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Figure 1. Classical Min Bayes Risk (MBR) vs. Empirical Min Bayes Risk (EMBR): Probabilistic reasoning involves (a) learning the
parameters of our model from training data, and (b) making predictions or decisions by optimizing Bayes Risk or expected loss. We
present a meta-algorithm (EMBR) that is motivated by MBR but is instead based on Empirical Risk Minimization principle.

Abstract
When building vision systems that predict structured ob-
jects such as image segmentations or human poses, a cru-
cial concern is performance under task-specific evaluation
measures (e.g. Jaccard Index or Average Precision). An on-
going research challenge is to optimize predictions so as to
maximize performance on such complex measures. In this
work, we present a simple meta-algorithm that is surpris-
ingly effective – Empirical Min Bayes Risk. EMBR takes as
input a pre-trained model that would normally be the final
product and learns three additional parameters so as to op-
timize performance on the complex high-order task-specific
measure. We demonstrate EMBR in several domains, tak-
ing existing state-of-the-art algorithms and improving per-
formance up to ∼7%, simply with three extra parameters.

*Part of the work was done when author was a student at Nanyang
Technological University.

1. Introduction

Consider the following problem: given an input image x
and a black-box segmentation model that assigns a score
S(y;x) to segmentations y of the image, choose a seg-
mentation so as to maximize performance on a task-specific
evaluation measure. Which segmentation should we out-
put? This work argues that the popular choice of picking
the segmentation with the highest score is not necessarily
the best decision.

Broadly speaking, the de-facto approach today in computer
vision for modeling structured objects (such as segmenta-
tions & poses) is to (a) formulate a model where param-
eters determine a scoring function, (b) choose parameters
that optimize performance on a training set, and (c) predict
the configuration that (approximately) maximizes the scor-
ing function at test time. While this seems like an obvious
and reasonable workflow, in this paper, we show how to take
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models that are the final product of such workflows and im-
prove performance. With little additional effort, we take ex-
isting published models and extract additional performance
gains of up to ∼7%.

The motivation for our approach comes from Bayesian deci-
sion theory, which gives a principled methodology for mak-
ing decisions in the face of uncertainty and task-specific
evaluation measures. The key aspects of Bayesian decision
theory are to optimize expected performance on the mea-
sure of interest while averaging over uncertainty. Specif-
ically, the prescription of Bayesian decision theory is as
follows: (1) learn a model that gives accurate probabilities
P(y|x), then (2) make predictions so as to minimize ex-
pected loss under the learned distribution, i.e. ŷMBR =
minŷ EP(y|x)[`(y, ŷ)] = minŷ

∑
y P(y|x)`(y, ŷ), where

`(·, ·) is the task-specific loss function of interest. We refer
to this as the Minimum Bayes Risk (MBR) predictor.

While a direct application of Bayesian decision theory to
most structured prediction problems is not feasible due to
computational considerations, we show that it is nonethe-
less possible to efficiently construct structured predictors
that incorporate the key ingredients – incorporating task-
specific losses and averaging over uncertainty. Concretely,
we will take as input the trained scoring function S(y;x)
from a given model and produce a set ofM plausible candi-
date solutions Y = {y1, . . . ,yM} along with a probability
distribution over these candidates. Decisions are made by
employing the MBR predictor but restricting the optimiza-
tion and summation required to the M candidate solutions.
The surprising observation of this work is that this formula-
tion can produce substantial gains over state-of-the-art per-
formance while parameterizing this meta-model with only
three parameters (see Fig. 2 for an illustration) –

1. M , the number of candidate solutions,

2. T , which controls the scale (or “temperature”) of S(·),

3. λ, which determines the amount of diversity to impose
when generating the M candidates.

Crucially, while our method is motivated by decision theory
principles and resembles MBR, it is actually an instance of
Empirical Risk Minimization (ERM) – our goal is not to ap-
proximate Bayes Risk, rather to train a predictor that utilizes
ideas from decision theory and performs well on a held-out
dataset. The three parameters are learned by performing
grid search and choosing the setting that minimizes empir-
ical risk. Thus, we call the method Empirical Minimum
Bayes Risk (EMBR) prediction.

Contributions. We develop a simple and efficient meta-
algorithm that is inspired by Bayesian decision theory and
which inherits some of the improvements in accuracy that
the framework promises, but which is computationally ef-
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Figure 2: Illustration of the effect of two of the three parameters
in our model. The colored dots represent the chosen candidates
Y, and the height of the curve at these points illustrates the P̃(y)
value assigned to each candidate. These parameters are learned via
grid search, then predictions are made by using these P̃(y) values
within a Minimum Bayes Risk predictor.

ficient, simple to implement, agnostic to the loss function
being used, and can be applied to models which have al-
ready been trained, even ones not trained in a probabilistic
framework (e.g. Structured SVMs).

Our experiments on a range of problems – binary
foreground-background segmentation, human body pose
estimation, and semantic object-category segmentation –
show that the proposed approach consistently improves per-
formance over the input model, indicating that this is a
simple but effective way of improving performance by in-
corporating task loss into the prediction procedure. As
an example, by applying our methodology to the publicly
available pre-trained pose estimation models of Yang and
Ramanan [29], we achieved state-of-art accuracies on the
PARSE dataset, improving results by ∼7%.

2. Preliminaries

We begin by establishing notation before reviewing two
standard approaches to structured prediction: the probabilis-
tic approach, and the empirical risk minimization approach.

Notation. For any positive integer n, let [n] be shorthand
for the set {1, 2, . . . , n}. Given an input image x ∈ X ,
our goal is to make a prediction about y ∈ Y , where y
may be a foreground-background segmentation, or location
of body poses of a person in the image, or a category-level
semantic segmentation. Specifically, let y = {y1 . . . yn}
be a set of discrete random variables, each taking value in
a finite label set, yu ∈ Yu. In the semantic segmentation



experiments, u indexes over the (super-)pixels in the image,
and these variables are the labels assigned to each (super-
) pixel, i.e. yu ∈ Yu = {sky, building, road, car, . . .}. In
the pose estimation experiments, u indexes over body parts
(head, torso, right arm, etc.), and each variable indicates the
(discretized) location of the body part, u.

The quality of predictions is determined by a loss function
`(ygt, ŷ) that denotes the cost of predicting ŷ when the
ground-truth is ygt. In the context of semantic segmenta-
tion, this loss might be the PASCAL VOC [8] 1− intersection

union
measure, averaged over masks of all categories. In the con-
text of pose estimation, this loss might be the Average Pre-
cision of Keypoints (APK) measure proposed by Yang and
Ramanan [29].

2.1. Probabilistic Structured Prediction

Score. A common approach to probabilistic structured pre-
diction is to base the model on a score function S(y;x,w)
which assigns a score to configurations y (later, we will
drop the explicit dependence on w for notational simplic-
ity). The probability of any configuration is given by the
Gibbs distribution: P(y|x) = 1

Z e
S(y;x), where Z is the

partition function. We make minimal assumptions about the
structure of the scoring function.

Assumptions. Our key computational assumption is that
it is possible to efficiently compute argmaxy S(y;x) (or a
good approximation) using algorithms such as graph cuts
or α-expansion, but that it is not possible to compute prob-
abilities P(y|x) or expectations. This assumption is fairly
typical in modeling structured outputs, and is born out of the
disparity in hardness of maximization vs. summation over
exponentially large spaces. For instance, a maximum bi-
partite matching can be found in O(n3) time with the Hun-
garian algorithm [14], but summing over all perfect match-
ings (i.e. computing the permanent) is #P-complete [26].
The only other assumption that we make is that we can
modify unary potentials θu(yu) and tractably optimize a
unary-augmented score function, i.e. argmaxy S(y;x) +∑

u θu(yu), which allows leveraging methods such as Di-
vMBest [3] to find a diverse set of solutions by solving mul-
tiple maximization problems where S(·) is augmented with
diversity-encouraging unary potentials.

MAP Predictor. The MAP predictor finds the labeling y
that maximizes the probability or score:

yMAP = argmax
y∈Y

S(y;x). (1)

This problem is NP-hard in general [22]. Thus, most works
focus on exact inference for certain subclasses, e.g., when
the graph G is a tree or the scoring function is supermodu-
lar, MAP can be computed optimally via highly efficient al-
gorithms – dynamic-programming [19] and max-flow/min-

cut [11, 13], respectively.

MBR Predictor. The Bayes Risk of predicting ŷ is defined
as BR(ŷ) = EP(y|x)[`(y, ŷ)] =

∑
y∈Y P(y|x)`(y, ŷ).

This is the expected cost of predicting ŷ under loss func-
tion `(·, ·) when the annotations come from the distribution
P(y|x). The Minimum Bayes Risk (MBR) predictor is one
that minimizes this expected risk, i.e.

yMBR = argmin
ŷ∈Y

BR(ŷ) (2a)

= argmin
ŷ∈Y

∑

y∈Y
P(y|x)`(y, ŷ). (2b)

Intuitively, MBR assumes that any configuration y could
be the ground-truth annotation with probability given by
P(y|x), and decides to hedge against uncertainty by min-
imizing an average loss. Note that the MAP predictor is
the MBR predictor when the loss function is 0-1, i.e. as-
signs zero cost if ŷ is equal to ygt and constant cost oth-
erwise. Also notice that performing exact MBR prediction
is in general doubly intractable because the summation and
minimization are both over exponentially large choices (e.g.
all possible segmentations).

2.2. Empirical Risk Minimization

An alternative inductive principle is Empirical Risk Mini-
mization (ERM). In this view, we define a predictor function
f(x;w) that maps an input x to an output y and is parame-
terized by w. The goal is then simply to choose parameters
that minimize empirical risk, which is often chosen to be
the loss function of interest (if tractable), or some approxi-
mation to it (e.g. structured hinge loss).

In a common instantiation in computer vision, the form of
f(x;w) is chosen to resemble the MAP predictor. That is,
w is used to construct a scoring function S(y;x,w), and
then the output is set to be the y that maximizes the scoring
function. Note that in this case, the scoring function can still
be exponentiated and normalized to produce a distribution
over y, but it will not in general correspond to meaningful
beliefs about the values that y is likely to take on; the sole
concern in setting w is to minimize empirical risk, and we
emphasize that there is no reason to believe that a setting of
w that has low empirical risk will also yield a sensible dis-
tribution over y. To make this point explicit, when dealing
with such probability distributions, which are valid distri-
butions but were not trained to correspond to beliefs about
configurations, we will use the notation P̃(·).

3. Approach: Empirical MBR

The approach that we take in this paper follows the empir-
ical risk formulation as described in the previous section,
but rather than defining the prediction function to resemble



the MAP predictor, we define it to resemble an MBR pre-
dictor. As mentioned previously, straightforwardly employ-
ing the MBR predictor is intractable because the summation
and minimization are both over exponentially large choices
of y ∈ Y . Our decision that leads to tractability is to re-
strict both the sum and the minimization to be over a set of
M strategically chosen solutions Y = {y1,y2, . . . ,yM}.
Specifically, the predictor is defined as follows:

yEMBR = argmin
ŷ∈Y

∑

y∈Y
P̃(y|x)˜̀(y, ŷ) (3)

where we call yEMBR the Empirical MBR (EMBR) pre-
diction, P̃(·) is a probability distribution over theM config-
urations, and ˜̀(·, ·) is any loss function that is used by the
EMBR predictor. While it is natural to set the EMBR-loss to
be the same the task-loss, ˜̀(·, ·) = `(·, ·), this is not strictly
necessary in our formulation. Moreover, in some situations,
it may not be desirable (see [24, Section 4.7] for an example
from information retrieval), or possible (task-loss might be
a corpus-level loss, e.g. PASCAL Segmentation criteria can
only be computed on a dataset, not an individual image).

We describe how to construct the candidate set of solutions,
Y, and their probabilities, P̃(·), in the next subsections. The
full EMBR algorithm is given in Algorithm 1.

Computation. If we construct a matrix of pairwise losses:

L =




˜̀(y1,y1) ˜̀(y1,y2) · · · ˜̀(y1,yM )
˜̀(y2,y1) ˜̀(y2,y2) · · · ˜̀(y2,yM )

...
...

. . .
...

˜̀(yM ,y1) ˜̀(y1,y2) · · · ˜̀(yM ,yM )


 , (4)

and a vector stacking all approximate probabilities p =
[P̃(y1|x) . . . P̃(yM |x)]T , then the EMBR predictor can be
expressed with a single matrix-vector multiplication:

yEMBR = argmin
yi,i∈[M ]

∑

j∈[M ]

P̃(yj |x)˜̀(yj ,yi) (5a)

= argmin
yi,i∈[M ]

Lp (5b)

The runtime of EMBR given Y and P̃(·) is O(M2). In our
experiments M ≤ 50 and the cost of making predictions is
not a significant cost in the prediction pipeline.

3.1. Converting Scores to Probabilities

As mentioned previously, our approach in this work is to
assume access to a scoring function S(y;x), with minimal
assumptions on how it is constructed (manually tuned, or
learned so that the MAP predictor has low empirical risk).
We transform this scoring function and use it as the basis
for defining P̃(y|x) to be used within an EMBR predictor.

Algorithm 1 Empirical Minimum Bayes Risk Prediction

Input: Score function S(y;x), loss ˜̀(·, ·).
Input: Validation-selected parameters M , T , λ.
{DivMBest}
for m ∈ 1, . . . ,M do

Sm
∆ (y)← S(y) +

∑
u∈V

∑m−1
m′=1 λ · [[yu 6= ym

′

u ]]
ym ← argmaxy S

m
∆ (y;x)

end for
{Scores to Probabilities}
for i ∈ 1, . . . ,M do

P̃(yi|x)← exp{ 1
T S(yi;x)}∑M

j=1 exp{ 1
T S(yj ;x)}

end for
{Prediction}
i∗ = argmini∈[M ]

∑
j∈[M ] P̃(yj |x)˜̀(yj ,yi)

return yi∗

Given S(·) and set of candidates Y, perhaps the simplest
sensible choice for defining P̃(y|x) is as follows:

P̃(y|x) =
exp 1

T S(y;x)∑
y′∈Y exp 1

T S(y′;x)
, (6)

where T is a temperature parameter that determines the
peakiness of P̃(·). Note that this method of converting non-
probabilistic model outputs into probabilities has been stud-
ied in the unstructured case; notably, Platt [20] suggests
passing learned SVM outputs through a sigmoid function
that has a parameter that behaves similarly to our tempera-
ture (there is also one additional offset parameter in [20]).
Other approaches are possible. For example, [32] suggests
using isotonic regression, [31] discusses calibrating Naive
Bayes and decision tree classifiers, and [15] looks deeper
into re-calibrating outputs using the different methods and
applying them to different first-stage classifiers. In future
work it would be interesting to explore alternative mappings
from S(·) to P̃(·) inspired by these works. Interestingly, our
experimental results suggest that this choice is not crucial.

All that remains is to specify the candidate set Y.

3.2. Producing Diverse High-Scoring Candidates

How should the candidate configurations Y be chosen? In
order to be useful, the set of points must provide an accurate
summary of the score landscape or the Gibbs distribution,
i.e. be high-scoring and diverse. Two common techniques
for producing multiple solutions in probabilistic models can
be broadly characterized as follows: (1) M -best MAP algo-
rithms [2,16,30] that find the topM most probable solutions
and (2) sampling-based algorithms [1, 21, 25]. Both these
groups fall short for our task. M -Best MAP algorithms do
not place any emphasis on diversity and tend to produce so-
lutions that differ only by the assignment of a handful of



pixels. Sampling-based approaches typically exhibit long
wait-times to transition from one mode to another, which is
required for obtaining diversity. Previous works [3,18] have
demonstrated experimentally that Gibbs sampling does not
work well for the task of generating a diverse set of high-
scoring solutions.

While our approach is applicable to any choice of diverse
hypothesis generators, we experimented with the DivMBest
algorithm of Batra et al. [3], and the Perturb-and-MAP al-
gorithm [17]. Alternatives that we did not experiment with
but might be worthwhile exploring in future work are Herd-
ing [12, 27] and Multiple Choice Learning [9, 10]. This pa-
per presents results only with DivMBest, which performed
best; comparisons to [17] can be found in the supplemental
document (available from the author webpages).

For sake of completeness, we briefly describe DivMBest.
More details can be found in [3]. DivMBest finds diverse
M -best solutions incrementally. Let y1 be the best solu-
tion (or MAP), y2 be the second solution found and so
on. At each step, the next best solution is defined as the
highest scoring state with a minimum degree of “dissimi-
larity” w.r.t. previously chosen solutions, where dissimilar-
ity is measured under a function ∆(·, ·):

yM = argmax
y∈Y

S(y;x) (7a)

s.t. ∆(y,ym) ≥ km ∀m ∈ [M − 1]. (7b)

In general, this problem is NP-hard and Batra et al. [3] pro-
posed to use the Lagrangian relaxation formed by dualizing
the dissimilarity constraints ∆(y,ym) ≥ km:

f(λ) = max
y∈Y

S∆(y;x)
.
= S(y;x) +

M−1∑
m=1

λm (∆(y,ym)− km)

(8)

Here λ = {λm | m ∈ [M −1]} is the set of Lagrange mul-
tipliers, which determine the weight of the penalty imposed
for violating the diversity constraints.

Following [3], we use Hamming (or weighted Hamming)
diversity, i.e. ∆(y,ym) =

∑
u∈V [[yu 6= ymu ]], where [[·]] is

1 if the input condition is true, and 0 otherwise. This func-
tion counts the number of nodes that are labeled differently
between two solutions. For Hamming dissimilarity, the ∆-
augmented scoring function (8) can be written as:

S∆(y;x) = S(y;x) +
∑
u∈V

(M−1∑
m=1

λm[[yu 6= ymu ]]

)
︸ ︷︷ ︸

Augmented Unary Score

. (9)

Thus, the maximization in (8) can be performed simply by
feeding a perturbed unary term to the algorithm used for
maximizing the score (e.g. α-expansion or TRW-S).

3.3. Learning Parameters in EMBR

We assume that the weights w parameterizing the score
function S(y;x,w) are provided as input to our approach,
presumably learnt on some training dataset. We follow the
recommendation of [3], and use a single λ parameter (so
λm = λ for all m). There are three parameters to be tuned
in EMBR – λ, T , and M – which are chosen by grid search
to maximize task-loss `(·, ·) on some validation dataset. We
report results with four variants of our approach (and one
sensitivity test), corresponding to tuning 1/2/3 parameters:

• One parameter EMBR
– EMBR-(λM , T = ∞,M ): We set T to ∞

(which corresponds to a uniform distribution
over the solutions) and M to a value where the
oracle curve (accuracy of the most accurate
solution in the set) starts to plateau; for the binary
segmentation and pose estimation experiments,
we set M to 50, and for the PASCAL VOC seg-
mentation experiments, we set M to 30. Thus,
λM is the only parameter that is optimized via
grid-search to maximize EMBR performance at
M . We show plots of this variant as a function of
the numbers of solutions available at test-time,
from 1 to M , however the final result is simply a
single number (at M = 50 or M = 30) (i.e., we
do not optimize test performance over M ).

• Two parameter EMBR
– EMBR-(λM , TM ,M ): We set M to a value

where the oracle starts to plateau (as above),
and both λM and TM are tuned to maximize
EMBR performance at M .

– EMBR-(λm∗ , T = ∞,m∗): In this case, we set
T to∞ and tune both M and λ.

• Three parameter EMBR
– EMBR-(λm∗ , Tm∗ ,m∗): We tune all three pa-

rameters, λ, T and M .
• Sensitivity Analysis

– EMBR-(λm, Tm): For each m ∈ [M ], we iden-
tify the best parameters λm and Tm. During test
time, we use the appropriate pair of parameters.
This curve is reported to show the sensitivity of
the method to the choice of M . It is not valid
to take the maximum of this curve over test per-
formance, as that would be choosing M to max-
imize test performance.

4. Experiments

Setup. We tested EMBR on three different problems:

• Binary (foreground-background) interactive segmen-
tation (Section 4.1),

• 2D articulated human body pose estimation on the
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Figure 3: Qualitative Results: Within each row, the first column corresponds to MAP, the middle columns show the diverse solutions, and
the last column shows the EMBR prediction. The top two rows show examples where EMBR selects a better pose than MAP, while the
bottom row shows an example where MAP produces a better result. Notice the right hand, and the separation of the legs in the EMBR
solution in the first row. In the second row, notice the right hand being correctly detected by EMBR.

PARSE dataset [29] (Section 4.2), and
• Category-level segmentation on PASCAL VOC 2012

Segmentation Challenge dataset [7] (Section 4.3).

These scenarios use very different models & score func-
tions, with different MAP inference algorithms (max-
flow/min-cut, dynamic programming, greedy inference),
and different high-order task-losses `(·, ·) (intersection-
over-union, APK [29], PASCAL metric [8]). Despite the
differences, our approach is uniformly applicable. In two of
the models, binary segmentation with supermodular poten-
tials and pose estimation with a tree-structured model, we
can compute MAP exactly. Thus, when EMBR outperforms
MAP, the cause was not the approximate maximization for
MAP. In all three cases, the loss functions in the problem is
a high-order loss [23], making exact MBR intractable.

Baselines. On all experiments, we compare our approach
against the natural baseline of MAP, which simply predicts
the highest scoring solution and is indifferent to the setting
of T , λ and M . In a manner similar to [3], we also re-
port oracle accuracies, i.e. the accuracy of the most ac-
curate solution in the set Y. This forms an upper-bound
on the performance of any predictor (including MAP and
EMBR) which picks a single solution from the set Y. In
the pose estimation experiments (Section 4.2), we also com-
pare against the results of Yang and Ramanan [29], which
was the previous state-of-the-art on the PARSE dataset.

In our experiments, DivMBest consistently outperformed
Perturb & MAP, so we only report results for DivMBest in
this section. Perturb & MAP results along with a discussion
of its performance appear in the supplementary materials.

Main theme in results. Our results will show that EMBR
consistently and convincingly outperforms the natural base-
line of MAP in all experiments. This supports our claim that
incorporating the key ideas from decision theory – incorpo-
rating task-specific losses and averaging over uncertainty –
leads to significant improvements. In the pose estimation
experiments, we outperform the state-of-art method of Yang
and Ramanan [29] by ∼ 7%. It is important to remember
that this is all without access to any new features or model
– simply by utilizing information about the task loss!

4.1. Binary Segmentation

Model. We replicate the binary segmentation setup
from [3], who simulated an interactive segmentation sce-
nario on 100 images from the PASCAL VOC 2010 dataset,
and manually provided scribbles on objects contained in
them. For each image, a 2-label pairwise CRF on super-
pixels is set up. At each superpixel, Transductive SVMs are
trained on color and texture features, and their outputs are
used as node potentials. The edge potentials are contrast-
sensitive Potts. This results in a supermodular score func-
tion so we can efficiently compute the exact MAP and Di-
vMBest solutions using graph-cuts. 50 images were used
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Figure 4: Quantitative Results: We show the performance of different method vs M on three different problems. We observe that EMBR
consistently and convincingly outperforms the natural baseline of MAP, and in the case of pose estimation, achieves state-of-art results.

for training base model (Transductive SVMs), 25 for learn-
ing the EMBR-parameters, and 25 for reporting testing ac-
curacies. The task loss `(·, ·) and the EMBR loss ˜̀(·, ·) are
1 minus the intersection-over-union of the ground-truth and
predicted foreground masks.

Results. Fig. 4a shows the performance of EMBR as a func-
tion of M . Due to the greedy nature of DivMBest, EMBR
degenerates to MAP at M = 1. We can see that EMBR-
(λM , TM ,M = 50) outperforms MAP by ∼ 7% (68.87%).
The 1 and 3 parameter EMBRs perform similar, suggesting
that default choices T and M work well.

4.2. Pose Estimation

Model. We replicate the setup of Yang and Ramanan [29],
whose mixture-of-parts deformable human-body model has
demonstrated competitive performance on various bench-
marks. The variables in their model are part (head, body,
etc.) locations and type. The graph-structure is a tree and
(exact) inference is performed by dynamic programming.
The loss function most commonly used for this problem is
the Percentage of Correct Parts (PCP) [6]. Yang and Ra-
manan proposed a novel metric for measuring performance
called Average Precision of Keypoints (APK) [29], which
treats each keypoint as a separate detection problem, and
measures the average precision in the precision-recall curve
for each keypoint. In our experiments, we use PCP as the
instance-level loss function used in the EMBR definition
˜̀(·, ·) but choose the best parameters of EMBR by optimiz-
ing meanAPK, which is a corpus-level metric. The param-
eters are chosen via cross-validation on the PARSE test set.

Results. Fig. 4b shows the APK achieved by various
methods versus M . We can see that all EMBR vari-
ants significantly outperform MAP1). EMBR-DivMBest-

1Note that in segmentation, the evaluation metric only cares about the
predictions, not the scores associated with the predictions. In pose, the
precision-recall curve for each keypoint is different based on the score as-
sociated with that particular full-body detection. This is why oracle at

(λM , TM ,M = 50) achieves a final mean-APK of 71.02%,
and EMBR-(λm∗, Tm∗,m∗) performs slightly better by
achieving 71.53%, which is a ∼ 7-percentage-point im-
provement over the previous state of the art of 64.5% [29].

4.3. Category Segmentation on VOC12

Finally, we study the performance of EMBR on category-
level segmentation on the PASCAL VOC 2012 dataset,
where the goal is to label every pixel with one of 20 object
categories or the background.

Model. We build on the CPMC+O2P framework of Car-
reira et al. [4] – approximately 150 CPMC segments [5] are
generated for each image, scored via Support Vector Re-
gressors over second-order pooled features [4], and then
greedily pasted. The sum of the scores of the pasted seg-
ments is the score of a segmentation, and DivMBest is used
to produce diverse segmentation maps. The task accuracy
(1 − `(·, ·)) in this case is the corpus-level Jaccard Index
used by PASCAL, averaged over all 21 categories. The
EMBR loss ˜̀(·, ·) is 1 minus the instance-level approxima-
tion to this corpus-level loss.

Results. Fig. 4c shows the PASCAL accuracy as a func-
tion of M . This is a difficult problem; EMBR-DivMBest-
(λM , TM ,M = 30) yields an improvement of only ∼ 1%
(45.96%). The 1 and 3 parameter EMBRs perform similar.
Note that this is 2.2% below the current state of art [28] on
VOC Segmentation, which also uses DivMBest solutions,
but unlike us, makes use of significantly more sophisticated
features to perform the re-ranking of solutions. In future, we
plan to explore EMBR re-ranking with the features of [28].

5. Discussion

Instance-level vs Corpus-level Losses. In a number of
settings, for instance PASCAL segmentation, the evalua-

M = 1 (which uses the original scores of [29]) does not perform identical
to EMBR at M = 1 (which uses the Bayes Gain as the score).



tion criteria is a corpus-level metric, which measures the
loss of predictions for an entire dataset, and not a single in-
stance. In its current format, EMBR utilizes only instance-
level losses (in the PASCAL experiments, an instance-level
approximation to PASCAL loss). However, we can and do
optimize the EMBR parameters over the corpus-level loss.
In future, we plan to extend the EMBR predictor itself to
naturally handle corpus-level losses.

When is EMBR expected to work? One major require-
ments of EMBR is that the loss function provide some addi-
tional information about the solutions. Therefore, loss func-
tions such as the 0/1 loss function do not help our case. We
believe that higher-order loss functions that help quantify
semantic differences between the discrete set of solutions
will significantly help the EMBR predictor. Moreover, the
performance of the EMBR predictor also depends on the
quality of the solutions. For the predictor to work well,
the solutions should have some shared parts among them
so that the loss function can extract additional information
from the pairwise differences. Characterizing theoretical re-
quirements for EMBR is a direction for future work.

6. Conclusions

We have described a simple meta-algorithm for making pre-
dictions in structured output models that are better suited for
a particular task-specific evaluation measure. The primary
benefit of the formulation is in its simplicity, efficiency, and
strong performance. We believe that the two-stage frame-
work that we operate under is particularly desirable, be-
cause it allows researchers to continue to use the techniques
that are popular in building models in the first stage without
worrying about whether the method will be compatible with
a variety of loss functions of interest in the second stage.

We hope that this work will encourage researchers to de-
fine and optimize more complicated evaluation measures,
which more accurately reflect the tasks that our vision sys-
tems need to accomplish to be useful in the real world.
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