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Abstract

This paper proposes a method for estimating the 3D body
shape of a person with robustness to clothing. We formulate
the problem as optimization over the manifold of valid depth
maps of body shapes learned from synthetic training data.
The manifold itself is represented using a novel data struc-
ture, a Multi-Resolution Manifold Forest (MRMF), which
contains vertical edges between tree nodes as well as hori-
zontal edges between nodes across trees that correspond to
overlapping partitions. We show that this data structure al-
lows both efficient localization and navigation on the man-
ifold for on-the-fly building of local linear models (mani-
fold charting). We demonstrate shape estimation of clothed
users, showing significant improvement in accuracy over
global shape models and models using pre-computed clus-
ters. We further compare the MRMF with alternative man-
ifold charting methods on a public dataset for estimating
3D motion from noisy 2D marker observations, obtaining
state-of-the-art results.

1. Introduction
Estimating the body shape of a person offers the poten-

tial for applications in the domains of clothes fitting, fit-
ness analysis, and digital content creation. A number of
commercial full-body capture systems exist that have been
deployed in a range of retail outlets. Such systems, using
laser or structured light scanning [2, 3], provide accurate re-
constructions, but tend to be costly and require a dedicated
capture space. Consumer level depth sensors offer an inex-
pensive alternative, but pose a number of challenges: The
first is the quality and completeness of the data. The cur-
rent generation of sensors is still relatively noisy (e.g. the
depth error standard deviation of a sensor using random dot
pattern projection is approximately 3-10mm at distances of
1.5-3m where most of the body is in view). The scanned
data may also be incomplete and contain holes, which need
to be filled in order to obtain a watertight mesh. A method
for regularization is therefore required, and typically a para-
metric body shape model, trained on a large database is used
for this [5, 6, 31].

Figure 1: Schematic of the Multi-Resolution Manifold Forest.
The manifold learning data structure proposed in this paper is
based on randomized decision forests. In addition to the standard
vertical moves, we additionally allow horizontal traversal between
tree nodes, based on a learned manifold graph. Finding the region
with the closest mean to the green point, right, with a single search
path requires moving between trees. Shown are tree nodes and ex-
ample path (left) and corresponding search space regions (right)
with matching colors.

A second issue – in certain settings – is clothing. For
an accurate measurement users may be willing to undress
in the privacy of their home or a dedicated booth. However,
for applications in public areas, or for passive measurement,
it may be required to estimate the body shape with the user
fully dressed. Previous work handling such cases uses skin
color segmentation and fits a body shape model only to this
partial data [8], while most other work does not address this
issue explicitly.

In this paper we deal with both of these issues, and
present a method that is able to estimate human body shape
under clothing from a single depth map in less than one sec-
ond. We formulate the task of shape estimation as that of
optimizing an energy function over the manifold of human
body shapes. The energy function is designed such that it is
robust to clothing, leading to solutions which fit inside the
input depth map, as a person fits inside their clothes (Fig-
ure 2). The manifold of possible, unclothed human body
shapes is learned from synthetically generated depth mea-
surements. To this manifold we attach a map of generating
parameter vectors for pose and shape. Given a segmented
input depth map, we first find an initial solution on the man-
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Figure 2: Human body shape estimation. A qualitative exam-
ple of our method. The user stands in front of the system and is
shown a visualization of their estimated body shape in less than
one second.

ifold using a similarity measure robust to clothing. Around
this location we build a parametric model over the generat-
ing parameters for pose and shape personalized to the cur-
rent user. As a final step we use this model in an iterative
closest point (ICP) framework and minimize an energy term
robust to clothing.

Our work is inspired by work on manifold learning [13,
29]. Unlike global methods that ‘unwrap’ the manifold, we
use a local charting approach, i.e. a local linear approxima-
tion to parameterize the manifold [20, 24]. At the center of
this approach is a novel data structure: the Multi-Resolution
Manifold Forest (MRMF). Similar to the manifold forests
in [16] it defines multiple random partitions of the space.
Crucially, in addition to the standard vertical moves down
the trees, the MRMF allows horizontal moves between dif-
ferent trees, see Figure 1. We show that these horizontal
moves lead to a significant improvement in performance.

Our key contributions are (1) introducing the Multi-
Resolution Manifold Forest (MRMF) for representing a
manifold and its application to on-the-fly charting and
manifold-constrained optimization, (2) evaluating the ap-
proach on two different problems: clothed human body
shape estimation and 3D motion reconstruction from 2D
markers.

1.1. Related work

In this section we briefly review prior methods for body
shape modeling and relevant work on manifold learning.

Model-based Body Shape Estimation. A number of
methods have been proposed to estimate body shape from
multiple images or depth measurements. Early work [5],
inspired by the 3D Morphable Models of Blanz and Vet-
ter [12], learned separate models of pose and shape com-
bined with linear blend skinning (LBS) (A discussion of
which can be found in [22]). One draw-back of the sep-
aration of pose and shape is the inability to model pose-
dependent deformations such as muscle bulges. This was
a motivation for the SCAPE model [6], where the defor-
mation of each mesh triangle is composed of three trans-
formations: (i) the rigid transformation of a single relevant
bone, (ii) a pose-dependent transformation learned from the
mesh of a single person in multiple poses, and (iii) a shape-
dependent transformation learned from meshes of multiple
people in a neutral pose. The per-triangle transformations
are smoothed in a post-processing step to provide the final,
watertight mesh. Previous work fitted the SCAPE model
to multiple synchronized images [9], a single minimally
clothed image [18], and multiple un-synchronized depth
images [31]. Hasler et al. semi-automatically fit a human
model to a full-body scan of a clothed person by iteratively
deforming the mesh and projecting the result back into the
space of valid body shapes [19]. These methods provide
accurate results, but are still computationally expensive (in
the order of minutes).

Recent work extends the concept of pose-dependent
shape deformations, proposing a tensor-based body model
(TenBo), which conditions the non-rigid triangle deforma-
tions on both pose and shape, thus capturing, for exam-
ple, differences between male and female deformation [15].
The method was demonstrated on single depth map fitting
with tight clothing and took approximately 1-2 seconds.
Handling clothing, i.e. estimating the true body shape un-
der clothing, remains a research challenge. One avenue is
explicit clothes segmentation and modeling [32], however
the number of possible styles and materials makes this a
formidable task. This motivates the idea of being as ro-
bust to clothing as possible. Previous work relies on two
constraints: any body shape estimate must lie inside any
present clothing, and as close as possible to unclothed skin
regions found by color segmentation [8]. We develop this
idea further and remove the need for skin segmentation.

Manifold Learning. Segmented, non-clothed human
depth images lie on a low-dimensional manifold embedded
in the ambient space of all possible depth images. Given
a novel input – which contains clothing – we wish to lo-
calize it on the manifold and use the generating parame-
ters of the local neighborhood to learn a statistical model
for optimization. There exists a large body of research on
discovering and parameterizing a manifold. The majority
of methods seek a map from the ambient data space to a
low-dimensional global parameter space – effectively un-



wrapping the data, while preserving certain statistical prop-
erties of the neighborhood graph [14]. Global methods,
such as ISOMAP [29] unwrap the manifold by preserving
all geodesic distances in the neighborhood graph. Local,
neighborhood preserving methods include Locally Linear
Embedding (LLE) [25], which preserves the approximation
of a point by a linear combination of its neighbors, and
Laplacian Eigenmap [10] and Hessian LLE [17], which pre-
serve the Laplacian and Hessian derivatives of the neighbor-
hood graph.

Global mapping methods fail to adequately model closed
manifolds, which are commonplace in vision tasks, e.g.
the cyclical manifold of human walking poses. To unwrap
such a manifold, one has a few options. Firstly, an ar-
bitrary location on the manifold can be selected to apply
a ‘cut’ - thus allowing the manifold to unwrap along its
intrinsic dimensions, but losing the continuity. Secondly,
a multi-level neighbor graph [21] can be built to support
easy navigation, but at the cost of an expensive construc-
tion stage. Alternatively, the manifold can be embedded
into a higher dimensional space in which closed loops are
preserved. Pitelis et al. [24] show that these approaches
perform poorly on closed manifolds. They propose a piece-
wise linear model of a manifold, learning an atlas of over-
lapping linear charts. In contrast with previous manifold
charting approaches of Roweis et al. [26] and Brand [13]
they do not attempt to unwrap the charts – thereby avoiding
loop cutting or the need for spurious extra dimensions. We
propose to extend this idea further, and build charts as and
when required around a point of interest, approximating the
tangent space around this point and maximizing the accu-
racy of the linear approximation. All previously discussed
methods require a two-stage approach: (i) construction of
a neighbor graph, and (ii) learning the manifold from this
graph. Our MRMF combines the two into a single struc-
ture.

2. Building a Manifold Forest
The proposed Multi-Resolution Manifold Forest

(MRMF) is an ensemble of randomized space partitioning
trees which are connected to each other. During training we
learn a graph including the tree edges and edges between
trees.

2.1. Learning the trees

The aim is to learn an ensemble of trees that are bal-
anced while still maintaining randomization between them.
Essentially, the trees can be viewed as defining an adaptive
grid on the ambient space similar to k-d trees.

The MRMF is a set, T , of binary trees ti ∈ T which hi-
erarchically partition the ambient data space RD. We train
each tree with the same dataset X = {xi}, xi ∈ RD, i.e.
we do not use bagging [16]. In our applications we assume
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Figure 3: Splitting a region. Split function parameters are se-
lected based on a random subset of points (red, (a)) within a re-
gion corresponding to a tree node (delimited by the black lines).
(b) A random point xk and its most distant point xl within this
subset define θj – the normal to a separating hyperplane. (c) The
hyperplane splits the region halfway between the minimum and the
maximum projected values.

the samples xi to lie on a d-dimensional manifoldM em-
bedded in RD with d < D.

The parameters Θj = (θj , τj) for each node j define a
separating hyperplane in the ambient space RD by its unit
normal θj ∈ RD and a threshold τj ∈ R. The data assigned
to each node, Xj , is partitioned into two subsets: XLj and
XRj , depending on the value of the split function h(x,Θj) ∈
{0, 1}. The split functions take the form:

h(x,Θj) = I(x>θj > τj), (1)

where I(·) is the indicator function. The set XLj contains
samples x ∈ X for which h(x,Θj) = 0, the set XRj those
with h(x,Θj) = 1. To find Θj , we sample a random subset,
Dj ⊂ Xj , sample a point xk ∈ Dj and find the most distant
point to it in Dj :

xl = arg max
x∈Dj

‖xk − x‖ . (2)

The normal θj to the hyperplane is the unit vector between
these two points: θj = (xl − xk)/(‖xl − xk‖). Figure 3
illustrates the parameter selection process within a region.

In contrast to standard methods [16], the trees are learned
in an unsupervised manner without optimizing for a clas-
sification or regression objective. Instead, the goal of an
MRMF is to define a space partitioning adapted to data lo-
cated on an unknown manifold. To keep the tree aprox-
imately balanced, the threshold is set to τj = (pmax −
pmin)/2 where pmax (resp. pmin) is the maximum (resp.
minimum) value of pi = x>

i θj for all x ∈ Dj .

2.2. Learning the graph

The set of nodes, V , of the MRMF graph are simply the
nodes of the trees, denoted as vti ∈ V with t the tree, and
i the node index respectively. The set of edges, E , which
are all directed, is composed of all parent-child edges Et as
well as edges between trees Es,t. Formally, the set of edges
is defined as:
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Figure 4: Connecting tree nodes with overlap. The red and blue
trees define a hierarchical partitioning of the data space. The
MRMF connects nodes across trees whose regions intersect, such
as red tree node vsi and blue tree node vtj . The intersection is de-
tected by data samples belonging to both regions (in black). Such
horizontal edges allow a search to move between trees.

E = (
⋃
t∈T
Et) ∪ (

⋃
(s,t)∈T

Es,t) . (3)

While Et is defined as part of the tree learning process,
learning the inter-tree edges Es,t, is more involved. The
idea, as shown in Figure 4, is that two nodes vsi and vtj in
trees s and t are connected if the regions they define inter-
sect. Exact computation of these intersections is expensive
in high dimensions, even in the case of linear splits [7]. In-
stead, we use the data samples to estimate intersections, and
connect nodes vsi and vtj if the intersection of their sample
sets Dsi and Dtj is non-empty.

Not all pairs of regions are connected: two regions are
connected only if they are tree leaves at the same stage dur-
ing the training process (trees are grown breadth-first). Do-
ing so ensures that connected regions are of similar volume,
resulting in a coarse-to-fine structure. Note that exact com-
putation of region volume is expensive in high dimensions,
and many regions are open with infinite volume.

For compactness our implementation of the MRMF
graph is pointer-free, as in [28]. The graph is stored in an
array, requiring setting a maximum number of edges per
node.

3. Optimization on the Manifold
Our aim is to optimize a function f defined on points

that lie on a manifoldM. We first locate an initial solution
by traversing, both horizontally and vertically, the trained
MRMF. Upon reaching a leaf node we are able to efficiently
navigate the local neighborhood with the horizontal con-
nections and build a local chart.

3.1. Finding approximate initial solutions

In order to minimize a function f with an MRMF, we
first need to find good initial solutions. These solutions

are points on the manifoldM which we hope are close to
the global solution. Note that we are not restricted to find-
ing a single initial solution. Rather we are looking for k
candidates from which horizontal searches are initiated. In
the case where f = d(x,y) and d() is a metric, existing
methods such as optimized k-d trees offer an efficient solu-
tion [23, 28]. However, these methods do not necessarily
extend to the general case, where no assumptions about f
can be made. Inspired by the multi-scale approach of grad-
uated optimization [11], we propose a coarse-to-fine graph
walk over the MRMF. During tree construction, we keep
track of the arithmetic mean x̄tj of all the samples in node
vtj . During testing we evaluate the function at those points
and choose further nodes to explore by evaluating neighbors
on the MRMF graph. Since the x̄tj are arithmetic means,
they can lie outside the manifold: the only assumption we
make on the function f is that it can be evaluated every-
where in the ambient space, that is, for every x ∈ RD.

The search strategy is as follows: a priority queue is ini-
tialized with all tree roots giving higher priority to nodes
with lower cost function values. The current best candidate
is removed from the queue and its children added; if they are
leaves they are stored as potential results. The method iter-
ates until reaching its budget of function evaluations. Using
horizontal moves increases the chance of finding the leaf
node in the graph which minimizes f , allowing to correct
for choices made during early tree traversal (Figure 8).

The output of this approximate discrete function mini-
mization method is given as a list of leaf averages x̄tj , serv-
ing as seed points to compute a local chart on the manifold
M. Generally, this can be seen as another characteristic of
our method: no graph is explicitly built over the individ-
ual training data samples, as in [16, 30] for instance. We
believe this is an advantage as the graph representation is
smaller and no information is lost.

3.2. Building a local chart

All the leaf averages x̄tj act as the seeds from which the
local chart of the manifoldM is computed. Each seed is the
starting node of a random walk of horizontal moves in its
neighborhood. The walk continues until a given number of
nodes has been reached. This parameter controls the local
chart size and must therefore be chosen carefully, depending
on a given optimization problem.

A local chart of the manifoldM is then computed using
Principal Component Analysis (PCA) over the set of nodes
reached by the walks (c.f . in differential geometry the tan-
gent space is used to compute a local chart). Our mapping
is linear and is given by the transformation from the PCA
space to the ambient space c(y) = x where y is the vector
of coefficients for the first principal components. The chart
provides a locally linear parameterization of the space, in
which standard methods like gradient descent can be used



(a) Training meshes

(b) Sub-sampled measurement images
Figure 5: Training data used for body shape estimation. We
learn the manifold of segmented human depth measurements from
synthetically rendered samples. The first row shows synthetic
3D meshes generated during training, the second row shows the
smoothed and sub-sampled virtual depth measurement and silhou-
ette images from which we learn a manifold. The samples shown
here are representative of the pose variation which we train upon.

to minimize the function f ◦ c w.r.t. y. To account for local
curvature, using the chart is restricted within a given range
of the PCA components. Outside this range, a new chart is
recomputed around the new initial solution [4].

4. Body Shape Estimation
We formulate the estimation of human bodies obscured

by clothing as optimization over the manifold of unclothed
body shapes. The function we wish to optimize is asymmet-
ric – we wish to find a solution on the manifold, i.e. a nude
body shape, which lies inside the clothed input. The MRMF
allows efficient optimization of such asymmetric functions.

Our model is learned from synthetic depth measure-
ment images (vectorized as x) which are smoothed and
sub-sampled (Figure 5(b)). Every element x ∈ x is de-
fined as x = (xα, xd), with xα representing the amount of
valid information at each pixel, computed from the blurred
and sub-sampled silhouette image, and xd the depth value,
computed from the silhouette and depth images using the
premultiplied alpha compositing method. Our dissimilar-
ity measure is defined between input x and points on the
manifold y as

d(x,y) =

|x|∑
i=1

k (v(xαi , y
α
i )) + k

(
v(xαi x

d
i , y

α
i y

d
i )
)

(4)

with the inside function v being defined as

v(x, y) = |(x− y) (1 + I(x < y)β)| , (5)

and where k(·) is a kernel function reducing the influence of
outliers. This function induces a penalty of β for manifold
points that are greater than input points in either α or depth,
i.e. they either lie outside the input or in front of it.1

We compute initial solutions on the manifold using the
approach described in Section 3.1. We then perform a ran-
dom walk to find a neighborhood within which to build a
parametric body model.

For the final estimation of body shape we revert to a
standard ICP approach between the original high-resolution
point cloud and our parametric body model. The parametric
body model is built from the vector field of generating pa-
rameters attached to the manifold neighborhood found pre-
viously. Our ICP optimization minimizes the following en-
ergy function:

E(Φ) = Ed(Φ,q) + γEr(Φ) , (6)

where Φ = (Φs,Φp) are the parameters for the shape and
pose respectively, and q are the corresponding points in the
input depth map to each vertex of our model. The data term
is defined as

Ed(Φ,q) =

|q|∑
i=1

k (d(m(Φ)i,qi)/σ) , (7)

wherem(Φ)i generates the model vertex in correspondence
with qi, d(.) is a distance function defined below, σ is the
noise level, and k a kernel function which increases robust-
ness to outliers. The distance we use is a modified point-to-
plane distance of the form

d(p,q) = inside
(
(p− q)>nq

)
, (8)

where nq is the normal at point q. Our clothing-robust in-
side term,

inside(y) = y (1 + I(y < 0)τinside) , (9)

gives preference to models beyond the measured depth, i.e.
the naked shape is within the clothed shape. We iterate
between minimizing Equation 6 with Levenberg-Marquardt
and finding correspondences. In the correspondence stage
we restrict point-to-model matches based on normal direc-
tions to improve accuracy.

5. Experiments
In this section we demonstrate the efficacy of our pro-

posed data structure, the MRMF, for both optimization of
3D human body shape and 3D reconstruction of articulated
motion. We show that our method is able to optimize asym-
metric similarity measures between input points and the
learned manifold and handle noisy observations. In all non-
toy experiments we outperform the state of the art.

1A property of our camera model is that depth values are negated.



(a) (b) (c) (d) (e)
Figure 6: De-noising the Swiss roll. The MRMF lends itself well to de-noising. Given noisy data (a), we learn the MRMF and associated
graph, shown magnified in (b). For each point we walk this graph, (c) and build a linear model using PCA (d). To obtain the denoised
results each point is projected onto the first two principal components (e).

Figure 7: Simultaneous tree and graph growing during learn-
ing the MRMF on the Swiss roll dataset. The first row shows the
regions associated with the leaf nodes of two trees. The second
row shows the current inter-node graph for the leaf nodes with
node colors representing the tree index. The final row shows the
full inter-node graph with colors encoding the depth of each node
(from blue to orange).

5.1. Toy examples

First we illustrate key features of the MRMF. Figure 6
shows qualitative de-noising results on a Swiss roll dataset.
Building a locally linear chart around every point allows ef-
ficient de-noising with linear models given a suitable neigh-
borhood size.

Figure 7 visualizes the graph growing process. Connect-
ing tree nodes by their overlap leads to a detailed structure
which captures the shape of the manifold. A few edges
which ‘jump gaps’ remain, allowing coarser moves away
from local minima during optimization. Figure 8 demon-
strates this quantitatively for an asymmetric similarity mea-
sure. When minimizing a general function with standard
forests, one is forced into a greedy approach, leading to
poor final results. The figure shows the probability of se-
lecting a solution other than the global minimum computed
over many random trials.
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Figure 8: Probability of not selecting the global minimum with
and without horizontal moves. For a given budget of function
evaluations the probability of finding the global minimum in-
creases when allowing horizontal moves. In this experiment an
asymmetric similarity measure is used on 200, 000 samples from
a noisy Swiss roll dataset. Shown are the mean values of 1000
queries.

5.2. Human body shape estimation under clothing

Given a noisy, incomplete depth sensor input of a clothed
person we estimate their body shape by learning a manifold
of depth maps rendered from unclothed human body shapes.
Given a clothed input image we use an asymmetric similar-
ity function robust to clothing to optimize on the manifold.

We evaluate the accuracy from four physical measure-
ments taken from eight subjects – height, waist circum-
ference, chest circumference, and shoulder width. From
the eight subjects we capture ten depth measurements with
varying pose. We define paths for the same physical mea-
surements on the mesh model. This allows us to predict
the measurements from an estimation result. All model pa-
rameters were estimated on a separate validation dataset of
different people.

Training the body shape manifold. To collect training
data we register a 3D model to 4,281 scans from the CAE-
SAR dataset [27], obtaining a set of registered human
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Figure 9: Mean body measurement error per iteration for dif-
ferent models. We evaluate the ICP performance per iteration
of three different methods of building statistical models. MRMF
based on-the-fly charting outperforms both approaches both for
initialization accuracy and subsequent optimization due to using
all available data for initialization, and models which are pre-
cisely localized.

meshes with corresponding pose skeletons. We perform an
inversion of LBS to ‘unskin’ each registered mesh into the
mean pose. From this set of normalized meshes we gen-
erate ten million virtual samples via interpolation (applied
to shapes belonging to the same gender). These are per-
turbed locally by sampling from a learned pose model. To
generate virtual depth images we render each model using
a virtual camera setup matching the physical setup. During
both capture and rendering the depth images are normalized
such that the first two directions of maximum variance in
3D space lie parallel to the imaging plane. The normalized
depth images are smoothed and down-sampled to 64 × 64
(Figure 5). The MRMF consists of ten trees of depth 18.

Evaluation. We evaluate the use of the inside term (Equa-
tion 4) over simple Euclidean distance between the input
depth map and the manifold. We find that the error of the
initialization decreases from 10.16cm to 5.31cm, demon-
strating the benefit of the inside term. We further evaluate
the effects of using different parametric models in the sec-
ond stage of the fitting, measuring the accuracy per ICP it-
eration of 3 different approaches: (1) a single global model,
(2) pre-computed local models, and (3) on-the-fly charting
using the MRMF. The results of this are shown in Figure 9.
The initialization accuracy of on-the-fly charting is higher
than either the local chart initialization or the simple global
mean initialization. This is due to the fine sampling of the
manifold captured by the MRMF. Furthermore the conver-
gence speed with the on-the-fly models is higher compared
to those of the k-Means and global charts. To evaluate the
robustness of our cost function to different clothing, we
measured the shape estimation accuracy over eight cloth-
ing types worn by the same person. Figure 10 shows the
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Figure 10: Mean errors for five physical measurements over
eight different clothing types on a single person. Plotted is the
mean absolute error after optimization with, and without the in-
side term. Note that the inside term reduces both the size and
variance of the error.

results, demonstrating the benefit of employing the inside
term in our cost function.

5.3. 3D human motion reconstruction

To compare our approach to methods for manifold learn-
ing we carry out the same 2D human motion reconstruction
experiment presented by Pitelis et al. [24]. The goal is to
reconstruct the 3D positions of 31 markers from noisy 2D
observations. The data is taken from walking and running
sequences in the CMU mocap database [1]. We learn a man-
ifold from the vectorized 3D marker locations of training
subjects, find the closest point on the manifold to the back-
projected 2D marker locations, and build a chart around this
point. This chart is used to reconstruct the 3D marker lo-
cations. In Table 1 we present the results of this experi-
ment for two different datasets and two viewpoints each:
a side viewpoint, and a generic viewpoint from above. In
all experiments we train and test on different subjects and
add 3D Gaussian noise with standard deviation of approxi-
mately 5cm 2. Our MRMF on average outperforms a global
PCA model and the Atlas method in [24] where numbers
are available 3.

6. Conclusion
We have presented a novel data structure, the Multi-

Resolution Manifold Forest, for the modeling of manifolds
and demonstrated its efficacy in two challenging applica-
tions. Our approach to human body fitting, optimizing over
the manifold of possible unclothed human body depth maps,
was shown to increase robustness to clothing, estimating the

2The precise amount of noise added is 4.96cm for the walking only
dataset and 5.33cm for the walking + running dataset. Values obtained
from correspondence with Pitelis et al. [24].

3Results of Pitelis et al. [24] are omitted for the generic viewpoint as
we could not equate our PCA baseline results to theirs.



Walking Sequences Walking + Running Sequences
Side View Generic View Side View Generic View

dims PCA Atlas MRMF PCA MRMF PCA Atlas MRMF PCA MRMF
1 3.50 2.99 2.65 5.43 2.86 5.88 3.75 3.43 7.06 3.67
5 2.78 2.64 2.41 5.22 2.72 3.50 3.02 2.96 5.67 3.38
10 2.50 2.69 2.45 5.32 2.74 3.08 2.96 2.89 5.78 3.33
15 2.58 2.75 2.56 5.63 2.81 3.24 2.99 2.95 6.12 3.36
20 2.63 2.79 2.57 6.06 2.82 3.33 3.03 2.95 6.43 3.36
21-NN 2.59 2.81 3.32 3.57
k-NN ε 2.58 k 12 ε 2.81 k 15 ε 3.24 k 5 ε 3.52 k 8
Table 1: 3D human motion capture reconstruction results. We
reconstruct 3D human mocap data from orthographically pro-
jected 2D input with noise. The results of our MRMF approach
consistently out-perform those using a global PCA and those of
the recently proposed Atlas [24], along with those produced by av-
eraging k-nearest-neighbors. We indicate the best score per model
dimensionality d in bold, errors are given in cm.

user’s body shape in under one second. In the future we plan
to investigate better heuristics to search for initial solutions
and to adapt the size of the chart to the local curvature of
the manifold.
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