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Abstract

This paper proposes a new vectorial total variation prior

(VTV) for color images. Different from existing VTVs, our

VTV, named the decorrelated vectorial total variation prior

(D-VTV), measures the discrete gradients of the luminance

component and that of the chrominance one in a sepa-

rated manner, which significantly reduces undesirable un-

even color effects. Moreover, a higher-order generalization

of the D-VTV, which we call the decorrelated vectorial to-

tal generalized variation prior (D-VTGV), is also developed

for avoiding the staircasing effect that accompanies the use

of VTVs. A noteworthy property of the D-VT(G)V is that

it enables us to efficiently minimize objective functions in-

volving it by a primal-dual splitting method. Experimental

results illustrate their utility.

1. Introduction

Priors characterizing reasonable estimates play a promi-

nent role in computer vision and image processing because

numerous problems including denoising, deconvolution, in-

painting, super-resolution and compressed sensing, are ill-

posed or ill-conditioned. Existing priors for images can be

roughly classified into two categories, namely, local and

nonlocal ones. Nonlocal priors, such as the nonlocal means

[6], the nonlocal total variation [15, 37], and a number of

patch-based priors (e.g., [11, 21, 8]), are often superior to

local ones owing to their full-activation of information in a

given data.

On the other hand, improving local priors is still an im-

portant issue due to, for example, the following reasons.

First, local priors can be well defined as a “convex func-

tion” in many cases, which enables us to leverage them in

optimization problems designed for a variety of scenarios

and to efficiently solve the problems by convex optimiza-

tion techniques. By contrast, many nonlocal priors can be

described only as “procedure” for a particular scenario (typ-

ically only for Gaussian denoising), which precludes their

direct application to other scenarios. Second, the imple-

mentation of local priors is usually easier than that of non-

local priors. Specifically, local priors are free from compli-

cated (and often chicken-and-egg) self-similarity evaluation

such as block matching, which is necessary in the use of

nonlocal priors. Third, initial estimation required for nonlo-

cal priors (especially in the case where a given data involves

severe degradation such as blur and missing components) is

usually executed by local priors. Indeed, the quality of the

initial estimation affects that of the final one.

With this background, the development of a class of vec-

torial total variation priors (VTV) [30, 2, 1, 5, 12], which

are extensions of the well-known total variation prior (TV)

[29] and are successful local priors for color images, is in-

deed a very active research topic, with new techniques still

emerging [16, 17, 23, 19]. Existing VTVs are defined as

some norm of the discrete gradients of neighboring pixels

of (all channels of) a color image, where they are differ-

ent mainly in terms of what norm is employed. Almost all

of them, however, do not fully exploit inter-channel corre-

lation, so that the use of them sometimes produces undesir-

able uneven color effects, as observed in the results obtained

by existing VTVs (see Section 4). Although the VTV pro-

posed in [23] explicitly takes the correlation into account

and succeeds in reducing (but not sufficiently) uneven color

effects, it also has several drawbacks: i) it is anisotropic,

i.e., the vertical and horizontal gradients are decoupled, re-

sulting in the generation of blocky artifacts around con-

tours; ii) it requires the calculation of the projection onto

the ℓ1-norm ball in optimization, which increases the com-

putational cost.

This paper proposes a new isotropic VTV, named the

decorrelated vectorial total variation (D-VTV), with its

theoretical properties and applications. The idea is twofold,

that is, i) to incorporate a color transform into the defi-

nition of VTV for decorrelating RGB channels and ii) to

separately measure luminance and chrominance variations

with a weight controlling the balance between them. Idea

i) appears similar to but is actually different from such a

two-step method that first applies some color transform to a

given observation and then performs existing VTV regular-

ization. Such method cannot be applied to inverse prob-

lems with missing components and cannot guarantee the
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optimality in the whole process. Moreover, most exist-

ing VTVs are designed to be invariant with respect to or-

thogonal color transforms, implying that incorporating such

transforms into the existing VTVs is meaningless. By con-

trast, the D-VTV is color-transform-variant because of Idea

ii) and can suppress chrominance variation in preference to

luminance one, so that it can drastically reduce uneven color

effects. In addition, the structure of the D-VTV makes the

minimization of objective functions involving it very effi-

cient. We will elaborate on the essential differences be-

tween existing VTVs and the D-VTV in Remark 2.1.

Furthermore, we extend the D-VTV to a higher-order

version, which we call the decorrelated vectorial total gen-

eralized variation (D-VTGV) inspired by the prior works

[4, 31, 3, 24]. This is introduced for reducing the staircas-

ing effect that accompanies the use of VTVs.

The D-VT(G)V is applied to imaging inverse problems,

where we provide an efficient algorithmic solution to the

associated convex optimization problems involving the D-

VT(G)V via a primal-dual splitting method [7, 10, 35]. Ex-

perimental comparisons of existing VT(G)Vs and the D-

VT(G)V are given in Section 4, which demonstrates the su-

periority of our proposed prior.

2. Proposed Prior

In the following, N, R, R+, and R++ denote the sets of

positive integers, all, nonnegative, and positive real num-

bers, respectively, and let R := R ∪ {∞}. We adopt the

vector notation for color images. That is, the channel com-

ponents on a color image of size Nv ×Nh × 3 are stacked
into a vector u := [u⊤R u⊤G u⊤B ]

⊤ ∈ R
3N in lexicographic

order, where N = NvNh is the number of the pixels,

uR,uG,uB ∈ R
N are the RGB channels (also expressed

as vectors), and ·⊤ stands for the transposition.

2.1. Definition

By letting Dv,Dh ∈ R
N×N be the vertical and hori-

zontal gradient operators with Neumann boundary, the first-

order gradient operator for a single channel is defined by

D1 := [D⊤v D⊤h ]
⊤ ∈ R

2N×N , and that for a color image

by D := diag(D1,D1,D1) ∈ R
6N×3N . We also intro-

duce an orthonormal color transform C : R3N → R
3N :

u 7→ [u1,u2,u3] for decorrelating color channels, where

u1 := 1√
3
(uR + uG + uB) is the luminance channel, and

u2 := 1√
2
(uR − uB) and u3 := 1√

6
(uR − 2uG + uB) are

the chrominance channels. This transform is the so-called

opponent transform [28] and provides effective reduction

of the correlation among RGB channels, as employed in

color image denoising methods [14, 36]. Moreover, for

k1, k2 ∈ N and w ∈ (0, 1), we define the function:

‖ · ‖(w,k1,k2)
1,2 : R(k1+k2)N → R+ : x 7→ w‖x1‖(k1)

1,2 + ‖x2‖(k2)
1,2 ,

where ‖ · ‖(k)1,2 : RkN → R+ : x 7→
∑N

i=1

√

∑k−1
j=0 x

2
i+jN

is the mixed ℓ1,2 norm (k ∈ N and xi denotes the ith
entry of x), and x = [x⊤1 x⊤2 ]

⊤ with x1 ∈ R
k1N and

x2 ∈ R
k2N . The function ‖ · ‖(w,k1,k2)

1,2 is obviously a norm

on R(k1+k2)N . Using ‖ · ‖(w,k1,k2)
1,2 , the Decorrelated Vecto-

rial Total Variation prior (D-VTV) is then defined by

Jw
VTV : R3N → R+ : u 7→ ‖DCu‖(w,2,4)

1,2 .

Proposition 2.1 The D-VTV is continuous and convex.

Proof: This follows at once from the continuity and convex-

ity of ‖ · ‖(k)1,2 , and the linearity ofD and C. �

Remark 2.1 (The D-VTV versus existing VTVs)

• The design of the weight w being smaller than one is

intended to suppress chrominance variation (the second

term) in preference to luminance one (the first term),

which prevents uneven color effects. As will be demon-

strated in Section 4, the value of the D-VTV increases

rapidly based on the level of noise contamination com-

pared to existing VTVs, implying that noise magnifies

chrominance variation rather than luminance one and

thus should be suppressed first. This property also tends

to keep meaningful details (e.g., edges and texture) in

color images because such details often have large lumi-

nance variation. These things suggest that the D-VTV is

a very suitable prior for color images.

• Since the D-VTV adopts the mixed ℓ1,2 norm, the min-
imization of objective functions involving the D-VTV

becomes computationally efficient. This is because, in

such minimization, we require the computation of the

so-called proximity operator1 of the norm employed in

the corresponding VTV, and in the D-VTV case it is the

mixed ℓ1,2 norm with the associated proximity operator

given by a simple soft-thresholding type operation: for

γ ∈ R++ and for i = 1, . . . , kN ,

[prox
γ‖·‖(k)

1,2
(x)]i = max{1− γ(

∑k−1
j=0 x

2
i+jN )−

1
2 , 0}xi.

By contrast, the proximity operators of the norms em-

ployed in state-of-the-art VTVs require more expensive

operations (see also the next item), so that the D-VTV is

also preferable in terms of computational cost.

• We summarize the comparison of VTVs in Tab. 1, where

we refer to the prior in [5, 12] as the basic VTV (B-VTV),

in [16, 17] as the spectral VTV (S-VTV), in [19] as the

nuclear VTV (N-VTV), and in [23] as the L-infinity VTV

(I-VTV). Note that the S-VTV and the N-VTV require

the singular value decomposition, and the I-VTV the

weighted ℓ1-norm ball projection, in their optimization,

respectively. Indeed, the B-VTV, which also employs the

1 The proximity operator of a proper lower semicontinuous convex

function f : X → R (X is a Euclidean space) of index γ ∈ R++ is

given by proxγf (x) := argminy∈X {f(y) + 1

2γ
‖x − y‖2

2
} (‖ · ‖2 is

the ℓ2 norm).



Table 1: Comparison of VTVs
norm isotropy uneven color cost

B-VTV [5, 12] ℓ1,2 © △ ⊚
S-VTV [16, 17] spectral © △ △
I-VTV [23] ℓ1,∞ × © △
N-VTV [19] nuclear © △ △
D-VTV (ours) ℓ1,2 © ⊚ ⊚

mixed ℓ1,2 norm, is the most computationally-efficient

among the said existing VTVs, and the additional compu-

tation required for the D-VTV compared to the B-VTV is

just the color transformC, the cost of which is negligible.

2.2. Higher-order generalization

The staircasing effect, i.e., the undesirable appearance

of edges, often accompanies the use of VTVs. The total

generalized variation (TGV) [4] was introduced as a well-

established higher-order generalization of the TV in order to

overcome this limitation, and is recently utilized in a num-

ber of applications, e.g., [34, 13]. The notion of the TGV

has also been incorporated into the B-VTV [3] and the I-

VTV [24]. The D-VTV is no exception to the said limitation

but it is expected to be more effective than existing VTVs,

which motivates us to extend the TGV to a new vectorial

version in the view of the D-VTV.

To proceed, let G1 :=





−D⊤v O

−D⊤h −D⊤v
O −D⊤h



 ∈ R
3N×2N and

G := diag(G1,G1,G1) ∈ R
9N×6N (O denotes zero ma-

trices of appropriate size). The Decorrelated Vectorial To-

tal Generalized Variation (D-VTGV) is defined as follows:

Jw,α
VTGV : R3N → R+ :

u 7→ min
p∈R6N

α‖DCu− p‖(w1,2,4)
1,2 + (1− α)‖Gp‖(w2,3,6)

1,2 ,

where w := [w1 w2] ∈ (0, 1) × (0, 1) and α ∈ (0, 1).
SinceGD becomes the second-order gradient operator, the

D-VTGV can be seen as the infimal convolution of the first-

and second-order terms with the parameter α controlling

their balance.

Proposition 2.2 The D-VTGV is continuous and convex.

Proof: Let g1 := α‖ · ‖(w1,2,4)
1,2 and g2 := (1 −

α)‖G · ‖(w2,3,6)
1,2 be functions on R

3N , and let g :=
min(·)=x+y g1(x) + g2(y) be the infimal convolution of

them. Then g is continuous and convex from [31, Theo-

rem 2.1] with the fact that ‖ · ‖(w,k1,k2)
1,2 is a norm and that

G is a linear operator. Finally, the statement follows from

Jw,α
VTGV = g ◦ (DC) and the linearity ofDC. �

3. Application

Since the D-VT(G)V is explicitly defined as a convex

prior, it has a potential to be used as a building block for

various applications in the computer vision and image pro-

cessing fields. We focus on imaging inverse problems.

3.1. Problem formulation

Consider the observation model v = D(Φuorg), where
uorg ∈ R

3N is an original color image we wish to estimate,

Φ ∈ R
M×3N a linear operator representing some acquisi-

tion process (e.g., blur), D : RM → R
M a noise contami-

nation process being not necessarily additive, and v ∈ R
M

(M and 3N may be different) an observation. Based on this

model, we propose a general form of convex optimization

problems involving the D-VT(G)V as follows: find u⋆ in

arg min
u∈[0,255]3N

J(u) + Fv(Φu), (1)

where J ∈ {Jw
VTV, J

w,α
VTGV}, Fv : R

M → R is a proper

lower semicontinuous convex fidelity function regarding v

with its proximity operator computable (required in opti-

mization), and [0, 255]3N ⊂ R
3N is an intensity range con-

straint for eight-bit color images.

Proposition 3.1 (1) has at least one solution.

Proof: From Proposition 2.1 and 2.2, J(u) + Fv(Φu) is
proper lower semicontinuous convex. The compactness of

the intensity range constraint then proves the statement.

Remark 3.1 (Examples of Fv)

• (Gaussian noise) A reasonable choice is the ℓ2-norm ball:

B2
v,ε := {x ∈ R

M | ‖x − v‖2 ≤ ε}, where ε ∈ R+. We

express this constraint-type fidelity by the indicator func-

tion2 of B2
v,ε, i.e., Fv := ιB2

v,ε
with its proximity operator

given by proxγFv

(x) = x, if x ∈ B2
v,ε; v+ ε(x−v)

‖x−v‖2 , oth-
erwise. The resulting formulation corresponds to min-

imizing the D-VTV while keeping the Gaussian likeli-

hood at a certain level determined by ε. Compared to the
standard additive fidelity, i.e., Jw

VTV(u) +
λ
2 ‖Φu − v‖22,

the constraint-type fidelity would facilitate parameter set-

ting because ε has a clearer meaning than λ and thus can

be easily adjusted based on noise standard deviation.

• (Impulsive noise) The ℓ1 norm has been adopted for im-

pulsive noise contamination as a suitably robust fidelity

term, which is defined by Fv := λ‖·−v‖1 (‖·‖1 denotes
the ℓ1 norm). The proximity operator of Fv is given, for

γ ∈ R++ and for i = 1, . . . ,M , by

[proxγFv

(x)]i = vi + sgn(xi − vi)max{|xi − vi| − γλ, 0},
where sgn denotes the signum function.

• (Poisson noise) It has been shown that under Pois-

son noise contamination, the so-called the generalized

Kulback-Leibler divergence is suitable for Fv. Its def-

inition and the computation of the associated proximity

operator can be found in [9].

2 For a given nonempty closed convex set C ∈ X , the indicator func-

tion of C is defined by ιC(x) := 0, if x ∈ C; ∞, otherwise. Using the

indicator function, we can express a convex constraint as an additive term.

The proximity operator of ιC is equivalent to the metric projection onto

C, i.e., proxγιC (x) = argminy∈C ‖x− y‖ =: PC(x) (∀γ ∈ R++).



Algorithm 1: Solver for (1) with Jw
VTV

input : u(0), z
(0)
1 := [z

(0)⊤
1,1 z

(0)⊤

1,(2,3)
]⊤, z

(0)
2

output: u(n)

1 while A stopping criterion is not satisfied do

2 u(n+1) = P[0,255]3N (u(n) − γ1(C
⊤D⊤z

(n)
1 + Φ⊤z

(n)
2 ));

3 [z
(n)⊤
1,1 z

(n)⊤

1,(2,3)
]⊤ ← z

(n)
1 + γ2DC(2u(n+1) − u(n));

4 z
(n)
2 ← z

(n)
2 + γ2Φ(2u(n+1) − u(n));

5 z
(n+1)
1,1 = z

(n)
1,1 − γ2prox w

γ2
‖·‖

(2)
1,2

( 1
γ2

z
(n)
1,1 );

6 z
(n+1)

1,(2,3)
= z

(n)

1,(2,3)
− γ2prox 1

γ2
‖·‖

(4)
1,2

( 1
γ2

z
(n)

1,(2,3)
);

7 z
(n+1)
2 = z

(n)
2 − γ2prox 1

γ2
Fv

( 1
γ2

z
(n)
2 );

8 n← n + 1;

3.2. Optimization

To solve (1), we utilize the primal-dual splitting method

[7, 10, 35] which brings an algorithmic solution to the fol-

lowing convex optimization problem: find x⋆ in

argmin
x∈X

f1(x) + f2(Lx), (2)

where f1 : X → R and f2 : Y → R (X and Y are

Euclidean spaces) are proper lower semicontinuous convex

functions, the proximity operators of which are available,

and L : X → Y is a linear operator.

3.2.1 D-VTV case

In (2), let L := [(DC)⊤Φ⊤]⊤, f1 : R3N → R : x 7→
ι[0,255]3N (x), and f2 : R6N+M → R : y 7→ ‖y1‖(w,2,4)

1,2 +

Fv(y2), where y = [y⊤1 y⊤2 ]
⊤ (y1 ∈ R

6N , y2 ∈ R
M ).

Then (2) is reduced to (1) with Jw
VTV, and the proximity op-

erators of f1 and f2 are computable using those of ι[0,255]3N ,

‖·‖(k)1,2 and Fv. The proximity operator of ι[0,255]3N is equal

to the metric projection (see footnote 2) onto [0, 255]3N ,
which can be calculated by pushing the entries into [0, 255].

For the computation of the proximity operators of ‖ · ‖(k)1,2

and Fv, see Remark 2.1 and 3.1. Consequently, applying

the primal-dual splitting method to (2) with this setting pro-

duces a solver for (1) with Jw
VTV, as shown in Algorithm 1.

3.2.2 D-VTGV case

By noting that Fv in (1) with Jw,α
VTGV does not involve p, we

can remove the nested structure in (1) with Jw,α
VTGV (due to

the infimal convolution), leading to finding (u⋆,p⋆) in

arg min
u∈[0,255]3N ,p∈R6N

α‖DCu− p‖(w1,2,4)
1,2 +

(1− α)‖Gp‖(w2,3,6)
1,2 + Fv(Φu). (3)

Let L :=





DC −I

O G

Φ O



, f1 : R9N → R : x 7→ ι[0,255]3N (x1),

and f2 : R
15N+M → R : y 7→ α‖y1‖(w1,2,4)

1,2 + (1 −

Algorithm 2: Solver for (1) with Jw,α
VTGV

input : u(0),p(0), z
(0)
i := [z

(0)⊤
i,1 z

(0)⊤

i,(2,3)
]⊤(i = 1, 2), z

(0)
3

output : u(n)

1 while A stopping criterion is not satisfied do

2 u(n+1) = P[0,255]3N (u(n) − γ1(C
⊤D⊤z

(n)
1 + Φ⊤z

(n)
3 ));

3 p(n+1) = p(n) − γ1(−z
(n)
1 + G⊤z

(n)
2 );

4 [z
(n)⊤
1,1 z

(n)⊤

1,(2,3)
]⊤ ←

z
(n)
1 + γ2(DC(2u(n+1) − u(n))− (2p(n+1) − p(n)));

5 [z
(n)⊤
2,1 z

(n)⊤

2,(2,3)
]⊤ ← z

(n)
2 + γ2G(2p(n+1) − p(n));

6 z
(n)
3 ← z

(n)
3 + γ2Φ(2u(n+1) − u(n));

7 z
(n+1)
1,1 = z

(n)
1,1 − γ2proxαw1

γ2
‖·‖

(2)
1,2

( 1
γ2

z
(n)
1,1 );

8 z
(n+1)

1,(2,3)
= z

(n)

1,(2,3)
− γ2prox α

γ2
‖·‖

(4)
1,2

( 1
γ2

z
(n)

1,(2,3)
);

9 z
(n+1)
2,1 = z

(n)
2,1 − γ2prox (1−α)w2

γ2
‖·‖

(3)
1,2

( 1
γ2

z
(n)
2,1 );

10 z
(n+1)

2,(2,3)
= z

(n)

2,(2,3)
− γ2prox 1−α

γ2
‖·‖

(6)
1,2

( 1
γ2

z
(n)

2,(2,3)
);

11 z
(n+1)
3 = z

(n+1)
3 − γ2prox 1

γ2
Fv

( 1
γ2

z
(n)
3 );

12 n← n + 1;

α)‖y2‖(w2,3,6)
1,2 + Fv(y3), where I denotes an identity ma-

trix of appropriate size, x = [x⊤1 x⊤2 ]
⊤ (x1 ∈ R

3N ,

x2 ∈ R
6N ) and y = [y⊤1 y⊤2 y⊤3 ]

⊤ (y1 ∈ R
6N , y2 ∈ R

9N ,

y3 ∈ R
M ). As the D-VTV case, (2) becomes equivalent to

(3), i.e., (1) with Jw,α
VTGV, and the proximity operators of f1

and f2 are also computable using those of ι[0,255]3N , ‖ · ‖(k)1,2

and Fv. Thus we can solve (1) with Jw,α
VTGV by the primal-

dual splitting method as Algorithm 2.

Proposition 3.2 (Convergence of Algorithm 1 and 2)

Suppose that γi > 0 (i = 1, 2) satisfy γ1γ2σ1(L) ≤ 1
(σ1(·) is the largest singular value of a matrix ·). Then the

sequence generated by Algorithm 1 or 2 converges to a

solution of (1) with Jw
VTV or Jw,α

VTGV.

Proof: A direct consequence of [10, Theorem 3.3].

4. Experiments

We examine the utility of the D-VT(G)V by comparing

with the existing VTVs listed in Tab. 1 on various scenarios.

All experiments were performed usingMATLAB (R2013a),

on a Windows 7 (64bit) desktop computer with an Intel

Core i7 2.8 GHz processor and 8.0 GB of RAM.3 We fixed

γ1 and γ2 as 0.01 and 1/(12γ1) in Algorithm 1 and 2, and

set their stopping criteria as
‖u(n+1)−u(n)‖2

255 ≤ 0.01.

4.1. Denoising

We first consider simple Gaussian noise removal exper-

iments. Clean test images are contaminated by an additive

white Gaussian noise with standard deviation σ. Following
the discussion in Remark 3.1, the ℓ2-norm ball is adopted

3 The MATLAB source code is available at

https://sites.google.com/site/thunsukeono/.
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Figure 1: Quantitative comparisons on Gaussian denoising experiments: (a) Comparison of the existing VTVs and the D-VTV (w = 0.5)
in terms of the average gains in PSNR [dB] and CIEDE2000 (σ = 25.5); (b) Comparison of the D-VTV with various w in terms of

the average gains in PSNR [dB] and CIEDE2000 (σ = 25.5); and (c) Comparison of the existing VTVs and the D-VTV in terms of

J(v)/J(uorg) (σ = 12.75, 25.5, and 51).
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Figure 2: Resulting images obtained by using the existing VTVs and the D-VTV on Gaussian denoising experiments.

for the fidelity function, i.e., denoised images are obtained

by solving the following problem: find u⋆ in

arg min
u∈[0,255]3N

J(u) s.t. ‖u− v‖2 ≤ ε, (4)

where J is the D-VT(G)V or one of the existing VT(G)Vs,

and v is a given noisy image. This constraint-type fidelity is

convenient for giving a fair comparison of the VTVs, since

a reasonable ε can be determined based only on a given σ
(no matter what VT(G)V we use).

Quantitative comparisons of the existing VTVs and the

D-VTV (w = 0.5) in terms of the average gains in PSNR
(left) and CIEDE2000 [32] (right)4 are given in Fig. 1(a),

which were conducted using 300 images taken from the

Berkeley Segmentation Database5 [22]. The radius ε of the
ℓ2-norm ball is set to ε = τ

√
3Nσ2, where the fidelity pa-

rameter τ is selected as 0.95, 1, and 1.05, respectively (the
smaller τ corresponds to the tighter fidelity). The use of the
D-VTV results in the best average performance for every

τ (about 1 [dB] (PSNR) and 0.7 (CIEDE2000) better than

the best one among the existing VTVs). We also examined

how the performance of the D-VTV varies with respect to

the luminance weightw. The results are plotted in Fig. 1(b),

4 PSNR is defined by 10 log10(3N∗2552/‖u−uorg‖22). CIEDE2000
(see [32] for the definition) is known as a good color quality assessment

(Note: a smaller value of CIEDE2000 indicates a higher quality).
5 For each image, the center region of size 256× 256 is cropped.

where w is increased from 0.3 to 0.7 by 0.1. As expected,
a change in w affects the performance, but note that, for

all the examined values of w, the D-VTV outperforms the

existing VTVs (see (a) and (b)).

Some resulting images are shown in Fig. 2 with their

corresponding PSNR [dB] (left) and CIEDE2000 (right).

Notice that the images restored by using the D-VTV con-

tain much less uneven color effects than those obtained by

using the other VTVs and preserve details (such as body

hair of the koala). They also indicate the best PSNR and

CIEDE2000 values.

To demonstrate the suitability of the D-VTV as a prior

for color images, we evaluated the value of each VTV both

on clean and noisy images with different values of stan-

dard deviation. Specifically, since the scale of the values of

VTVs are different from one another, we computed the ratio

of each VTV on noisy images and that on clean images, i.e.,

J(v)/J(uorg) (J stands for one VTV), for measuring how

much the value is increased by noise, where v and uorg are

noisy and clean images, respectively. Fig. 1(c) indicates the

average of J(v)/J(uorg) for each VTV based on the 300

images. The value of the D-VTV is rapidly increased by

noise compared to those of the other VTVs, which implies

that the D-VTV well distinguishes clean and noisy images,

i.e., it is a very suitable prior for color images.

Average CPU times [sec] of each method are as follows:
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Figure 3: Resulting images obtained by several VTVs and the corresponding VTGVs on a Gaussian denoising experiment.
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Figure 4: Resulting images obtained by using the existing VTVs and the D-VTV on a deblurring experiment.

the B-VTV, 1.53; the S-VTV, 72.21; the I-VTV, 88.68; the

N-VTV, 71.76; and the D-VTV, 1.62. Note that since all the

program codes were implemented by MATLAB and are not

optimized, they can be accelerated by, e.g., parallel imple-

mentations using GPU.

We also compared the D-VTV (and several existing

VTVs) with the D-VTGV (and the corresponding existing

VTGVs). The parameter α is simply set to 0.5 for all the

VTGVs (the B-VTGV [3], the I-VTGV [24], and the D-

VTGV). The resulting images6 with their PSNR [dB] and

CIEDE2000 values are given in Fig. 3, where we observe

that the staircasing effect is significantly reduced by using

the VTGVs; and that the D-VT(G)V effectively removes

uneven color effects. As a result, the image restored by us-

ing the D-VTGV indicates the best PSNR and CIEDE2000,

and seems to be close to the original image.

4.2. Deblurring

Next, we apply the D-VTV to a deblurring problem.

Specifically, we solve the following problem: find u⋆ in

arg min
u∈[0,255]3N

J(u) s.t. ‖Φu− v‖2 ≤ ε,

where Φ is a blur operator, and v is a blurred image. The

blur kernel is set to the 5 × 5 Gaussian blur with stan-

dard deviation 2, and then a white Gaussian noise is added
(σ = 25.5), so that a suitable fidelity is the ℓ2-ball (ε is fixed
to 0.95

√
3Nσ2). The deblurring results with their PSNR

and CIEDE2000 values are shown in Fig. 4 (the test image

was taken from the Berkeley Segmentation Database). One

sees that there are uneven color effects in the images ob-

tained by using the B-VTV, the S-VTV, and the N-VTV. The

deblurred result by using the I-VTV exhibits less uneven

color effect but contains blocky artifacts around smooth

6cc licensed ( BY ) flickr photo by ˆ@ˆina (Irina Patrascu):

http://flickr.com/photos/angel_ina/3201337190/

contours because of the anisotropy (see, e.g., the eye of the

bird). The use of the D-VTV nicely resolves both uneven

color effects and smooth contours.

4.3. Missing component recovery

We consider the recovery of a complete image from an

image randomly missing 70% of its RGB channel compo-

nents. The problem to be solved is finding u⋆ in

arg min
u∈[0,255]3N

J(u) s.t. Φu = v,

where Φ is a random sampling operator, and v is an in-

complete observation (without noise). Here the hard con-

straint can be dealt with as the ℓ2-ball fidelity with the radius
ε = 0. We depict the results in Fig. 5 with their PSNR and

CIEDE2000 (the test images were taken from the Berke-

ley Segmentation Database). One can see that the D-VTV

successfully reconstructs missing components without pro-

ducing unnatural color changes that are observed in the re-

sulting images obtained by using the existing VTVs.

4.4. Detail magnification

Aside from restoration, the D-VTV can be utilized for

detail magnification. Details are extracted by solving the

following problem: find u⋆ in

arg min
u∈[0,255]3N

J(u) s.t. ‖u− uorg‖2 ≤ ε,

where u⋆ is a processed image without details, so that the

details are obtained as uorg − u⋆. Here ε controls the quan-
tity of details to be extracted. The magnification result is

then generated by adding the magnified details β(uorg−u⋆)
to u⋆ (β denotes the magnification rate). Fig. 6 shows

input images and the corresponding magnification results

(w = 0.01, ε =
√
2.55 ∗ 3N , and β = 5). The use of the

B-VTV results in a standard high frequency enhancement.

On the other hand, since the nature of the D-VTV enables us
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Figure 5: Resulting images obtained by using the existing VTVs and the D-VTV on missing component recovery.

to extract details with chrominance variation in preference

to those with luminance one, we can magnify only color

details by using the D-VTV, producing vivid color images.

4.5. Examples on a real-world image

We finally apply denoising using the existing VTVs and

the D-VTV, i.e., solving (4), to a real-world image (480 ×
480) with an ISO noise, which was taken by a cell phone

camera with a high ISO speed. The radius ε was manually
selected for each VTV in such a way as to produce a visually

pleasing result . Fig. 7 shows the results. Uneven color

effects appear in the result obtained by using the existing

VTVs. By contrast, such effects are much reduced in the

result based on the D-VTV, which seems to be the most

preferable processed image among them.

5. Concluding Remarks

We have proposed a novel vectorial total variation prior

named the D-VTV. Compared to existing VTVs, the D-

VTV enjoys the capability of preventing uneven color ef-

fects and preserving meaningful details. It is also suitable

for optimization thanks to its convexity and computational

efficiency. Moreover, we have extended the D-VTV to a

higher-order version called the D-VTGV, which overcomes

the staircasing effect that accompanies the use of VTVs. We

also presented a general form of convex optimization prob-

lems involving the D-VT(G)V for imaging inverse prob-

lems, and provided efficient algorithmic solutions to the

problems via a primal-dual splitting method.

We should remark that the color transform and norm in-

volved in the D-VTV are not limited to the current ones,

and a systematic performance analysis with various combi-

nations of color transforms and norms is an important fu-

ture work. Together with a recently proposed prior for color

artifact reduction [27], the use of the D-VT(G)V can lead

to more effective color image restoration. Cartoon-texture

decomposition using the D-VT(G)V with various texture

modelings (e.g., [1, 12, 26, 25]) is also an interesting topic.

The decorrelation idea of the D-VT(G)V can be incorpo-

rated into other extensions of TV, such as the TV in light

fields [18], in manifold [20], and the CS-specific TV [33].
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Image guided depth upsampling using anisotropic total generalized

variation. In Proc. IEEE ICCV, 2013. 3

[14] A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shape-adaptive

dct for high-quality denoising and deblocking of grayscale and color

images. IEEE Trans. Image Process., 16(5):1395–1411, 2007. 2

[15] G. Gilboa and S. Osher. Nonlocal operators with applications to im-

age processing. Multiscale Model. Simul., 7(3):1005–1028, 2009.

1

[16] B. Goldluecke and D. Cremers. An approach to vectorial total varia-

tion based on geometric measure theory. In Proc. IEEE CVPR, 2010.

1, 2, 3

[17] B. Goldluecke, E. Strekalovskiy, and D. Cremers. The natural vec-

torial total variation which arises from geometric measure theory.

SIAM J. Imag. Sci., 5(2):537–563, 2012. 1, 2, 3

[18] B. Goldluecke and S. Wanner. The variational structure of disparity

and regularization of 4D light fields. In Proc. IEEE CVPR, 2013. 7

[19] S. Lefkimmiatis, A. Roussos, M. Unser, and P. Maragos. Convex

generalizations of total variation based on the structure tensor with

applications to inverse problems. In Proc. SSVM, 2013. 1, 2, 3

[20] J. Lellmann, E. Strekalovskiy, S. Koetter, and D. Cremers. Total

variation regularization for functions with values in a manifold. In

Proc. IEEE ICCV, 2013. 7

[21] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local

sparse models for image restoration. In Proc. IEEE ICCV, 2009. 1

[22] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human

segmented natural images and its application to evaluating segmen-

tation algorithms and measuring ecological statistics. In Proc. IEEE

ICCV, 2001. 5

[23] T. Miyata. Total variation defined by weighted L infinity norm for

utilizing inter channel dependency. In Proc. IEEE ICIP, 2012. 1, 2,

3

[24] T. Miyata. L infinity total generalized variation for color image re-

covery. In Proc. IEEE ICIP, 2013. 2, 3, 6

[25] S. Ono, T. Miyata, and I. Yamada. Cartoon-texture image decom-

position using blockwise low-rank texture characterization. IEEE

Trans. Image Process., 23(3):1128–1142, 2014. 7

[26] S. Ono, T. Miyata, I. Yamada, and K. Yamaoka. Image recovery by

decomposition with component-wise regularization. IEICE Trans.

Fundam., E95-A(12):2470–2478, 2012. 7

[27] S. Ono and I. Yamada. A convex regularizer for reducing color arti-

fact in color image recovery. In Proc. IEEE CVPR, 2013. 7

[28] K. Plataniotis and A. Venetsanopoulos. Color Image Processing and

Applications. Springer, 2000. 2

[29] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based

noise removal algorithms. Phys. D, 60(1-4):259–268, 1992. 1

[30] G. Sapiro. Vector-valued active contours. In Proc. IEEE CVPR,

1996. 1

[31] S. Setzer, G. Steidl, and T. Teuber. Infimal convolution regular-

izations with discrete ℓ1-type functionals. Commun. Math. Sci,

9(3):797–827, 2011. 2, 3

[32] G. Sharma, W. Wu, and E. N. Dalal. The CIEDE2000 color-

difference formula: Implementation notes, supplementary test data,

and mathematical observations. Color Res. Appl., 30(1):21–30,

2005. 5

[33] X. Shu and N. Ahuja. Hybrid compressive sampling via a new total

variation TVL1. In Proc. ECCV, 2010. 7

[34] T. Valkonen, K. Bredies, and F. Knoll. Total generalized variation in

diffusion tensor imaging. SIAM J. Imag. Sci., 6(1):487–525, 2013. 3

[35] B. C. Vu. A splitting algorithm for dual monotone inclusions involv-

ing cocoercive operators. Adv. Comput. Math., 38(3):667–681, 2013.

2, 4

[36] G. Yu and G. Sapiro. DCT image denoising: a simple and effective

image denoising algorithm. Image Processing On Line, 2011. 2

[37] X. Zhang, M. Burger, X. Bresson, and S. Osher. Bregmanized nonlo-

cal regularization for deconvolution and sparse reconstruction. SIAM

J. Imag. Sci., 3(3):253–276, 2010. 1


