of superpixels, we first probabilisti-
cally cut edges in E whose pairwise potentials are below a
random threshold. Specifically, edges (i, j) ∈ E are char-
acterized by pairwise potentials φii′jj′ , where i and j are
assigned labels i′ and j′ in state x. A threshold is randomly
selected in the range between the minimum and maximum
values of φii′jj′ to cut all edges with pairwise potentials
less than the threshold. This partitions G into a set of dis-
connected subgraphs. We then randomly select one of the
subgraphs, and then, within the subgraph, again randomly
select a connected component (CC) of superpixels that are
neighbors and have the same label. To respect spatial ex-
tents of objects, we jointly re-label all superpixels in the se-
lected CC to the label of one of the neighboring connected
components in the selected subgraph. This encourages spa-
tial smoothness, and removes holes within objects in the
resulting scene labeling.

The successor state x′ is accepted if mutex constraints
are satisfied, x′>Mx′ = 0. We efficiently compute this
quadratic as follows. Re-labeling of nodes in the selected
CC does not change the entire x, but only a part of this
vector. Let us denote this difference as δ = x′ − x, which
is non-zero for only a few indices of nodes that belong to the

Figure 2. Consider a state x with the shown labeling. After randomly
cutting the edges we have a set of subgraphs which are partitioned by red
curves. We randomly select a CC with labels yCC in a random subgraph.
Updated labels are randomly chosen as the label of neighboring CC (y′ in
this case) which leads to a new state x′. Note that CRF edges are due to
less pairwise potential, so subgraph boundaries does not imply object class
boundary.

CC. Then, the mutex constraints for x′ can be expressed as

x′>Mx′ = (x+ δ)>M(x+ δ) = 2δ>Mx+ δ>Mδ = 0,
(5)

because it is already guaranteed that the parent state satisfies
mutex constraints, x>Mx = 0. Complexity of verifying
(5) is low, because the CC would typically consist of only
a few nodes, and M is sparse. This step guarantees that
the final solution found by BS strictly satisfies all mutex
constraints. The stochastic generation of successor states
helps avoid local optima.

Heuristic function, H(x′,x), evaluates new states x′

given their parent x, and guides the expansion of the search
tree by selecting at most B best successors of x. Ide-
ally, new states should be evaluated using the QP objective,
x′>Φx′, stated in (4). This would ensure that BS is guided
toward an optimal solution of the QP. However, computing
the quadratic objective for large CRFs as ours at every can-
didate state would be prohibitively expensive. To address
complexity issues, we again use the difference vector δ be-
tween x′ and x to express the QP objective as

x′>Φx′ = x>Φx+ 2δ>Φx+ δ>Φδ. (6)

For all new statesx′, we note that (6) has the same first term,
x>Φx. Fortunately, evaluating the other two terms in (6)
is not computationally expensive, because they account for
only a few nodes in the CC. This motivates our definition
of Heuristic as

H(x′,x) = 2δ>Φx+ δ>Φδ. (7)

A more global heuristic function might better evaluate can-
didate states, but at the price of increasing computational
complexity relative to ours.

The Strategy for selecting B best successors is to keep
generating x′ = Γ(x) until we obtain B new states that
satisfy mutex constraints and yield a positive Heuristic,
H(x′,x) > 0. As we prove below, the latter requirement
ensures that successors must monotonically increase the QP
objective. BS stops when no successor can satisfy both of
the two requirements after a sufficiently long running time.



Score function, S(xl), is efficiently computed in at most
B2 leaf states by summing already available Heuristic val-
uesH(x′,x) along the path, {x0, . . . ,xt, . . .xl}, that con-
nects the leaf xl with the root x0 (i.e., initial state):

S(xl) = x>0 Φx0 +

l∑
t=0

H(xt+1,xt). (8)

Again, note that the first term in (8) has to be computed only
once for all the leaves. The final scene labeling solution is
chosen among the leaves as x∗ = arg maxxl

S(xl).
It is straightforward to show that maximizing score S in

(8) amounts to optimizing the QP objective specified in (4).
Thus, BS monotonically increases the QP objective subject
to mutex constraints, given by (4), where the solution is
found when scoring all the leaves x∗ = arg maxxl

S(xl).
From (8), our complexity isO(n·k)+B·l·O((n·k)+n2).

The first term comes from the initial labeling of n superpix-
els with k labels. The second term comes from subsequent
generating and evaluatingB states at l search levels. Select-
ing a CC for generating a new state requiresO(n2) compu-
tations for n2 edges in the CRF, and complexity of verifying
that a candidate state satisfies the mutex constraints and has
positive heuristic is O(n × k). Note that the complexity of
BS grows linearly with the label set. It is worth noting that
BS can be easily parallelized. This parallel implementation
provides significant speedup resulting average convergence
time less than a second per image on an Intel i7 machine
with 8 GB memory.

6. CRF Potentials and Mutex Matrix
This section first describes the superpixels segmentation

method, then specifies the unary and pairwise potentials of
our CRF. After that, it describes how to compute the poten-
tials and finally specifies how to estimate the mutex matrix
M .

Superpixel segmentation. For a fair comparison with
the state of the art, we use the same method for extracting
superpixels as that used in related work [28, 9, 13, 34, 15] –
namely, the low-level segmentation algorithm of [4].

Unary Potential is defined as a sum of texture, color and
location potentials, φii′ = φtex

ii′ + φcol
ii′ + φloc

ii′ . φ
tex
ii′ is speci-

fied as confidence of a boosted classifier, where each weak
classifier is a decision stamp based on a multi-class logistic
regression of texture features. For texture features of every
superpixel i, we use the response of 17-dimensional filter
bank of Gaussian and Laplacians-of-Gaussian filters, as in
[28]. φcol

ii′ is computed as the negative Log-Mixture of Gaus-
sian of the 16 × 3 color histogram of superpixel i for class
i′. φloc

ii′ is defined as the negative log-prior (i.e., frequency)
of the class i′ appearing at the normalized location of i. We
use the piecewise training approach [28] to learn each of the
potentials separately.

Pairwise Potential is defined as a sum of color-
smoothness and distance potentials, φii′jj′ = φcol

ii′jj′ +

φdis
ii′jj′ , as in [34]. The color pairwise potential between

two superpixels i and j is computed as φcol
ii′jj′ = g(Ii−Ij),

if i′ = j′, else 0, where g is a negative log-Gaussian with
identity covariance matrix, and Ii, Ij are the color his-
tograms of superpixels i and j. The distance potential is
defined as φdis

ii′jj′ = g(si−sj), if i′ = j′, else 0, where
si, sj are the locations of superpixels i, j.

Mutex estimation. For specifying the mutex matrix M ,
we make the assumption that the training dataset is suffi-
ciently large. We use the frequency of co-occurrence of ob-
ject classes in particular spatial layouts, estimated directly
from training data. Specifically, we define an augmented
label set {(object, object, configuration)}. For configura-
tion labels we use four qualitative spatial relations: “left”,
“right”, “above”, “below”. For every pair of superpixels
(i, j) in training data we identify their configuration label,
i.e., estimate one of the four spatial relations, relative to i.
Then, we count the number of times the true class labels i′∗

and j′∗ of every pair of superpixels (i, j) occur in the four
configurations. When a new image is encountered, every
pair of its superpixels (i, j) is first assigned one of the four
configuration labels, and then all corresponding elements of
matrixM are set to either one,M(ii′),(jj′) = 1, if the pair of
object classes (i′, j′) has never been observed in the spatial
configuration of superpixels (i, j) in training; or set to zero,
M(ii′),(jj′) = 0, otherwise.

7. Results

Datasets. We evaluate BS on four benchmark datasets:
the MSRC dataset [28], the Stanford Background dataset
(SBD) [8] and the PASCAL VOC 2009 and 2010 [3]
datasets. The MSRC dataset consists of 591 images of 21
object classes. We duplicate the evaluation setup of [28] to
have the standard split of training and test images. The SBD
dataset has 715 images having seven background classes
and one generic foreground class. We follow the five fold
cross validation experiment setup of [8]. The PASCAL
VOC 2009 and 2010 datasets consist of images of 20 ob-
ject classes. Here we train on training images and test on
validation images as done in [20] and [15]. Accuracy is
measured as the standard VOC measure [3].

For training, we compute the ground-truth label of a su-
perpixel as the majority ground-truth class labels of its pix-
els. For testing, we compute the label assignment accuracy
at the pixel level. As convergence time of BS and final so-
lution depend on the initial state, we initialize the search to
a structured prediction of logistic regression. We use top
50 ranked logistic regression predictions as multiple initial
states, and then run BS for each, and finally select the best
solution. Note that these multiple searches can be paral-



lelized for efficiency.
In each step of BS when the search tree-depth is incre-

mented, we choose at most B best candidates from 2B suc-
cessor states of a parent state. Overall, the acceptance rate
of new states has a large standard deviation over the search
steps, since while generating new states, we discard those
that do not satisfy mutex constraints or do not have positive
heuristic score.

Evaluation of Input Parameters. We evaluate the fol-
lowing input parameters: beam widthB, and number of ini-
tial states. Fig. 5 shows that the accuracy increases initially
as B becomes larger, but saturates after B = 10. The same
effect can be noticed for varying the number of initial sates.
As we increase B, BS keeps a larger number of promising
candidate sates, but after a certain limit (10 in our case),
the beam gets populated with spurious sates. This does not
affect our accuracy, but increases our running time. In our
experiments, we use B = 10, and set the number of initial-
izations of BS to 50. From figures 4, 5, our running time
has a linear-like profile with respect to both B and initial
points, when BS is parallelized over the beam.

Baselines. We compare BS with the following four base-
lines, B1–B4. Comparison with the baselines is done on the
MSRC dataset.

B1. Swendsen-Wang cut (SW-cut): SW-cut addresses
the intractable CRF inference with the Metropolis-Hastings
(MH) sampling algorithm. MH draws samples x from
the CRF’s posterior, P (x|G), to generate new states. The
jumps between the states are reversible, and governed by
a proposal distribution Q(x → x′). This also cuts CRF
edges for choosing a connected component, CC, and up-
dates its label to a random label. The proposal is accepted
if the acceptance rate, α, drawn from the uniform distribu-
tion, U(0, 1), satisfies α<min{1, Q(x′→x)

Q(x→x′)
P (x′|G)
P (x|G) }. Here,

CRF posterior, P (x|G) is computed as in (1), and proposal
distribution is proportional to the number of edges which
are cut during CC selection as in [23]. For fair comparison,
we keep the CC selection method the same as ours. The
accuracy of 81.5% is 10% less than ours with higher run-
ning time of 30-32sec (Tab. 1). This added accuracy comes
from exploring B states in every step of the search instead
of only one state as in SW-cut.

B2. QP without mutex constrains (QPWOM): In this
baseline, we exclude the hard mutex constraints while con-
ducting the inference. We only keep the constraint that does
not allow a superpixel to have multiple labels. This justi-
fies the importance of having mutex constraints to guide the
search (Fig. 4). Fig. 3 shows an example where QPWOM
results in an infeasible labeling: superpixels labeled with
‘sky’ are below the superpixels with label ‘boat’. In BS
such labelings are restricted due to hard mutex constraints.

B3. QP with relaxed mutex constrains: Here we use
a standard QP solver (IBM CPLEX Optimizer) aiming to

Figure 3. Comparison with QPWOM with BS on an image from MSRC
dataset. Infeasible labeling is done by QPWOM due to the missing mutex
constarints.

Figure 4. Comparison with baselines on the MSRC dataset. Beam Search
(BS) is our proposed approach, LOGCC is B4 where nodes of a CC is
updated with logistic learning and QPWOM is our approach without mutex
constraints. We also show the running time (sec) of BS for each B.

solve the optimization : x∗ = arg maxx x
T (Φ − γM)x

(γ ≥ maxi

∑
i Φij) while relaxing the integer constraints

as x ∈ [0, 1]nk. This makes the mutex as soft constraints.
The accuracy is 85.4% with running time 22 sec, which is
approx. 6% less than ours with higher running time. Com-
parison to B3 shows solving the optimization in the discrete
domain is more efficient than the relaxed counterpart.

B4. CC updates with logistic regression (LOGCC):
Here, instead of choosing the updated label of a CC from
the neighboring superpixels, we update the label of the CC
using a multiclass logistic regression learner. Thus each
node of the CC is assigned the label having highest class
likelihood measured by logistic regression classifier. We
notice that the performance is not improved with the addi-
tional learning (Fig. 4).

State of the art comparison: Tab. 1 shows the com-
parison with the state-of-art methods on the MSRC dataset,
where our accuracy 4.5% better the previous best approach
[34] which uses QP relaxation as inference for fully con-
nected CRF model over pixels. Comparisons on the SBD
and PASCAL 09, 10 datasets are shown in the Tab. 2. On
the SBD, our approach is slightly worse than the two state-
of-the approaches ([19, 27]) which, unlike ours, use multi-
scale segments and higher order potentials. On PASCAL
2009 dataset our approach achieves higher accuracy than
the previous state-of-art approach ([20]) by 2.9%. On PAS-
CAL 2010 dataset, two modified versions of the approaches
presented in [7] and [20] achieve better performances than
us. These methods use object segmentation or foreground



Figure 5. Evaluation of input parameters (B and number of initial starting
points) on the MSRC dataset. We vary B in X axis and number of initial
starting points in Y axis. Running times (sec) are shown for specific B and
number of initial points

.

Method MSRC Test time
[6] 70.0 N/A
[8] 76.4 N/A
[23] 82.9 30-32s
[15] 86.0 0.2s
[33] 86.5 N/A
[34] 87.0 N/A
Ours 91.5 0.8 s

Table 1. State-of-the-art comparison of pixel classification accuracy(%)
and computation times(seconds) per image on the MSRC dataset.

Method SBD
[8] 76.4

[22] 76.9
[29] 74.1
[19] 81.9
[27] 82.9
Ours 81.1

Method P ’09
[20] 37.2
[7] 34.1
[23] 35.7
Ours 40.1

Method P ’10
[33] 31.2
[15] 30.2
[7] 40.1
[20] 39.7
Ours 34.2

Table 2. State-of-the-art comparison of segmentation accuracy(%) on the
SBD (left), PASCAL VOC 2009 (middle) and 2010 (right) datasets.

Figure 7. Failure case of BS on an image from the Pascal 09 dataset.
Ground Truth = GT.

segmentation as additional cues, whereas we do not use
such cues.

Fig. 6 presents qualitative results of our approach on
four datasets and Fig. 7 shows a failure case of BS for an
image from the Pascal 09 dataset where the object class ‘gas
cylinder’ is confused with the ‘bottle’ class and back portion
of the person body is not detected due to the presence of
shadow in the image.

8. Conclusion
We have presented a new approach to scene labeling.

Scene labeling is posed as the MAP assignment of a fully
connected CRF, grounded onto superpixels. The MAP as-
signment is formulated as quadratic program, and solved us-
ing our new Beam Search (BS) algorithm. BS uses the fol-
lowing three functions to build a search tree, where search
states correspond to candidate scene labelings. The Suc-
cessor function generates successor states from a subset of
parents. The Heuristic function evaluates and selects top B
states for exploration. The Score function finds the leaf that
provably maximizes the QP objective of our CRF inference.
BS is well-suited for scene labeling, because it: solves the
QP in the discrete domain strictly conforming to useful do-
main constraints, and has low computational costs, allowing
for a large number of CRF nodes and full-node connectivity.

Our experimental evaluation demonstrates that BS out-
performs the state of art on some benchmark datasets (e.g.,
MSRC) and achieves competitive performance on the other
datasets (e.g., Stanford Background). Also, when we ac-
count for inconsistency constraints from domain knowl-
edge, performance is improved by 9% on the MSRC dataset
relative to a variant of our approach that ignores the con-
straints. Interestingly, initializing BS with predictions of
class labels by logistic regression does not notably improve
performance over the case when BS is initialized with a ran-
dom selection of class labels. BS is computationally effi-
cient, and can also be easily parallelized.
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[29] G. Singh and J. Košecká. Nonparametric scene parsing with
adaptive feature relevance and semantic context. In CVPR,
2013. 1, 7

[30] A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual
models for object detection using boosted random fields. In
NIPS, 2004. 1

[31] J. Verbeek and W. Triggs. Scene segmentation with CRFs
learned from partially labeled images. In NIPS, 2007. 1

[32] L. Yang, P. Meer, and D. J. Foran. Multiple class segmenta-
tion using a unified framework over mean-shift patches. In
CVPR, 2007. 1

[33] J. Yao, S. Fidler, and R. Urtasun. Describing the scene as
a whole: Joint object detection, scene classification and se-
mantic segmentation. In CVPR, 2012. 7

[34] Y. Zhang and T. Chen. Efficient inference for fully-
connected CRFs with stationarity. In CVPR, 2012. 1, 5,
6, 7


