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Abstract

The Fisher vector (FV) representation is a high-

dimensional extension of the popular bag-of-word represen-

tation. Transformation of the FV by power and ℓ2 normal-

izations has shown to significantly improve its performance,

and led to state-of-the-art results for a range of image and

video classification and retrieval tasks. These normaliza-

tions, however, render the representation non-additive over

local descriptors. Combined with its high dimensionality,

this makes the FV computationally expensive for the pur-

pose of localization tasks. In this paper we present approx-

imations to both these normalizations, which yield signifi-

cant improvements in the memory and computational costs

of the FV when used for localization. Second, we show how

these approximations can be used to define upper-bounds

on the score function that can be efficiently evaluated, which

enables the use of branch-and-bound search as an alterna-

tive to exhaustive sliding window search. We present ex-

perimental evaluation results on classification and tempo-

ral localization of actions in videos. These show that the

our approximations lead to a speedup of at least one or-

der of magnitude, while maintaining state-of-the-art action

recognition and localization performance.

1. Introduction

Recognition of human actions and activities is one of the

most important topics in automatic video analysis. Two of

the most generic and canonical problems in this area are the

classification and localization of human actions. In clas-

sification the goal is to determine for a short video clip

whether or not it contains a given human action of inter-

est [31]. For localization the goal is to report in a longer

video all (spatio-) temporal windows that contain the action

of interest [17]. These problems are intimately related, and

are counterparts in the video domain of the widely studied

image classification and object detection problems in still

images [3, 6]. With the advent of advanced local spatio-
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temporal features and feature encoding techniques, research

on action recognition and localization has recently made

significant progress, and moved on from simple controlled

video datasets [26], to address these tasks on uncontrolled

videos extracted from movies or YouTube [15, 20].

The Fisher vector (FV) image representation is an exten-

sion of the popular bag-of-visual-word (BoV) representa-

tion, that yields high-dimensional image signatures by en-

coding for each visual word the mean and variance of the

assigned local descriptors [22]. With the inclusion of power

and ℓ2 normalizations proposed by Perronnin et al . [23], the

FV image representation has proven to be one of the most

effective ones for image classification, see e.g . the evalu-

ation study of Chatfield et al . [3]. Recently the FV has

appeared for a wide variety of problems as the representa-

tion that underpins state-of-the-art results, including image

retrieval [14], object detection [6], and semantic segmenta-

tion [19]. Also for action recognition and localization FVs

have recently been explored, and shown to yield state-of-

the-art performance, see e.g . [21, 27, 33]. In particular the

combination of motion-based descriptors computed along

densely sampled temporal feature tracks [31] with FV en-

coding is currently one of the most effective representations.

To a large extent, the success of the FV representa-

tion can be ascribed to its high dimensionality, which

makes it very effective in combination with efficient lin-

ear classifiers. The flip side of its high dimensionality —

representations of tens to hundreds of thousands of dimen-

sions are more the rule than an exception— is, however, that

it leads to large storage requirements. This issue becomes

particularly pressing in large-scale image classification and

retrieval tasks. Data compression with product quantization

has been employed to reduce the storage requirements by

orders of magnitude in this context, see e.g . [14, 24].

Localization of actions in video, or objects in images,

can be considered as a large-scale classification problem,

where we want to find the highest scoring windows in a

video or image w.r.t. a classification model of the category

of interest. Unlike generic large-scale image classification,

however, the problem is highly structured in this case, in

the sense that all windows are crops of the same video or

image under consideration. This structure has been exten-
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sively exploited in the past. In particular, when the features

for a detection window are obtained as sums of local fea-

tures, integral images can be used to pre-compute cumula-

tive feature sums. Once the integral images are computed,

these can be used to compute the sums of local features in

constant time w.r.t. the window size. Viola and Jones [30]

used this idea to efficiently compute Haar filters for face

detection. Recently, Chen et al . [4] used the same idea to

aggregate scores of local features in an object detection sys-

tem based on a non-normalized FV representation. Another

way to exploit the structure of the localization problem is

to use branch-and-bound search, as e.g . used by Lampert et

al . [16]. Instead of evaluating the score of one window at

a time, they hierarchically decompose the set of detection

windows and consider upper-bounds on the score of sets of

windows to explore the most promising ones first.

While the power and ℓ2 normalizations of Perronnin et

al . [23] have proven effective to improve the performance

of the FV, the resulting normalized FV is no longer addi-

tive over local features. As a consequence, these FV nor-

malizations prevent the use of integral image techniques to

efficiently aggregate local features or scores.

Our first contribution, which we present in Section 3, is

to show that the FV normalizations can be approximated

in a way that the score for an arbitrarily large window can

be computed in constant time, by relying on pre-computed

cumulative sums of local visual word assignments, scores,

and ℓ2 norms. Second, in Section 4, we show that with our

approximations the normalized FV becomes amenable to

efficient localization using branch-and-bound search.

In our experimental evaluation, presented in Section 5,

we validate on two action classification benchmarks that our

approximations have only a limited impact on the effective-

ness of the normalizations. Experiments on two temporal

action localization datasets demonstrate that our approxi-

mations accelerate temporal localization by more than one

order of magnitude when using a temporal sliding window

approach. Branch-and-bound search brings further speedup

when only the top scoring windows need to be reported. Be-

fore presenting our contributions and experiments in detail,

we first discuss some of the most relevant related work.

2. Related work

The search space for multi-dimensional localization

problems is large: if we consider a D-dimensional grid with

B bins per dimension, there are C = BD grid cells, and

O(C2) windows defined over the grid. Exhaustive sliding

window search is therefore costly, unless low-dimensional

features in combination with linear classifiers are used.

Viola and Jones [30] introduced a face detector that com-

bined efficient computation of Haar-filters over pixel inten-

sities using integral images, with a detection-cascade that

progressively rejects detection windows using an increas-

ingly larger set of features. In this manner most computa-

tion is spent on finely analyzing the most promising image

regions. Similar ideas were used by others for generic ob-

ject category detection using richer image representations

based on BoV representations, by using progressively more

expensive classifiers, see e.g . [11, 29].

If an additive window representation is used —such as

a non-normalized BoV histogram— in combination with

a linear classifier, several efficient algorithms are available

for localization. These algorithms exploit the commutative

property of the linear score function and the additivity of the

representation. For the one-dimensional case the problem

then reduces to the maximum subarray problem, which can

be solved with a linear-time dynamic programming algo-

rithm. In the two-dimensional case, An et al . [2] presented

an O(C3/2) algorithm, which was used by Chen et al . [4]

for detection with non-normalized FVs. Another approach,

used by Lampert et al . [16], is branch-and-bound search,

for which the bounds are efficiently evaluated for additive

features and linear classifiers. Yuan et al . [35] generalized

this approach to spatio-temporal localization in videos.

Most of the recent work that uses FV representations for

object and action localization, and semantic segmentation,

either uses non-normalized FVs [4, 7], or explicitly com-

putes normalized FVs for all considered windows [6, 21].

The recent work of Li et al . [19] is an exception to this

trend; they left out the power-normalization of the FV, but

presented an efficient approach to incorporate exact ℓ2 nor-

malization. In this paper we present approximations to both

the power and ℓ2 normalization, which allows us to compute

the score of a window by aggregating locally pre-computed

quantities. In particular, we store for each cell and visual

word the local sum of assignments, scores, and ℓ2 norms.

This representation, therefore, has a size that is only three

times larger than a local BoV histogram, while leveraging

the representational power of the normalized FV.

A different line of work focuses on using category-

independent selective search techniques, mainly driven by

low-level contour and segmentation cues, to produce a small

set of candidate detection windows, see e.g . [1, 28]. In this

manner a set of only 1,000 to 2,000 windows suffices to

capture 95% of the objects in the PASCAL VOC datasets.

Since these techniques are decoupled from the actual de-

tector, they do not impose any constraints on the detector

or its features. Such techniques can be generalized to the

video domain by using efficient super-voxel techniques, see

e.g . [8, 34]. Our approximate normalizations can be used in

combination with such selective search techniques.

3. Approximate Fisher vector normalization

Below, we first briefly review the Fisher vector image

representation, after which we present our approximations

to the power and ℓ2 normalization. Finally, we analyze the



complexity to compute the approximately normalized FV.

3.1. The Fisher vector and its normalizations

The Fisher kernel principle of Jaakkola and Haus-

sler [12] uses generative models for feature extraction by

representing data by means of the gradient of the data log-

likelihood w.r.t. the model parameters. They showed that

this representation becomes invariant to re-parametrization

of the generative model when the gradients are normalized

by the inverse-square-root of the Fisher information matrix.

Perronnin et al . [22] applied the Fisher kernel princi-

ple to obtain image representations based on sets of N
local features, e.g . SIFTs, which they modeled as inde-

pendent samples from a K-component Gaussian mixture

model (GMM). They used Gaussians with diagonal co-

variance matrices, and we use the vector σk to denote these

diagonals. Let xn ∈ IRd denote the n-th d-dimensional lo-

cal feature, qnk the soft-assignment of xn to the k-th Gaus-

sian, and πk and µk the mixing weight and mean of the k-th

Gaussian respectively. The d-dimensional gradients w.r.t.

the mean and variance of the k-th Gaussian are given by:

Gµk
=

N
∑

n=1

qnk [xn − µk] /
√
σkπk, (1)

Gσk
=

N
∑

n=1

qnk
[

(xn − µk)
2 − σk

]

/
√

2σ2
kπk, (2)

where operations using σk should be understood as

element-wise operations, and the normalization by the

Fisher information matrix has already been taken into ac-

count. The concatenation of these d dimensional gradients,

as G = [G1, . . . , GK ] with Gk = [Gµk
, Gσk

], is then re-

ferred to as the Fisher vector (FV), which is of dimension

2Kd. The gradient w.r.t. the mixing weights of the GMM

are generally ignored since they contribute little discrimina-

tive power to the FV. See [25] for a recent comprehensive

review of the FV image representation.

Two normalizations of the FV representation signifi-

cantly improve its performance [23]. The first of these is

the power normalization which consists in applying per-

dimension a “signed” power, by transforming each element

of the FV as z ← sgn(z)abs(z)ρ, with 0 < ρ < 1. The sec-

ond normalization is the ℓ2 normalization, which consists in

rescaling the FV to have unit ℓ2 norm.

3.2. Approximate power normalization

Cinbis et al . [5] have argued that the power normaliza-

tion corrects for the independence assumption that is made

in the GMM model that underpins the FV representation.

They presented latent variable models which do not make

this independence assumption, and experimentally found

that such models lead to similar performance improvements

as the power-normalization. In particular, they showed that

the gradients w.r.t. the mixing weights in their non-i.i.d.

model take the form of discounted version of these gradi-

ents in the original i.i.d. model. The transformation they

found was the di-gamma function, which, like the power-

normalization, is a concave monotonic function.

Based on this analysis, we propose an approximate ver-

sion of the power normalization. First, note that the gra-

dients in Gk are weighted sums of contributions of local

features. Let us write these in a more compact manner as:

Gk =
∑

n

qnkgnk =

(

∑

n

qnk

)

∑

n

qnkgnk
∑

m qmk
, (3)

where qnk and gnk denote the weight and gradient contri-

bution of the n-th local descriptor for Gk. The last part

of Eq. (3) re-interprets the FV as a weighted average of

local contributions, multiplied by the sum of the weights.

The power-normalization is computed as an element-wise

signed-power of Gk. In our approximation we, instead, ap-

ply the power only to the (positive) sum of weights:

Gk =

(

∑

n

qnk

)ρ
∑

n

qnkgnk
∑

m qmk
. (4)

In our approximation, the power-normalization modifies the

magnitude of the gradient vector, but not its orientation. We

concatenate the Gk to form the normalized FV G.

Using our approximate power-normalization, a linear

function can now be computed by aggregating local scores.

For a classifier weight vector w = [w1, . . . , wk] we have:

〈w,G〉 =
∑

k

〈wk,Gk〉 =
∑

k

(

∑

n

qnk

)ρ−1
∑

n

snk, (5)

where snk = 〈wk, qnkgnk〉 denotes the score of the local

non-normalized FV, which is still additive over local terms.

3.3. Approximate ℓ2 normalization

We now proceed with an approximation of the ℓ2 norm

of G. The squared ℓ2 norm is a sum of squared ℓ2 norms per

Gaussian component: ||G||22 =
∑

k G⊤k Gk, where

G⊤k Gk =

(

∑

n

qnk

)2(ρ−1)
∑

n,m

qnkqmk 〈gnk, gmk〉 . (6)

We approximate the double sum over dot products of lo-

cal gradient contributions by assuming that most of the lo-

cal gradients will be near orthogonal for high-dimensional

FVs. This leads to an approximation L(Gk) of the squared

ℓ2 norm of Gk in the form of a sum of local contributions:

L(Gk) =

(

∑

n

qnk

)2(ρ−1)
∑

n

q2nklnk, (7)



where lnk = 〈gnk, gnk〉 is the local squared ℓ2 norm. Sum-

ming these over the visual words, we approximate ||G||22
with L(G) =∑k L(Gk).

Theoretically, we can show the following: (i) In expecta-

tion the approximation of ℓ2 norm converges to the true ℓ2
norm if the contributing descriptors are independently dis-

tributed. (ii) If the FV of local descriptors are positively

correlated (which we expect them to be in practice), our ap-

proximated L2 norm is an underestimate of the true norm.

We will asses the validity of these properties in practice in

our experiments in Section 5.

3.4. Complexity of approximately normalized FVs

We combine the above approximations to compute a lin-

ear function of our approximately normalized FV as

f(G;w) =
〈

w,G/
√

L(G)
〉

= 〈w,G〉
/

√

L(G). (8)

To efficiently compute f(G;w) over many windows of

various sizes and positions, we can use integral images to

compute in constant time the per-window sums of assign-

ments, scores, and norms in s, q, and l. Since the assign-

ments, scores, and norms vary per visual word, we need to

compute three integral images for each visual word.

For the complexity analysis we again assume we use a

multidimensional grid, with C cells in total. When either

using the exact or our approximate FV normalizations, the

first step is to aggregate the local FVs per cell, and to com-

pute the (multi-dimensional) integral image over these cells.

When using our approximations, we will compute 3K inte-

gral images that accumulate the local weights, scores, and

norms per visual word. For exact normalization we need

to compute 2Kd integral images, since we first need to

compute the full window-level FVs before the normaliza-

tions can be applied. The cost of this step is in both cases

O(CKd). As compared to storing the full local FV, our rep-

resentation is 2d/3 times more compact. When using, as in

our experiments, d = 192 for the local features, this reduces

the storage requirements by a factor 2× 192/3 = 128.

Once the integral images are available, the cost to score a

window of arbitrary size is O(K) with our approximations,

as opposed to O(Kd) when using exact normalization. We

thus obtain an O(d) speedup for the window scoring.

The actual cost to obtain the integral images is slightly

higher when using our approximate normalizations, since

at this stage we already compute local scores and norms,

and take powers of the weight sums. When using exact nor-

malization, we only sum local FVs at this stage. This cost

is, however, amortized as using our approximations the per-

window scoring is a factor d faster; and exact normalization

requires taking powers of the full window-level FVs. In our

experiments we assess the speedup as observed in different

practical settings, as well as the impact of the normaliza-

tions on the recognition performance.

4. Integration with branch-and-bound search

The approximations we presented above accelerate the

scoring of windows by aggregating locally pre-computed

scores, weights, and norms. A second method to speedup

detection is to use a branch-and-bound search instead of ex-

haustive search. The idea of branch-and-bound is to eval-

uate upper bounds on the scores of windows in sets of

detection windows. Starting from the set of all possible

windows, the search is organized by hierarchically split-

ting sets of windows and computing upper bounds on the

scores. A set of detection windows is represented by a tuple

A = (slow, shigh, elow, ehigh), where slow ∈ IRD defines

the earliest starting point for the windows in A on the D-

dimensional grid. Similarly, shigh defines the latest starting

point for all windows in A, and elow and ehigh define the

earliest and latest end points. Sets of windows are split by

either splitting the start range or the end range on a single di-

mension, depending where the range is maximum. The sets

are explored in a best-first manner, which focuses on the

most promising parts of the search space first. See [16] for

a comprehensive introduction to branch-and-bound search.

Below we present an upper bound for the score defined

in Eq. (8). For clarify of exposition, we start with a bound

on a simple additive score function, and then present bounds

when adding our approximate power and ℓ2 normalizations.

4.1. Upper­bound for additive linear classifiers

If the function is linear and additive in the local features

it is easy to obtain an upper bound by separating the positive

and negative terms. In particular, consider such a function

over the non-normalized FV G:

f(G;w) = 〈w,G〉 =
∑

k

〈wk, Gk〉 =
∑

k

∑

n

snk,

=
∑

k

[

∑

n:snk>0

snk +
∑

n:snk<0

snk

]

, (9)

where as before snk = 〈wk, qnkgnk〉. We can upper bound

the score of the FV of any window in a set of windows A
by accumulating positive and negative scores of the union

A∪ and intersection A∩ of all windows in A respectively:

f(A;w) =
∑

k

[

∑

n∈A∪:snk>0

snk +
∑

n∈A∩:snk<0

snk

]

.(10)

4.2. Bounding approximate power­normalization

When using our approximate power-normalization, a lin-

ear classification score takes the form of Eq. (5):

f(G;w) = 〈w,G〉 =
∑

k

(

∑

n

qnk

)ρ−1
∑

n

snk. (11)



To bound this function for a set of windows A, we can use

the previous bound for the linear score terms
∑

n snk. Pro-

vided the intersection A∩ is non-empty, the scalar multipli-

cation with (
∑

n qnk)
ρ−1

can be bounded by accumulating

the weights over the intersectionA∩ instead. For 0 < ρ < 1
this leads to the upper bound

f1(A) =
∑

k

(

∑

n∈A∩

qnk

)ρ−1






∑

n∈A∪

snk>0

snk +
∑

n∈A∩

snk<0

snk






.

If the intersectionA∩ is empty, however, we obtain a trivial

upper bound f(A) =∞, since 0(ρ−1) =∞ for 0 < ρ < 1.

To bound this case, we use the interpretation of the normal-

ized FV as a weighted average, c.f . Eq. (4), and write:

f(G;w) =
∑

k

(

∑

n

qnk

)ρ
∑

n

qnk〈wk, gnk〉
∑

m qmk
. (12)

It is then easy to see that we can upper bound the score as

f2(A) =
∑

k

(

∑

n∈A∪

qnk

)ρ

max
n∈A∪

〈wk, gnk〉. (13)

Since the latter bound relies on a non-linear max oper-

ation, we cannot efficiently compute it using intergral im-

ages. Therefore, the bound f1(A) is preferred if A 6= ∅.

4.3. Bounding with approximate ℓ2 norm included

To upper bound a linear function of our approximately

power and ℓ2 normalized FVs, c.f . Eq. (8), for a set of win-

dows A, we need to lower bound the approximate ℓ2 norm:

L(G) =
∑

k

(

∑

n

qnk

)2(ρ−1)
∑

n

q2nklnk. (14)

Since 2(ρ− 1) < 0, the first term can be bounded summing

over the union A∪ instead. If the intersection A∩ is non-

empty we can bound the second term by summing over the

intersection, and obtain the lower-bound on L(G) as:

L1(A) =
∑

k

(

∑

n∈A∪

qnk

)2(ρ−1)
∑

n∈A∩

q2nklnk. (15)

If the intersection is empty, we can instead of the sum over

A∩, use the minimum over A∪ to obtain the bound:

L1(A) =
∑

k

(

∑

n∈A∪

qnk

)2(ρ−1)

min
n∈A∪

q2nklnk. (16)

It is easy to verify that if A∩ 6= ∅ then L2(A) ≤ L1(A),
thus in this case L1(A) is the tightest of the two bounds.

5. Experiments

Below, we first discuss the datasets, features, and eval-

uation protocols in Section 5.1. Then, in Section 5.2, we

present results on action classification to evaluate the im-

pact of our approximate FV normalizations on recognition

performance. We evaluate the speedup our approximations

brings to temporal action localization in Section 5.3.

5.1. Datasets, evaluation protocols, and features

Below we describe the datasets used in our experiments.

Hollywood2 [20] contains samples collected from Holly-

wood movies of 12 action categories. There are 810 and

884 train and test clips respectively, and these sets are se-

lected from different movies. The average duration of clips

is about 20 sec. We use the standard evaluation protocol and

report the mean average precision (mAP) across the actions.

HMDB [15] contains video clips of 51 action categories.

We follow the standard evaluation protocol, and report the

average classification accuracy over three test-train splits

that per category contain 70 examples for training, and 30

for testing. We use the non-stabilized version of the videos.

Coffee and Cigarettes is an action localization

dataset [17] annotated with instances of two actions: drink-

ing and smoking. The movie consists of 11 short stories,

each with a different set of actors. Train and test sets are

taken from different short stories; additional training exam-

ples are included from the movie Sea of Love as well as lab-

recorded ones. For drinking there are 106 training samples,

while the test set consists of 20 minutes of video that con-

tains 38 positive samples. For smoking there are 78 training

samples, and the test set consists of 18 minutes of video that

contains 42 positive samples.

The Duchenne dataset [9] contains annotations for the

actions sit down and open door. The training data comes

from 15 movies, and contains 51 sit down examples, and

38 for open door. The test data contains three full movies

(Living in Oblivion, The Crying Game, and The Graduate),

which in total last for about 250 minutes, and contain 86 sit

down, and 91 open door samples.

To evaluate localization performance we follow the stan-

dard protocol [9, 17], and report the average precision (AP),

where we consider a localization correct if the temporal

window overlaps with a ground-truth action by at least 20%

in the sense of intersection-over-union. For localization we

consider temporal windows with lengths from 20 to 180

frames, with increments of 5 frames. We use a stride of five

frames to locate the windows on the video. We use zero-

overlap non-maximum suppression, and re-scale the win-

dow scores by the duration, as in [21]. When using branch-

and-bound, window sets that are guaranteed to intersect al-

ready selected windows are removed from the queue.

Features. We use the public implementation of the

dense trajectory features of Wang et al . [31], with standard



Power norm. ℓ2 normalization Hollywood2 HMDB

No No 55.2 43.1

Exact No 62.0 51.7

No Exact 60.1 46.8

Exact Exact 62.4 52.2

Approximate Exact 62.1 52.1

Approximate Approximate, n = 5 60.1 52.6

Approximate Approximate, n = 10 60.2 52.4

Approximate Approximate, n = 20 60.2 52.6

Approximate Approximate, n = 40 60.6 52.5

Approximate Approximate, n = 80 60.7 52.2

Approximate Approximate, n = 160 61.1 52.2

Wang et al . 2013 [31] 59.9 48.3

Oneata et al . 2013 [21] 61.9 51.9

Jain et al . 2013 [13] 62.5 52.1

Wang et al . 2013 [32] 64.3 57.2

Table 1. Action classification performance. For the ℓ2 approxima-

tion we evaluate using cells of n frames, for n = 5 to n = 160.

parameters. We extract MBH features and project them to

64 dimensions with PCA. As in Oneata et al . [21], we use

1,000 GMM components for classification, and include po-

sition information with spatial pyramids and spatial Fisher

vectors. For temporal localization we use a GMM with

128 components, and no position information. This setting

yields a FV of 804,000 dimensions for classifications and

16,384 for localization.

Classifiers. We use linear SVM classifiers, and for the

multi-class datasets Hollywood2 and HMDB we use a one-

versus-rest approach. We cross-validated the regularization

parameter and the class balancing weight.

5.2. Effect of approximation on action classification

In our first experiment we consider the effect of the

power and ℓ2 normalizations of the FV for action classifica-

tion, and assess to which degree our approximations main-

tain the performance benefits of the exact normalizations. In

our experiments we use the common setting of ρ = 1
2 , see

e.g . [3, 14, 21], which corresponds to a signed square-root.

The first four results in Table 1 assess the effectiveness of

the exact power and ℓ2 normalization for action classifica-

tion. For both datasets the power normalization is the most

effective one, improving performance by 6.8 and 8.6 mAP

points respectively. Adding ℓ2 normalization improves re-

sults further by 0.4 and 0.5 mAP points respectively.

When using approximate power normalization (fifth

line), but exact ℓ2 normalization, performance drops only

slightly for both datasets. For Hollywood2 and HMDB the

loss is only 0.3 and 0.1 points respectively; which is respec-

tively 2.0 and 5.3 points above not using power normaliza-

tion. Experimentally, we found that it is beneficial to apply

an additional element-wise standardization of the FV after

approximate power normalization, and before ℓ2 normaliza-

51020 40 80 160
Cell size

0.6

0.7

0.8

0.9

1.0

L
(G

)/
G

2 2

Figure 1. Errors in the ℓ2 norm approximation, see text for details.

tion. If this is not done, performance drops by about 1 point

to 61.3% and 51.1% mAP respectively. This standardiza-

tion can absorbed in the classifier weight vector w, before

computing the local scores snk, and therefore does not im-

pact the computational efficiency of our approach.

The following six results show the effect of approximate

ℓ2 normalization for various temporal cell sizes over which

the features are aggregated: from 5 up to 160 frames. The

smaller the cell size, the coarser our approximation, since

more cross-terms will be ignored in our approximation. The

results show, however, that the classification performance

is only slightly impacted by using smaller cells. For Hol-

lywood2 the best result of 61.1% is obtained for cells of

160 frames, while using 5-frame cells yields 60.1% mAP.

For HMDB the variation in performance across different

cell sizes is at most 0.4 points, with better performance for

smaller cells.

We further analyze the ℓ2 norm approximation by con-

sidering the ratio between the approximate and the true

norm. In Figure 1 we show the average of the ratio and

its standard deviation for various cell sizes measured on

HMDB. Note that the ratio is generally smaller than one,

as expected. Moreover, even for small cell sizes the under

estimation is limited to about a factor two, with limited vari-

ation in the under estimation factor. This explains the small

impact on the recognition performance observed above.

To show that our video representation is competitive with

the state-of-the-art, we include four recent state-of-the-art

results of [13, 21, 31, 32]. Wang et al . [31] use a sum of

RBF chi-squared kernels over BoV histograms for HOG,

HOF, and MBH features, computed over six different SPM

grids [18], and using 4,000 visual words. The setup of

Oneata et al . [21] is comparable to the one we used here.

Jain et al . [13] use camera motion stabilization before com-

puting MBH, HOG, and HOF features, in addition to their

DCS flow features. They aggregate these features using

VLAD descriptors [14], a variant of FV. Wang et al . [32]
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Exh. No No 34.0 15.6 10.3 5.9

Exh. No Yes 61.1 55.5 24.1 18.3

Exh. Yes No 64.8 23.8 20.6 17.1

Exh. Yes Yes 64.8 55.4 28.4 19.0

Exh. Appr. Appr. 67.1 52.0 18.1 13.6

Oneata et al . [21] 63.9 50.5 26.5 18.2

Gaidon et al . [10] 57 31 16.4 19.8

Laptev & Pérez [17] 49 — — —

Duchenne et al . [9] 40 — 14.4 13.9

Table 2. Action localization performance using either no, exact, or

approximate normalizations, and recent state-of-the-art results.

also use stabilized features, but they estimate a homogra-

phy using RANSAC and then improve their matches using

a human detector; these features are then encoded with FV.

5.3. Temporal action localization

In our temporal action localization experiments, we

compare using exact normalizations and our approxima-

tions in terms of localization performance and speed.

The localization results are presented in Table 2. As be-

fore, the first four results consider the impact of the exact

normalizations on performance. For drinking and sit down

the power and ℓ2 normalization have a similar impact, and

improve the results by about 30 and 12 mAP points respec-

tively. Using both normalizations does not bring further im-

provements for drinking, but does improve results by 0.7

points for sit down. For smoking and open door the ℓ2 nor-

malization brings the largest improvement of almost 40 and

14 mAP points respectively. Additional power normaliza-

tion is not effective for smoking, but does bring an improve-

ment of 4.3 points for open door.

Next, we consider the impact of our approximate power

and ℓ2 normalizations. For drinking we obtain an AP of

67.1%, which is even 2.3 points above the results for exact

normalization. For smoking our approximations also lead

to an AP of 52.0%, which is 3.4 points below the result

for exact normalization. For open door and sit down the

results are 10.3 and 5.4 points below those obtained using

exact normalization. They are, however, still 7.8 and 7.7

points better than not using normalization. For drinking and

smoking the gain of our approximate normalization w.r.t. no

normalization is 33.1 and 36.4 mAP points.

We include recent state-of-the-art results of [9, 10, 17,

21] to show that our results are competitive. The results for

Laptev et al . [17] are taken from [9], which have interpo-

lated their spatio-temporal localization results to the tempo-

ral domain. Our results with exact normalization are above

the best earlier reported results. Using our approximations
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Exh. No Yes 95.4 92.2 1276.7 1168.3

Exh. Yes No 146.3 143.4 1794.3 1781.9

Exh. Yes Yes 160.3 151.0 1966.8 2036.4

Exh. Appr. Appr. 11.3 10.3 140.6 138.0

Table 3. Timings (secs.) for action localization using exhaustive

search with either no, exact, or approximate normalizations.
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Pre-processing 7.65 6.99 93.01 92.98

Exhaustive search 3.65 3.31 47.67 43.63

Branch and bound, top 1 1.02 1.40 16.59 20.57

Branch and bound, top 10 1.71 2.44 35.41 30.32

Table 4. Search times for the action detection datasets in seconds

for exhaustive and branch-and-bound search, where both use our

approximate normalization.

this is still the case for drinking and smoking, but not for

open door and sit down.

The timing results in Table 3 show that our approxima-

tions lead to a speedup of about one order of magnitude

w.r.t. using exact normalization. As compared to using no

normalization, our approximations are about four to five

times slower, but leads to significantly better results.

Finally, we evaluate the speed of branch-and-bound

search with our approximations to find the top scoring tem-

poral windows. In Table 4 we give an overview of the search

times when searching for the t highest scoring windows,

for t=1 and t=10. Both exhaustive and branch-and-bound

search first pre-process all the cells in the temporal grid to

compute the local sums of scores, assignments, and norms.

We separate the time needed for pre-processing, and the

actual search time. When searching for the top window,

branch-and-bound is between 2.1 and 3.6 times faster. For

the top 10 windows, the speedup factors are between 1.3

and 2.4. Although faster than exhaustive search, overall the

speedup obtained using branch-and-bound is limited. This

is because in our uni-dimensional temporal search setup, the

number of windows is only 32 times larger than the num-

ber of cells in the search grid. We expect larger speedup for

branch-and-bound when applied to 2D spatial, or 3D spatio-

temporal localization problems.

6. Conclusion

We have presented approximate versions of the power

and ℓ2 normalization of the Fisher vector representation.



These approximations allow efficient evaluation of linear

score functions, by caching local per visual word sums of

scores, assignments, and norms. We also presented corre-

sponding upper-bounds that permit the use of our approxi-

mations in branch-and-bound search.

Experimental results for action classification and local-

ization show that these approximations only have a lim-

ited impact on performance, while yielding speedups of at

least one order of magnitude. When only the top-scoring

window is required, branch-and-bound search can further

speedup localization by a factor between 2 to 4, excluding

pre-processing.

The efficient localization techniques presented here are

directly applicable to other localization tasks, such as ob-

ject localization in still images, and spatio-temporal action

localization. Since these tasks consider higher dimensional

search spaces, we expect the speedup of our approxima-

tions, as well as branch-and-bound search, to be even larger

than for temporal localization task that we considered in this

paper. We plan to explore application of our approximations

for these tasks in future work.
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