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Abstract

A key problem often encountered by many learning al-
gorithms in computer vision dealing with high dimensional
data is the so called “curse of dimensionality” which arises
when the available training samples are less than the input
feature space dimensionality. To remedy this problem, we
propose a joint dimensionality reduction and classification
framework by formulating an optimization problem within
the maximum margin class separation task. The proposed
optimization problem is solved using alternative optimiza-
tion where we jointly compute the low dimensional max-
imum margin projections and the separating hyperplanes
in the projection subspace. Moreover, in order to reduce
the computational cost of the developed optimization algo-
rithm we incorporate orthogonality constraints on the de-
rived projection bases and show that the resulting combined
model is an alternation between identifying the optimal sep-
arating hyperplanes and performing a linear discriminant
analysis on the support vectors. Experiments on face, facial
expression and object recognition validate the effectiveness
of the proposed method against state-of-the-art dimension-
ality reduction algorithms.

1. Introduction

Two of the most crucial problems that every learning
algorithm in Computer Vision (CV) often encounters are
the high dimensionality of the input data, which yields sev-
eral problems in subsequently performed statistical learn-
ing algorithms due to the so-called “curse of dimensional-
ity” and the “small sample size problem” which arises when
the number of data samples is less than the data sample di-
mensionality. To overcome these problems various tech-
niques have been proposed for efficient data embedding (or
dimensionality reduction) aiming to obtain a more man-
ageable problem and alleviate computational complexity.
More precisely, research in the field has primarily revolved
around providing efficient and effective solutions to the fol-
lowing problem: given a set of training samples of a high-

dimensional space, estimate a low-dimensional space where
either the intrinsic structure of the input data is preserved or
discrimination between different classes is enhanced. To
accomplish these goals various approaches have been pro-
posed in the literature where arguably the most popular ones
are the so-called Principal Component Analysis (PCA) [22],
Linear Discriminant Analysis (LDA) [1] and the quite re-
lated class of Graph Embedding techniques [25]. Moreover,
in applications involving a recognition phase, classification
is typically performed by projecting the test samples onto
the identified low-dimensional space and applying off-the-
shelf classifiers such as SVMs. Hence, the task of designing
dimensionality reduction or feature extraction methodolo-
gies and the design of classifiers are most commonly treated
independently, as different modules, in the pipeline of the
general framework of recognition applications.

Joint dimensionality reduction and classification has
only recently received some attention mainly within the
Non-negative Matrix Factorization (NMF) framework [7,
17]. In particular, in [7, 17] joint generative-discriminant
frameworks were proposed where a set of projection bases
that best reconstruct the data are derived using NMF or
Semi-NMF, while the weights that are assigned to these
bases are evaluated such as the projected low dimensional
samples form classes that are well separated with maximum
margin. Support vector machines (SVMs) is probably the
most widely used classifier in CV applications [23, 20]. For
instance, among the current state-of-the-art approaches for
pedestrian detection are SVM withχ2 square kernels and
Histogram of Oriented Gradients (HOG) descriptors [23],
SVMs with Gaussian RBF (GRBF) kernels using additive
distances are some of the best classifiers in vision [23] and
also structured SVM approaches are among the state-of-the-
art in object detection [9, 28]. Another reason that SVMs
are very popular in vision applications is that recently pack-
ages for solving the Quadratic Programming (QP) optimiza-
tion problem for SVM training in linear time, with respect
to the number of training samples, have been proposed and
publicly released [12, 13].

In this paper, we follow a different line of research and
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propose a pure discriminative framework. That is, we pro-
pose a combined framework of dual discriminative dimen-
sionality reduction and classification within the maximum
margin framework of SVMs. We build our method by
defining a joint optimization problem for finding both a set
of low-dimensional projections and the separating hyper-
planes. However, since, the dual optimization problem with
respect to the projection bases is computationally expen-
sive, we also propose an algorithmically efficient approach
resulting by introducing orthogonality constraints on the
identified projection bases. For the latter case, we demon-
strate that the alternative optimization procedure is equiva-
lent to finding the maximum margin separating hyperplane
in the low-dimensional space defined by performing LDA
explicitly on the support vectors. Summarizing the novel
contributions of the paper are the following:

• We propose to the best of our knowledge, the
first1 joint dimensionality reduction and classification
method developed within a maximum margin frame-
work. Our methodology is radically different than
the maximum margin projections in [15], since in that
work dimensionality reduction was treated as a purely
classification problem. That is, the set of projections
were produced by solving a number of SVM optimiza-
tion problems (equal to the number of retained dimen-
sions) and removing at each step the learned hyper-
plane from the data (a procedure called deflation). The
last hyperplane learned from the deflation approach is
the final hyperplane that can be used for classifica-
tion. A similar to our methodology line of research
is presented in [11] where dimensionality reduction is
attempted in the context of multi-label classification
and the projection directions are derived by consider-
ing only binary classification problems one for each
label. However, in this paper we drawn radically dif-
ferent conclusions from [11]. More precisely, in [11]
is stated that the joint framework is equivalent to the
separate application of LDA for dimensionality reduc-
tion and SVM for classification and thus performance
is not improved by the joint framework. As we show
in our theory the joint framework, first is not feasible
for binary classification problems, since in this case the
resulting low dimensional projection matrix is a degen-
erate rank one matrix and second, in the general case of
multiclass classification problems the joint framework
is not equivalent to the separate approach, since the co-
variance matrix is explicitly evaluated on the support
vectors. Finally, we also experimentally verify the su-
periority of the joint approach on different recognition

1The methodology proposed in [4] although it is referred as a margin
discrimination approach it follows a totally different approach than ours.
That is a non-parametric LDA was proposed using weights fromminimum
bounding hyperdisks.

problems on various datasets.

• In the proposed approach we do not need to resort to
sub-optimal approaches such as deflation, since we can
jointly compute the low dimensional projections and
the separating hyperplanes using alternative optimiza-
tion. Furthermore, we can reduce the computational
cost by incorporating orthogonality constraints on our
projection bases and show that in this case the pro-
jection bases are given by the largest eigenvectors of
a between-class scatter matrix defined on the support
vectors.

• Finally, our methodology is radically different to meth-
ods that use off-the self dimensionality reduction and
feature extraction algorithms such as PCA and Ker-
nel PCA (KPCA) [8, 5, 24] or use a first ad-hoc step
of data dependent transformation by projecting on the
non-null space of data covariance matrices (e.g., the
within-class scatter matrix [26, 16]), where there is no
connection between the data transformation and clas-
sification steps. In this paper we formulate a joint op-
timization problem where there is a natural interplay
between dimensionality reduction/data transformation
and identifying the optimal classification hyperplanes.

2. Maximum Margin Projections

Given a setX = {(x1, y1), ..., (xN , yN )} of N train-
ing data pairs, wherexi ∈ RF , i = 1, ..., N are the
F -dimensional input feature vectors each assigned a class
label yi ∈ {1, . . . ,K} with K denoting the total num-
ber of classes, a multiclass SVM classifier [6] attempts
to determine a set ofK separating hyperplanesU =
{u1,u2, . . . ,uK} whereup ∈ RF , p = 1, ...,K is the nor-
mal vector of thep-th hyperplane that separates the training
vectors of thep-th class from all the others with maximum
margin. Thus, the decision whether a test samplex belongs
to one of theK different classes is derived by projecting
the test sample on the normal vectors of each decision hy-
perplane and using the decision function

y = argmax
p

u
T
p x+ bp, p = 1, . . . ,K. (1)

wherebp ∈ R is the bias term associated with thep-th class
separating hyperplane.

In this work we assume that the intrinsic data dimen-
sionality is much less than the input feature space and that
the problem at hand can be efficiently described using a
smaller number of degrees of freedom. Thus, we express
the separating hyperplanes normal vectors as an appropri-
ately linear combination of the columns of a projection ma-
trix R ∈ RF×M (M ≪ F ) asup = Rwp. Consequently,
the decision function in the projection subspace is:

y = argmax
p

w
T
p R

T
x+ bp = 0, p = 1, . . . ,K (2)
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which can be also interpreted as exploiting the normal vec-
torswp ∈ RM of the appropriate separating hyperplanes in
the low dimensional space of the projection matrixR, de-
termined using the low dimensional data representations de-
rived by performing the linear transformatiońxi = R

T
xi.

Inspired by the multiclass SVM optimization problem
proposed in [6] we aim to jointly learn the optimal projec-
tion matrix R such that the training samples of different
classes are projected in a subspace, where they are sepa-
rated with maximum margin (i.e. are better discriminated)
and also to determine the optimal decision hyperplanes in
the respective projection subspace. To do so we form the
following cost function aiming to simultaneously maximize
the separating margin both in the initial high dimensional
and the reduced dimensional space and minimize the clas-
sification error defined according to which side of the deci-
sion hyperplane training samples of each class fall in. More-
over, in the cost function we also incorporate minimization
of term Tr[RT

R] in order to avoid data scaling in the pro-
jection space, regularize between different terms in the cost
function to improve optimization stability and also facilitate
our subsequent mathematical derivations. Thus, our opti-
mization problem is defined as:

min
wp,ξi,R

1

2

K
∑

p=1

w
T
p wp +

1

2

K
∑

p=1

w
T
p R

T
Rwp

+
1

2
Tr[RT

R] + C

N
∑

i=1

ξi, (3)

subject to the constraints:

w
T
yi
R

T
xi −w

T
p R

T
xi ≥ b

p
i − ξi, i = 1, . . . , N

p = 1, . . . ,K. (4)

where Tr[.] is the matrix trace operator,wp ∈ RM is
theM -dimensional normal vector of thep-th hyperplane,
ξ = [ξ1, . . . , ξN ]T are the slack variables, each one associ-
ated with a training sample,C is the term that penalizes the
training error andb is the bias vector defined asbpi = 1−δpyi

whereδpyi
is the Kronecker delta function.

To solve the optimization problem in (3) we consider an
alternative optimization framework where we first compute
the optimal decision hyperplanes for an initialized projec-
tion matrixR and subsequently, solve (3) for R so that the
identified projection matrix improves the objective function
i.e., it projects the training samples in a subspace where
the margin that separates the training samples of each class
from all the others, is maximized. Next, we first demon-
strate the optimization process with respect to the normal
vectors of the separating hyperplanes in the projection sub-
space ofR and subsequently, we discuss the projection ma-
trix R evaluation, while keeping the optimal normal vectors
wp,o fixed.

2.1. Finding the optimalwp,o in the projection sub-
space determined byR

To solve the constrained optimization problem in (3) for
wp we introduce positive Lagrange multipliersαp

i , each as-
sociated with one inequality constraint in (4) and formulate
the Lagrangian functionL(wp, ξ,R,α):

L(wp, ξ,R,α) =
1

2

K
∑

p=1

w
T
p

(

IM +R
T
R
)

wp

+
1

2
Tr[RT

R] + C

N
∑

i=1

ξi

−
N
∑

i=1

K
∑

p=1

α
p
i

[(

w
T
yi
−w

T
p

)

R
T
xi + ξi − b

p
i

]

, (5)

whereIM is anM×M dimensional identity matrix. To find
the minimum over the primal variableswp andξ we require
that the partial derivatives ofL(wp, ξ,R,α) with respect to
ξ andwp vanish, which yields the following equalities:

∂L(wp, ξ,R,α)

∂ξi
= 0 ⇒

k
∑

p=1

α
p
i = C, (6)

∂L(wp, ξ,R,α)

∂wp

= 0 ⇒

wp,o =
(

IM +R
T
R
)−1

N
∑

i=1

(

α
p
i −

K
∑

p=1

α
p
i δ

p
yi

)

R
T
xi.

(7)

Substituting terms from (6) and (7) into (5) and express-
ing the corresponding to thei-th training sample bias
terms and Lagrange multipliers in a vector form asbi =
[b1i , . . . , b

K
i ]T andαi = [α1

i , . . . , α
K
i ]T , respectively and

performing the substitutionni = C1yi
− αi, (where1yi

is aK-dimensional vector with all its components equal to
zero except of theyi-th, which is equal to one) the saddle
point of the Lagrangian can be found by the minimization
of the following Wolfe dual problem:

min
n

1

2

N
∑

i,j

[

x
T
i R

(

I+R
T
R
)− 1

2
(

I+R
T
R
)− 1

2
R

T
xj

]

× n
T
i nj +

1

2
Tr[RT

R] +

N
∑

i=1

n
T
i bi, (8)

subject to the constraints:

K
∑

p=1

n
p
i = 0, n

p
i ≤

{

0 , if yi 6= p

C , if yi = p

∀ i = 1, . . . , N , p = 1, . . . ,K. (9)
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The optimal variablesn can be found by solving
the above QP problem with the linear kernel function

K(xi,xj) = x
T
i R

(

I+R
T
R
)− 1

2
(

I+R
T
R
)− 1

2
R

T
xj

thus practically by feeding to a linear SVM classifier
the transformed training sampleśxi derived as: x́i =
(

I+R
T
R
)−

1
2
R

T
xi. Subsequently the normal vectors of

the optimal separating hyperplanes can be derived from (7).

2.2. Finding the maximum margin projection ma-
trix R considering fixed separating hyper-
planeswp,o

To learn the optimal projection matrixR we consider the
normal vectorswp,o fixed and similarly require the partial
derivatives of the cost function in (3) with respect toR to
vanish:

R =

N
∑

i=1

k
∑

p=1

α
p

i xi

(

w
T
yi,o

−w
T
p,o

)

(

k
∑

p=1

wp,ow
T
p,o + IM

)

−1

(10)

Substituting terms from (10) into (3) we derive the follow-
ing QP optimization problem:

min
α

N
∑

i,j

K
∑

p,l

α
p
iα

l
j

(

vec
(

xiw
T
yi,o

)

− vec
(

xiw
T
p,o

))

(

IMF +

K
∑

p=1

wp,ow
T
p,o ⊗ IF

)−1

×

(

vec
(

xjw
T
yj,o

)

− vec
(

xjw
T
l,o

)

)T

+
N
∑

i=1

K
∑

p=1

α
p
i b

p
i .

(11)

subject to the constraints:

K
∑

p=1

α
p
i = C and α

p
i ≥ 0, ∀ i = 1, . . . , N,

p = 1, . . . ,K. (12)

where vec(.) denotes an operator that converts a matrix into
a vector by stacking its columns and⊗ the Kronecker prod-
uct operation. Solving (11) for the Lagrange multipliersα
we can subsequently derive the optimal projection matrixR

from (10).
Unfortunately the size of the generated QP optimiza-

tion problem in (11) may become extremely large, since
the number of the optimized variables is proportional to the
product of the number of training samples multiplied by the
number of classes in the classification task at hand. This
can be impractical for training tasks involving a large num-
ber of classes, as for instance, in face recognition where the
number of different persons involved can reach to several
hundreds. Moreover, the QP problem in (11) requires huge

amounts of memory in order to store and handle the dense
kernel matrix of dimensionalityMF ×MF which may be-
come infeasible when dealing with high dimensional image
data where the number of extracted features can range from
several hundreds to thousands.

3. Orthogonal Maximum Margin Projections
and its Relation to LDA

To overcome the above mentioned algorithmic limita-
tions we modify the considered QP optimization problem in
(3) by incorporating additional constraints. More precisely,
we require the projection matrixR to be semiorthogonal
imposing orthogonality constraints on its columns. How-
ever, according to the optimization problem in (3) and the
involved constraints, the projection matrixR cannot be
uniquely determined. To overcome this problem we adopt
a robust optimization strategy formulating a minimax op-
timization problem [2] where we attempt to minimize the
multiclass SVM cost function for the worst case projection
matrixR:

min
wp,ξi

max
R

1

2

K
∑

p=1

w
T
p wp + C

N
∑

i=1

ξi, (13)

subject to the constraints in (4) and:

R
T
R = IM . (14)

To solve the new constrained optimization problem we
similarly introduce positive Lagrange multipliersαp

i , and
Λ ∈ RM×M each associated with one of the constraints
in (4) and (14) and formulate the Lagrangian function
L(wp, ξ,R,α,Λ):

L(wp, ξ,R,α,Λ) =
1

2

K
∑

p=1

w
T
p wp + C

N
∑

i=1

ξi

− Tr[Λ(RT
R− IM )]

−

N
∑

i=1

K
∑

p=1

α
p
i

[(

w
T
yi
−w

T
p

)

R
T
xi + ξi − b

p
i

]

. (15)

Requiring that the partial derivatives ofL(wp, ξ,R,α)
with respect toξ andwp vanish, we derive the equality in
(6) and:

wp =

N
∑

i=1

(

α
p
i −

k
∑

p=1

α
p
i δ

p
yi

)

R
T
xi. (16)

By substituting terms from (6) and (16) into (15), and ex-
pressing the bias terms and Lagrange multipliers in a vector
form as in2.1 the saddle point of the Lagrangian function
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L(wp, ξ,R,α,Λ) can be found by solving the equivalent
minimax optimization problem:

min
n

max
R

1

2

N
∑

i,j

x
T
i RR

T
xjn

T
i nj − Tr[Λ(RT

R− IM )]

+

N
∑

i=1

n
T
i bi, (17)

subject to the constraints in (9).

To solve the QP problem in (17) we similarly use al-
ternative optimization thus solving for one variable, while
keeping the other fixed. More precisely, we first optimize
(17) with respect ton, for a randomly initialized orthogo-
nal projection matrixR, which is essentially the conven-
tional multiclass SVM training problem performed in the
projection subspace determined byR using the linear ker-
nel function of the formK(xi,xj) = x

T
i RR

T
xj . This can

be easily performed by feeding to the SVM classifier the
projected training sampleśxi = R

T
xi. Subsequently, the

normal vectors of the optimal separating hyperplanes can be
derived from (16).

To optimize forR we remove term
∑N

i=1
n
T
i bi from

(17), since it is independent of the optimized variable and
solve the equivalent trace optimization problem:

max
R

Tr[RT

N
∑

i,j

n
T
i njxix

T
j R]−Tr[Λ(RT

R−IM )]. (18)

Computing the derivative of the maximized cost function in
(18) with respect toR and setting it equal to zero the opti-
mization problem leads to the following generalized eigen-
value problem:

(

N
∑

i,j

n
T
i njxix

T
j )R = RΛ. (19)

Thus, the projection bases ofR correspond to theK −
1 eigenvectors of matrix

∑N

i,j n
T
i njxix

T
j associated with

the K − 1 largest eigenvalues. Matrix
∑N

i,j n
T
i njxix

T
j

has a similar form to the LDA between class covariance
matrix, since it can be written as a covariance matrix
∑N

i,j n
T
i njxix

T
j = XMM

T
X

T = AA
T , whereA ∈

RF×K , X ∈ RF×N is a data matrix created by stack-
ing the training samplesxi column-wise, whileM =
[n1, . . . ,nK ]T ∈ R

N×K is created by stacking the vec-
tors of the optimal Lagrange multipliers for each training
sample row-wise. Thus,

∑N

i,j n
T
i njxix

T
j encodes the be-

tween class scatter evaluating the weighted by the Lagrange
multipliers mean for each class.

3.1. Orthogonal maximum margin projections for
binary problems

To better demonstrate the relation between the proposed
orthogonal maximum margin projection method and per-
forming LDA explicitly on the support vectors let us con-
sider a binary separation problem of two classesC+ and
C−. The corresponding minimax optimization problem is
formulated as:

min
w,ξi

max
R

1

2
w

T
w+ C

N
∑

i=1

ξi (20)

subject to the constraints:

yi(w
T
R

T
xi + b) ≥ 1− ξi

ξi ≥ 0

R
T
R = IM , (21)

whereyi ∈ {−1, 1} is the class label associated with each
samplexi. Consequently the optimization problem with re-
spect to the projection matrixR can be summarized as fol-
lows:

max
R

1

2
Tr[RT

N
∑

i,j

αiαjyiyjxix
T
j R]−Tr[Λ(RT

R−IM)],

(22)
which can be similarly solved by performing eigenanalysis
on matrix

∑N

i,j αiαjyiyjxix
T
j which can be expressed as:

(

∑

xi∈C+

αixi −
∑

xj∈C
−

αjxj

)(

∑

xi∈C+

αixi −
∑

xj∈C
−

αjxj

)T

= (mC+
−mC

−

)(mC+
−mC

−

)T , (23)

wheremC+
andmC

−

denote the weighted mean vectors of
the two classesC+ andC−, respectively evaluated explicitly
on the support vectors. However, in this caseR becomes a
degenerate matrix of rank 1, hence it is not possible to find
both variablesw andR.

4. Experimental Results

We compare the performance of the proposed method
with that of several state-of-the-art dimensionality reduc-
tion techniques, such as PCA, LDA, Subclass Discrimi-
nant Analysis (SDA) [27], Locality Preserving Projections
(LPP) [10] and Orthogonal Locality Preserving Projections
(OLPP) [3]. Moreover, in our comparison, we also di-
rectly feed the initial high dimensional samples to a lin-
ear multiclass SVM classifier, to serve as our baseline test-
ing method. Experiments have been performed for facial
expression recognition on the Cohn-Kanade database [14],
for face recognition on the Extended M2VTS (XM2VTS)
database [21] and for object recognition on the ETH-80 im-
age dataset [18].
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On the experiments for facial expression recognition as
our classification features, we either considered only the
facial image intensity information or its augmented Gabor
wavelet representation, which provides robustness to illu-
mination variations [19]. To create the augmented Gabor
feature vectors we convolved each facial image with Ga-
bor kernels considering5 different scales and8 directions.
Hence, for each facial image, and for each Gabor kernel a
complex vector containing a real and an imaginary part was
generated. Based on these parts we computed the Gabor
magnitude information creating in total 40 feature vectors
for each facial image. Each such feature vector was sub-
sequently downsampled, in order to reduce its dimension
and normalized to zero mean and unit variance. Thus, for
each facial image we derived its augmented Gabor wavelet
representation by concatenating the 40 feature vectors into
a single vector. Moreover, for the face recognition exper-
iments on XM2VTS database we only used the facial im-
age intensity information as our underlying features and did
not exploit more complex representations such as the Ga-
bor features, since the derived recognition rates where al-
ready sufficiently high. Finally, on the experiments for ob-
ject recognition we used the cropped and scaled to a fixed
size of128× 128 pixels binary images of ETH-80 contain-
ing the contour of each object,

4.1. Facial Expression Recognition in the Cohn-
Kanade Database

The Cohn-Kanade AU-Coded facial expression database
is among the most popular databases for benchmarking
methods that perform facial expression recognition. To
form our data collection we discarded the video frames de-
picting subjects performing each facial expression in in-
creasing intensity level and considered only the last video
frame depicting each formed facial expression at its highest
intensity. Thus, in our experiments, we used in total 407
images depicting 100 subjects, posing 7 different expres-
sions (anger, disgust, fear, happiness, sadness, surpriseand
the neutral emotional state). The extracted facial images
were manually aligned with respect to the eyes position,
anisotropically scaled to a fixed size of150 × 200 pixels
and converted to grayscale.

To measure the facial expression recognition accuracy,
we randomly partitioned the available samples into5 ap-
proximately equal sized subsets (folds) and a5-fold cross-
validation has been performed by feeding the projected
discriminant facial expression representations to the linear
SVM classifier. This resulted into such a test set forma-
tion, where some expressive samples of an individual were
left for testing, while his rest expressive images (depicting
other facial expressions) were included in the training set.
This fact significantly increased the difficulty of the expres-
sion recognition problem, since person identity related is-

sues arose.
Table 1 summarizes the best average facial expression

recognition rates achieved by each examined embedding
method, both for the considered facial image intensity and
the augmented Gabor features. The mean facial expression
recognition rates attained by directly feeding the initialhigh
dimensional data to the linear SVM classifier are also pro-
vided in Table1. Considering the facial image intensity as
the chosen classification features, the proposed method out-
performs all other competing embedding algorithms. The
best average expression recognition rate attained by the
joint framework is80.4% extracting6-dimensional discrim-
inant representations of the initial 30,000-dimensional input
samples. Exploiting the augmented Gabor features signifi-
cantly improved the recognition performance of all exam-
ined methods, verifying the appropriateness of these de-
scriptors in the task compared against the image intensity
features. The proposed algorithm attained the highest av-
erage expression recognition rate outperforming the second
best method (LDA) by2.7%.

Figure 1 compares the basis images generated from
training on Cohn-Kanade database the proposed joint di-
mensionality reduction and classification method and LDA.
As can be seen, the basis images extracted by the proposed
method better highlight facial parts around mouth, eyes and
eyebrows characteristic for each facial expression, such as
the mouth shape at disgust and surprise expression (bases
1 and 2) the raised or lowered lip corners characteristic of
the happiness or sadness facial expression (bases 4 and 5)
or the mouth stretch and eyebrows movement (bases 3 and
6) evident in fear and anger facial expressions, respectively.

(a)

(b)
Figure 1. Basis images derived from training on Cohn-Kanade
database: a) the proposed joint dimensionality reduction and clas-
sification framework and b) LDA.

4.2. Face Recognition in XM2VTS Database

XM2VTS database contains 8 shots of each of the 295
subjects captured at four recording sessions over a period of
four months. For our face recognition experiments we ac-
quired a single facial image from each shot depicting each
subjects face at a frontal position in a neutral emotional
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Table 1. Best average expression recognition accuracy rates (%) in Cohn-Kanade database. In parentheses it is shown thedimension that
results in the best performance for each method.

SVM PCA LDA SDA LPP OLPP Proposed

Intensity 73.4(30, 000) 74.5(260) 74.2(6) 76.4(55) 76.6(6) 75.2(6) 80.4(6)
Gabor 77.8(48, 000) 84.6(150) 86.5(6) 86.1(69) 85.5(6) 83.3(6) 89.2(6)

state. Thus, in total our dataset is comprised of2, 360 im-
ages which have been grayscaled, aligned and scaled to a
fix size of40× 30 pixels using their facial landmarks anno-
tations. To form our training set we used the six facial im-
ages of each subject captured during the first three record-
ing sessions, while for testing we used the remaining 2 im-
ages for each subject captured during the last session. Table
2 summarizes the highest face recognition rate attained by
each method in the comparison and the respective projec-
tion subspace dimensionality. The proposed joint frame-
work outperformed all other linear dimensionality reduc-
tion algorithms achieving a highest recognition rate equal
to 97.5%.

In order to investigate our algorithms performance with
respect to the projection subspace dimensionality we per-
formed experiments on XM2VTS extracting a varying num-
ber of discriminant features. Figure2 plots the number of
extracted features with respect to the face recognition accu-
racy rate attained by the proposed joint framework and the
common separate application of LDA for dimensionality re-
duction and SVM for classification. As can be observed the
proposed method not only achieved a highest recognition
rate for the optimal294-dimensional projection subspace
but also constantly outperformed LDA for low dimensional
projection spaces where less features with higher discrimi-
nant information were extracted.

Figure 2. Face recognition accuracy rate versus the dimensionality
of the projection subspace on XM2VTS database.

4.3. Object Recognition in the ETH-80 Image
Dataset

ETH-80 image dataset [18] depicts 80 objects divided
into 8 different classes, where for each object 41 images

have been captured from different view points, spaced
equally over the upper viewing hemisphere. Thus, the
database contains 3,280 images in total. For this experiment
we used the cropped and scaled to a fixed size of128× 128
pixels binary images containing the contour of each object.
In order to form our training set we randomly picked 25 bi-
nary images of each object, while the rest were used for test-
ing. Table3 shows the highest attained object recognition
accuracy rate by each method and the respective subspace
dimensionality. The proposed algorithm attained the high-
est object recognition rate equal to84.6% outperforming all
other methods in the comparison.

It is significant to note that all linear dimensionality re-
duction algorithms in our comparison, based on Fisher dis-
criminant ratio (i.e. LDA, LPP and OLPP) attained a re-
duced performance compared against the baseline approach
which is feeding directly the initial high dimensional feature
vectors to the linear SVM for classification. This can be at-
tributed to the fact that since each category in the ETH-80
dataset includes images depicting 10 different objects cap-
tured from various view angles, data samples inside classes
span large in-class variations. As a result all the aforemen-
tioned methods which have the Gaussian data distribution
optimality assumption [27] fail to identify appropriate dis-
criminant projection directions. In contrast to the proposed
method which depends only on the support vectors and the
overall data samples distribution inside classes does not af-
fect its performance.

5. Conclusion

We proposed a combined framework of dual discrimina-
tive dimensionality reduction and classification within the
maximum margin framework of SVMs. The developed op-
timization problems are solved using alternative optimiza-
tion where we jointly compute the low dimensional max-
imum margin projections and the separating hyperplanes
in the respective subspace. In the experimental study we
demonstrated that the proposed method outperforms current
state-of-the-art linear data embedding methods on challeng-
ing computer vision recognition tasks such as face, expres-
sion and object recognition on popular datasets.
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Table 2. Face recognition accuracy rates (%) in XM2VTS database. In parentheses it is shown the dimension that results inthe best
performance for each method.

SVM PCA LDA SDA LPP OLPP Proposed

Intensity 90.6(1, 200) 94.7(200) 93.1(294) 96.8(300) 93.2(294) 95.6(250) 97.5(160)

Table 3. Object recognition accuracy rates (%) in the ETH-80database. In parentheses it is shown the dimension that results in the best
performance for each method.

SVM PCA LDA SDA LPP OLPP Proposed

Binary Images 80.3(16, 384) 81.9(20) 74.4(7) 79.8(300) 74.2(7) 74.4(7) 84.6(7)
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