
A Bayesian Framework
For the Local Configuration of Retinal Junctions

Touseef Ahmad Qureshi, Andrew Hunter and Bashir Al-Diri
School of Computer Science, University of Lincoln, United Kingdom

tqureshi@lincoln.ac.uk, ahunter@lincoln.ac.uk, baldiri@lincoln.ac.uk

Abstract

Retinal images contain forests of mutually intersecting
and overlapping venous and arterial vascular trees. The ge-
ometry of these trees shows adaptation to vascular diseases
including diabetes, stroke and hypertension. Segmentation
of the retinal vascular network is complicated by incon-
sistent vessel contrast, fuzzy edges, variable image quality,
media opacities, complex intersections and overlaps. This
paper presents a Bayesian approach to resolving the con-
figuration of vascular junctions to correctly construct the
vascular trees. A probabilistic model of vascular joints (ter-
minals, bridges and bifurcations) and their configuration in
junctions is built, and Maximum A Posteriori (MAP) estima-
tion used to select most likely configurations. The model is
built using a reference set of 3010 joints extracted from the
DRIVE public domain vascular segmentation dataset, and
evaluated on 3435 joints from the DRIVE test set, demon-
strating an accuracy of 95.2%.

Keywords: Retinal vessels configuration, vessels con-
nectivity, junction resolution, vessels trees reconstruction.

1. Introduction

Retinal vascular trees demonstrate adaptation in a vari-
ety of systemic diseases, including diabetic retinopathy, ar-
teriosclerosis, and hypertension [13], and are useful in bio-
metric applications [8]. Retinal vascular segmentation is
therefore an active research topic. Prior to performing quan-
titative analysis, an essential step is the correct formation of
retinal vessel trees.

There is relatively little published work for retinal vas-
culature tree formation (e.g. [2] and [14]). Segmenting
human vascular trees in general fall into two classes: one
segments the vascular region producing a pixel map, fol-
lowed by vessel thinning to form a vessel network [11, 15];
the other tracks vessels by perceptual grouping of segments
at disconnected regions to form trees. The former suffers
from a range of problems, including: inconsistent vessel

Figure 1. A complex junction featuring two overlapping bifurca-
tions.

contrast, fuzzy edges, variable image quality, media opaci-
ties, complex intersections and overlaps. The latter may use
a range of graph exploratory algorithms for segments such
as minimum spanning trees [4], Mahalanobis distance [7]
and contour completion using fast marching algorithm [5].
These algorithms are not typically optimized to exploit the
specific topological features of the retina.

Al-Diri et al. [2] used perceptual grouping of retinal seg-
ments at disconnected junctions using self-organizing fea-
ture map (SOFMs) that uses the cost functions for config-
uration. Tsai et al. [14] have proposed a vessel tracing al-
gorithm that can resolve the connectivity at simpler cases
such as bifurcations and crossings. Neither methodology
provides a proper mechanism for correctly identifying mul-
tiple joints at complex junctions such as two overlapping
bifurcations; see Figure 1. Moreover, segmentation failure
may lead to broken segments, including missing junctions,
and to spurious segments.

This paper introduces a Bayesian algorithm designed to
support correct identification of retinal vascular trees. It
does this by analyzing junctions, where vessels meet. Each
junction may contain a number of joints (e.g. bifurcations);
the algorithm chooses the most likely configuration based
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on a Maximum a Posteriori (MAP) estimation, with the pri-
ors and likelihood densities estimated from a reference data
set. The rest of the paper is organized as follows. Section
2 discusses the reference database and methodology; sec-
tion 3 introduces the Bayesian model; section 4 discusses
the feature extraction methods; section 5 analyzes results.
Section 6 concludes the paper.

2. Methodology and Database
The retinal vasculature consists of a number of vascular

trees, each consisting of vessel segments meeting at bifur-
cations. These trees may occlude one another, producing
visual crossing points; two closely parallel occluding ves-
sels may visually overlap, producing an apparent “shared”
segment between two apparent bifurcations. Failures of
segmentation may also lead to apparent gaps in a vessel
(two visual segments end to end), and this may also occur,
depending on the segmentation algorithm, at bifurcations
or crossings. Segmentation algorithms therefore retrieve a
(possibly partially discontinuous) vascular network, from
which we must derive the underlying forest of trees. To
solve this problem we first divide the segmented network
into a set of simple segments divided by junctions, and then
join the segments into trees using relationships called joints.

Definition 1: segment. A segment, si, is an atomic sec-
tion of apparent vessel with no bifurcations, crossings or
breaks; it has two segment ends, the head shi (nearest the
Optic Nerve Head) and the tail, sti.

Definition 2: junction. A junction, Jk, is a clique defined
within a small locality in the image where a number of seg-
ment ends either meet or come into close proximity. This
includes the degenerate case of a single isolated segment
end.

Definition 3: joint. A joint, Lpk (the pth joint in the kth

junction) is a collection of segment ends. There are three
types of joint: a terminal contains a single segment end
{si}, a bridge is a set of two segment ends {si, sj}, a bi-
furcation contains one parent segment end, and a set of two
child segment ends, ({si}, {sj , sk}).

The algorithm assumes that the network is first divided
into independent segments, then assigns every segment end
to a junction. The vascular trees are retrieved by connect-
ing sets of segments via bridges and bifurcations. In this
approach, bridges are used both to rejoin vessels with seg-
mentation gaps, and to resolve intersections (which appear
as four segments in a junction, resolving into two bridges).

The DRIVE (Digital Retinal Images for Vessel Extrac-
tion) public domain retinal vascular dataset [12] is used to
optimize and test the algorithm. DRIVE contains 40 reti-
nal images, resolution 565 × 584, divided into 20 training
and 20 test images, together with reference standard vessel
segmentation maps (pixel maps). We developed an inter-
active computer program to further process DRIVE to pro-

Figure 2. An example of joints removed at a junction.

duce the “Drive Segment-Junction Set (DSJS),” available at
http://reviewdb.lincoln.ac.uk. Using this program, we first
removed all the junction points, including bifurcations and
crossings, identified in [3]. We eliminated a circular area
(radius r = 5 pixels) with the junction point as the center, so
that all segments are isolated; see Figure 2. In 2-3% of cases
– in vessel-congested areas – connections were removed
manually using a drawing tool rather than a circle, avoiding
excessive loss of detail. The optic nerve head area, which
is very congested with vessels, was eliminated from DSJS
using [9]. The segments were then identified as the mor-
phologically thinned connected components of DSJS (rep-
resenting centrelines). Junctions were created correspond-
ing to each junction point. Segments ends within five pix-
els of a junction point were then assigned to that junction,
and any junctions with junction points within five pixels of
each other were merged. We then interactively identified the
joints within each junction; in the case of bifurcation, this
process includes explicitly labelling the parent segment.

Definition 4: Segment Space. The segment space S is the
set of 2N vessel segment ends present in a particular DSJS
image, with their segment index and end type. S is given by
S = {sei |i = 1, 2, . . . N ∧ e ∈ {h, t}}, where h denotes the
head and t the tail.

The following rules apply:

1. A junction Jk is a proper subset of segment space,
Jk ⊂ S

2. The union of all junctions equals to segment space, i.e.⋃
k Jk = S

3. A segment si cannot have both its ends belonging to
the same junction, i.e. ∀i, j, shi , stj ∈ Jk =⇒ i 6= j

To satisfy rule 2, any segment ends not assigned to a junc-
tion derived from DSJS must be assigned a singleton junc-
tion containing just that segment end. To satisfy rule 3, any
segment abrogating the rule may be eliminated.

Definition 5: Junction configuration. A junction configu-
ration, Cqk (the qth configuration of the kth junction) is a set
of joints, such that every segment end in the junction is as-
signed to exactly one joint, Cqk = {Lpk|

⋃
p si ∈ L

p
k = Jk}.

Definition 6: Feature vector. A feature vector, fei , is a set
of measurements extracted at a segment end and character-
izing its direction and appearance.
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3. Bayesian Inference

The Bayesian inference model works by enumerating all
possible configurations of a junction, estimating the poste-
rior probabilities, P (Cqk |Jk) up to a normalizing constant,
and choosing the MAP estimate (highest posterior configu-
ration). The configuration posterior is estimated by Bayes
theorem using the prior times the likelihood:

P (Cqk |Jk) ∝ P (Cqk)P (Jk|Cqk) (1)

We assume that the joints composing the configuration
are statistically independent of each other, and we can there-
fore rewrite Equation (1) as:

P (Cqk |Jk) = P (Cqk)
∏
p

P (Lpk|f
p
k ) (2)

where P (Lpk|f
p
k ) is the posterior probability of the joint,

given the observed features fpk = {
⋃
fei |sei ∈ L

p
k}

In a second application of Bayes, we estimate the
P (Lpk|f

p
k ) as

P (Lpk|f
p
k ) =

P (fpk |L
p
k)P (Lpk)

P (fpk |L
p
k)P (Lpk) + P (fpk |L

p′

k )(P (Lp
′

k ))
(3)

where P (Lpk) is the prior probability of the joint class,
P (fpk |L

p
k) is the likelihood function for the observed fea-

tures, given the (true) joint type, and P (fpk |L
p′

k ) is the likeli-
hood function for the observed features given a “false joint”
consisting of arbitrarily chosen segment ends within a junc-
tion that do not form a true joint.

The configurations of a junction with a given num-
ber of segment ends fall into several configuration
classes, based on the number and type of joints in
the configuration. For example, a junction J contain-
ing four segment ends (se1, s

e
2, s

e
3, s

e
4) has four configura-

tion classes containing 22 configurations: one with four
terminal joints {{se1}, {se2}, {se3}, {se4}}, three containing
two bridges {{se1, se2}, {se3, se4}}, {{se1, se3}, {se2, se4}}, and
{{se1, se4}, {se2, se3}}, twelve with one bifurcation and one
terminal (e.g. {(se1, {se2, se3}), {se4}}), and six with a bridge
and two terminals (e.g. {{se1, se2}, {se3}, {se4}}). Table 1
lists all the junction configuration classes with up to six seg-
ment ends, the frequencies within the training set, and the
prior configuration probabilities, P (Cqk), estimated from
these.

Some theoretically possible larger configurations never
occurred; we set these to a minimal figure (0.001) to allow
the system to respond if it does encounter such rare cases.

The likelihood function for a joint P (fpk |L
p
k), is modelled

using the multivariate normal probability density function
N (µpk,Σ

p
k), where µpk and Σpk are the centroid vector and

|J | Configuration Total Freqency P (Ck)
1 1T 1062 1017 0.951
2 2T 45 0.451

1B 98 53 0.540
3 3T 15 0.011

1B, 1T 18 0.013
1Y 1370 1337 0.975

4 4T 5 0.007
2B 632 0.888

1B, 2T 19 0.026
1Y, 1T 711 55 0.077

5 5T 0 0.001
2B, 1T 2 0.039
1B, 3T 0 0.001
1Y, 1B 47 0.921
1Y, 2T 51 2 0.039

6 6T 0 0.001
3B 0 0.001

2B, 2T 1 0.100
1B, 4T 0 0.001

2Y 7 0.700
1Y, 3T 0 0.001

1Y, 1B, 1T 10 2 0.200

Table 1. Prior probability estimates of all possible junction config-
urations. T = terminal, B = bridge, Y = bifurcation.

Number of segments at all junctions 4056
Number of terminals 1017

Prior Probability for terminals 0.250
Prior Probability for non-terminals 0.749

Groups of two segments in all junctions 2038
Number of bridges 670

Prior Probability for bridges 0.328
Prior Probability for non-bridges 0.672

Groups of three segments in all junctions 2081
Number of bifurcations 1381

Prior Probability for bifurcations 0.663
Prior Probability for non-bifurcations 0.336

Table 2. Frequency distributions and Prior probability estimates of
joint classes.

covariance matrix of the joint feature vector for that class of
joints; P (fpk |L

p′

k ) is similarly modelled.
The prior probabilities of the joint classes, P (Lpk), es-

timated from the frequency distribution in the training set,
are given in Table 2.

4. Feature Extraction
To determine if a joint is valid or not a small number

of features are extracted at the associated segment ends.
These features bear rich information about joints. For ex-
ample, terminals are small (low width), bridged segments
have roughly equal widths, intensity profiles and directions,
bifurcations have a consistent relationship between widths
and angles. The features are extracted from an area along
7 centerline-profiles at the segment end; see Figure 3. The
basic segment end features are:

• Segment direction: the direction vector m represents
the direction of the straight line between the first and
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Figure 3. The geometry of a typical bifurcation, profiles at segment
end.

last centreline points in the segment end fp and bp, to-
wards the junction the segment end is associated with:
see Figure 3.

• Segment width, w: we use the Ribbon of Twins ac-
tive contour model [1] to extract the vessel width at the
seven centreline pixels of the segment end, and take the
mean.

• Segment intensity, µv, σv: we construct seven 1D in-
tensity profiles orthogonal to m at spacing one pixel,
use Gregson’s algorithm [6] to find the edges, and cal-
culate the mean and standard deviation of the included
intensities.

• Segment end class, e: as previously described, the end
of a segment nearest the ONH is the head, the other
end the tail.

During the width extraction process, the system some-
times generates abnormal widths, most frequently when two
closely parallel segments are erroneously segmented as a
single wider segment. This leads to a non-normal distri-
bution of widths. We used the square root of the width to
mitigate this outlier effect, which gives an approximately
normal distribution.

4.1. Derived Features

Let se1 and se2 be two segment ends with basic fea-
tures {w1, µv1 , σv1 ,m1} and {w2, µv2 , σv2 ,m2} respec-
tively, then the deflection angle α and width ratio β are de-
fined as:

α = cos−1

(
m1.m2

|m1|.|m2|

)
(4)

β =
min(w1, w2)

max(w1, w2)
(5)

We use the Bhattacharyya distance to characterize the
distance between segment intensities:

γ =
1

4
ln

(
1

4

(
σ2
v1

σ2
v2

+
σ2
v2

σ2
v1

+ 2

))
+

1

4

(
(µv1 − µv2)2

σ2
v1 + σ2

v2

)
(6)

The parity between the end types in a pair, φ2, is defined
as φ2 = e1 ⊕ e2, where ⊕ denotes the exclusive-OR opera-
tor.

The extracted features are then normalized to the range
[0, 1], using:

fni =
fi − fmin

fmax − fmin
(7)

Where fni denotes the standardized version of feature fi.
The minimum and maximum values are: vmin = 0, vmax =
255, wmin = 0, wmax = 10 (an empirical value, as the
maximum width depends on the image resolution in DRIVE
the maximum vessel width is 7 pixels), αmin = 0, αmax =
360.

The Shapiro-Wilk test was used to test all the features
against normality; all features were found to be approxi-
mately normally distributed (p=0.05).

The three joint classes have distinct feature sets. For ter-
minals, the feature set contains the width, mean intensity
and end class: f = {wi, µvi , ei}. The distributions of w
and v were estimated from 1017 terminals in the twenty
training images: µw = 0.09, µv = 0.48, σw = 0.04,
σv = 0.12. The end class e is a discrete, independent vari-
able, for which the prior probabilities are calculated using
probability mass function of the Bernoulli distribution. Let,
Gter be the probability mass function of the distribution e:

Gter =

{
0.73 e=t
0.27 e=h (8)

where 0.73 = 742/1017, there being 742 tail segment ends
among 1017 terminals. The likelihood can then be esti-
mated using the generalized probability density function as:

P (f |L) = N (µw, σw)N (µv, σv)Gter. (9)

For bridges, the feature set contains the deflection an-
gle, width ratio, Battacharya distance between intensity dis-
tributions, and end type parity, f = {α, β, γ, φ2}. The
distribution parameters were estimated from 564 bridges,
as: µα = 0.49, σα = 0.056, µβ = 0.85, σβ = 0.11,
µγ = 0.27, σγ = 0.15. The end class parity has value 1 (tail
meets head) in 531/564 = 0.94 of the true bridges (the re-
maining 6% of cases occurring rarely where segments curve
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angle β γ
s1, s2 µα1 = 0.36 µβ1 = 0.71 µγ1 = 0.31

σα1 = 0.07 σβ1 = 0.32 σγ1 = 0.25
s1, s3 µα2 = 0.41 µβ2 = 0.68 µγ2 = 0.32

σα2 = 0.08 σβ2 = 0.27 σγ2 = 0.31
s2, s3 µθ = 0.23 µβ3 = 0.72 µγ2 = 0.27

σθ = 0.10 σβ3 = 0.24 σγ2 = 0.36

Table 3. Parameters of distributions of bifurcation features.

back towards the ONH), and defines the probability mass
function Gbri. The likelihood is then given by:

P (f |L) = N (µα, σα)N (µβ , σβ)N (µγ , σγ)Gbri. (10)

For bifurcations, we do a pairwise analysis of the
width, intensity and direction disparities between the par-
ent segment end and each of the child segment ends in
turn. We further include the angle θ between the two
children, and an end class feature, φ3, which is defined
as 1 when the parent is a tail and the children both
heads, 0 otherwise. Let fi,j represent feature f taken
between segments i and j, where 1 represents the par-
ent and 2, 3 represent the children, the feature vector
is f = (α1,2, α1,3, θ2,3, β1,2, β1,3, β2,3, γ1,2, γ1,3, γ2,3, φ

3).
The features were analysed at 1381 true bifurcations, giving
the distribution parameters in Table 3, with φ3 = 0.76 =
1050/1381, given that 1050 of the 1381 training bifurca-
tions had the ideal end orientation combination. As for the
terminals and bridges, the likelihood is then calculated us-
ing the product of the estimated normal distribution func-
tions for the continuous parameters and the Bernouilli mass
function for the orientation.

We also estimate the parameters for the false joint distri-
butions, using the same training set and methodology. The
false terminal set consists of all non-terminal segment ends
from the training set. The false bridge set is constructed
by matching each bridge segment end in a crossing junc-
tion with its non-partners. The false bifurcation set is con-
structed by taking the true bifurcations and swapping the
parent segment end with a child segment end. For brevity,
the resulting distribution parameters are not shown.

4.2. Overlap Removal

An important source of errors in the system is mis-
identified segments. A particular problem occurs when two
vessels run parallel and overlap, which causes segmentation
of a single “overlap” segment. We detect such cases using
the algorithm introduced in [2]. First, we run the algorithm
as described above to perform a preliminary identification
of all the joints. Second, we identify segments that have
both ends identified as the parents of bifurcations in sepa-
rate junctions (this occurs as the overlap segment typically
has exaggerated width). Third, we merge the two junctions

Figure 4. Overlapping segments are falsely segmented as a single,
wide “overlap segment”. This is detected an eliminated, and the
system detects the resulting pair of bridges.

at the ends of the overlapping segment, and discard that seg-
ment. Fourth, we run the algorithm for a second time; when
the configuration is resolved it should select two bridges.
See Figure 5(b).

5. Performance Evaluation and Discussion
The proposed system was evaluated on the test images

of DRIVE using the vessel-classified version of DRIVE
(ground truth) introduced in [10] to compare the systems
output. The system was evaluated in two stages: first, using
just the joint likelihood of the joints; second, the full MAP
estimation taking into account the configuration priors. The
system is considered successful only if it can correctly de-
tects the configuration of all the joints at a junction: for
example, if the system has correctly detected a bifurcation
but wrongly identified the parent segment, it is considered
a failure. Figure 6 shows the success rate at junctions with
associated number of segments from one to six. The out-
put demonstrates high stability, and illustrates that using the
configuration priors to construct a MAP estimate improves
performance.

Of the features used to estimate the joint likelihood func-
tions, preliminary experiments suggest that the angle is
most important, then width, then intensity (experimental re-
sults omitted due to space).

The MAP estimation significantly improves perfor-
mance, although results are noticeably poorer for large junc-
tions. This may be partly due to a relatively small number
of examples.

6. Conclusion
This paper addresses the issue of determining connec-

tivity of retinal vascular trees across complex junctions,
and proposes a Bayesian inference model that enumerates
the configurations of local cliques, and chooses the MAP
estimate for the configuration of basic joints. A parametric
model is established using a substantive custom-marked
dataset. The experimental results are good, with 95.2%
of junctions correctly resolved. The system is potentially
applicable for other problems connecting segmented
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Figure 5. Performance analysis of the junction configuration sys-
tem. The square data-labels indicates the correct configuration
based only on the joint likelihood of joints; and the circle data-
labels shows the full MAP estimation including the configuration
prior. A configuration is considered correct if all joints are correct.

branching structures. For future work we will explore other
features of local joints (e.g. vessel entropy), global network
connectivity constraints, and address issues where parts of
the network are missing or are segmentation artefacts.
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