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Abstract

This paper proposes a novel mean field-based Chamfer
template matching method. In our method, each template is
represented as a field model and matching a template with
an input image is formulated as estimation of a maximum
of posteriori in the field model. Variational approach is
then adopted to approximate the estimation. The proposed
method was applied for two different variants of Chamfer
template matching and evaluated through the task of ob-
ject detection. Experimental results on benchmark datasets
including ETHZShapeClass and INRIAHorse have shown
that the proposed method could significantly improve the
accuracy of template matching while not sacrificing much
of the efficiency. Comparisons with other recent template
matching algorithms have also shown the robustness of the
proposed method.

1. Introduction
Chamfer template matching is a well-known technique

often used in many computer vision tasks, e.g. object detec-
tion [10] and recognition [23]. This is due to the simplicity
and efficiency of the method. In addition, compared with
learning based methods, e.g. [7], object detection using
Chamfer template matching is often preferred in applica-
tions where the detection is required to perform using a sin-
gle template supplied by the user and off-line learning every
possible object class is impossible. Moreover, the template
is unknown beforehand by the detection system.

Conventionally, contour templates are used to represent
the object of interest and matching a template with an im-
age can be performed through the distance transform (DT)
calculating the spatial distance between template points and
edge pixels on the input image [6].

A well-known challenge of template matching is the
variation of the object shape which cannot be fully repre-
sented by templates. In addition, due to the sensitivity of
edge detectors, e.g. Canny’s detector [3], to illumination
conditions and cluttered images, important edges of the ob-

ject shape may be missed while noisy edges from cluttered
backgrounds may be presented. To overcome these diffi-
culties, advanced developments of template matching have
been proposed.

To cope with the local deformation of the object shape,
Bai et al. [1] proposed the use of “shape band”, a dilated
version of templates corresponding to various deformed
shapes of the object. However, the shape band does not con-
straint the location of template points on the same shape. In
[23], shape context [2] and the continuity of object shape
were used in template matching.

Attempts in improving the accuracy of template match-
ing in cluttered images have been the use of edge orienta-
tion in complement with the spatial information. For exam-
ple, in [9, 21], edge orientation was quantised and the DT
was then computed for each quantised orientation. How-
ever, calculating the DT for every discrete orientation in-
creases the computational cost. To relax the computational
burden of such an operator, in [22, 19], the DT was used to
find spatially nearest edge points of the given template and
the orientation of those edge points was augmented with
the spatial distance in computing the matching score. To
obtain further improvement, in [19], edge magnitude was
employed to weight edge points during calculating the DT.
In [16], similarly to [21], three-dimensional DT computed
over the location and orientation of edge pixels was em-
ployed. However, the three-dimensional DT was computed
jointly in both the spatial and orientation domain using dy-
namic programming with integral images. In [17], false
alarms were removed by matching the input image with ran-
dom templates, i.e. templates not representing the object of
interest.

Although the use of edge orientation with DT could en-
hance the accuracy of template matching, there are still re-
mained issues. Essentially, matching a template with an
edge image using the DT is to search for a set of edge
points which are spatially close to template points. How-
ever, template points are matched independently. Thus, the
best matching edge points obtained using the DT are not
necessary to form any regular object in comparison to the



Figure 1. Illustration of a false matching by using only the distance
transform. This figure is best viewed in colour.

given template. This problem becomes more challenging in
cluttered images. Figure 1 illustrates a false matching case
in which q would be considered as the best matching point
of p using the DT. However, r actually represents a better
match when the set {s, r, o} is compared with the template
part {m, p, n}.

To overcome the above problem, we allow each template
point/line1 to have more than one matching candidates (i.e.
closest edge points on the input image). The best matching
candidate edge point/line on the image will be selected so
as it is close to the template point/line and at the same time
does not much deform the local shape formed by it in com-
parison to the template. This means that an edge point/line
is not selected based only on its distance to the template but
on its neighbouring edge points/lines. To this end, we repre-
sent each template as a field model and matching a template
with an input image is performed through estimation of a
maximum a posteriori (MAP) in the model. For an effective
estimation, variational mean field method is adopted. Vari-
ational approach is often used when the exact solution is not
feasible or practical to obtain. Its robustness has also been
verified in various computer vision tasks, e.g. object detec-
tion and tracking [24, 11, 18, 20]. In our proposed template
matching method, the variational mean field method is used
to infer the locations of edge pixels to be considered as the
matching points of the template.

We note that the proposed method differs from the snake
model in [14] and active shape model in [5]. In particular,
the deformation of the object shape (represented by edge
pixels) is controlled by the templates. Furthermore, the ob-
jective function of the model can be optimised locally using
the variational mean field method, thus the computational
complexity can be significantly reduced. Our model also
differs from that proposed in [25]. Specifically, we use the
DT to efficiently compute the likelihood. In addition, the
matching is performed through the MAP estimation while
it was done in a hierarchical manner in [25].

The proposed method was applied for two different
versions of Chamfer template matching: Oriented Cham-
fer Matching (OCM) [22, 19] and Directional Chamfer
Matching (DCM) [16]. We extensively evaluated the
proposed method in the task of object detection on the
ETHZShapeClass and INRIAHorse dataset. Experimental

1a template can be represented as a set of points [9] or lines [16]

results have shown the advantages of the proposed method
in comparison to the DCM, OCM and other object detection
techniques.

In the following, the Chamfer template matching with
its variants, which provide a background for the proposed
method, are briefly presented in section 2. A new formula-
tion of template matching is presented in section 3. Varia-
tional mean field method is then described in section 4. Sec-
tion 5 shows experimental results. The paper is concluded
in section 6.

2. Background
Let I denote an input image and E(I) be its edge map

generated using some edge detector, e.g. Canny’s detector
[3]. On E(I) a Distance Transform (DT) calculating the
distance of every pixel t to its closest edge pixel in E(I) is
defined as

D(t) = min
e∈E(I)

||t− e||2 (1)

In [19], the authors proposed to use edge magnitude to
weight the DT so that strong edge points have more influ-
ence than weak edge points which often represent back-
ground noise. In particular, D(t) is modified as

D(t) = min
e∈E(I)

{
||t− e||2 +

η√
[ ∂I∂x (e)]2 + [ ∂I∂y (e)]2

}
(2)

where ∂I
∂x (e) and ∂I

∂y (e) are the horizontal and vertical gra-
dients of the image I at position e, η is a positive constant
controlling the contribution of the edge magnitude at e. Us-
ing the method in [6], D(t) can be computed in O(2N)
where N is the image size (in pixel).

Let T = {t1, t2, ..., t|T |} be a template in which ti =
(xi, yi, oi), i ∈ {1, ..., |T |} includes the location (xi, yi)
and orientation oi of the template point ti; |T | is the car-
dinality of T . Let e(ti) be the closest edge point of ti in
E(I), e.g. ||e(ti) − ti||2 = D(ti) if (1) is used. Note that,
e(t) and D(t) can be computed simultaneously for all pixel
locations. The oriented Chamfer distance at ti is defined as

d(ti) =

{
[D(ti)]

n + λ[g(oi, oe(ti))]
n

} 1
n

(3)

where oe(ti) is the orientation of e(ti), g(oi, oe(ti)) is
some measure of the difference between oi and oe(ti), λ
is a weight factor. In [22], g(oi, oe(ti)) = min{|oi −
oe(ti)|, ||oi − oe(ti)| − π|} and in [19], g(oi, oe(ti)) =
sin |oi − oe(ti)|. In addition, n was set to 1 in [22] and 2
in [19].

In [16], the orientation of edge pixels was integrated in
computing the DT. In particular,

d(ti) = min
φ∈Φ
{Dφ(ti) + λg(ôi, φ)} (4)



Figure 2. An example of extended points (left) and lines (right).

where Φ is the quantised range of orientations,Dφ is the DT
created for edge points whose orientation is φ, and ôi ∈ Φ
is the nearest quantised orientation of oi.

Note that both (1) and (2) can be used to compute Dφ.
As presented in [16], d in (4) can be computed once for all
pixel locations using dynamic programming with a compu-
tational cost of at most O(2|Φ|N) where |Φ| and N is the
number of quantised orientations and image size (in pixel).

The oriented Chamfer distance between the input image
I and the template T is finally defined as

C(I, T ) =

|T |∑
i=1

d(ti) (5)

where d(ti) can be computed using either (3) or (4).
To further save the computational cost in calculating

C(I, T ), Liu et al. [16] proposed matching line segments
instead of pixels. In addition, integral images were em-
ployed to pre-calculate the distance of pixels on line seg-
ments given the segments’ orientations. Template match-
ing using (3) and (4) is referred to as oriented Chamfer
matching (OCM) [22, 19] and directional Chamfer match-
ing (DCM) [16] respectively.

3. Problem Formulation
This section devises a new form of template matching

based on Markov random field (MRF) model and conven-
tional Chamfer template matching. Let I , E(I), and T be
an input image, its edge map, and a template respectively.
To cope with the local deformations of the object shape, we
allow every template point ti ∈ T to have more than one
matching edge point on E(I). Specifically, T is extended
by adding sets of points F (ti) along the normal vector of
template points ti. Note that every point in F (ti) has the
same orientation of ti. When ti are line segments as in [16],
F (ti) will include lines parallel to ti. Figure 2 shows an
example of a template and its extension.

For the sake of simplicity, we assume that ti represents
template points hereafter as line segments can be applied
similarly. The two-layer field model of a template T is con-
structed as follows. For each ti ∈ T , let hi and vi be the
hidden and observation node respectively; hi takes values in
F (ti) ∪ {ti}, vi is the closest edge point of hi on the edge
mapE(I). Note that for every hi, vi can be determined with

Figure 3. An example of the field model.

a constant complexity using the DT computation method
proposed in [6]. On the hidden layer, each hidden node hi
is linked to its observation node vi by an undirected edge.
The hidden node hi is also directly connected to other hid-
den nodes hj whose distance to hi is less than a radius r.
Figure 3 shows the field model of a template.

Given T , H(T ) = {hi}, i ∈ {1, ..., |T |} can be deter-
mined as above, the matching cost M(I, T ) between the
image I and template T can be considered as the similar-
ity between the set of template points H(T ) and the subset
of edge points of E(I) that best fits H(T ). Similarly to
the conventional Chamfer template matching, the compu-
tation of M(I, T ) can be relaxed to calculating the fitness
of H(T ) to the edge map E(I). Since H(T ) covers lo-
cal but regular deformations of T , the problem becomes to
find a configuration of H(T ) that best fits E(I). In other
words, this corresponds to compute a maximum of a poste-
riori (MAP) p(H(T )|V = {vi}) over all possible configu-
rations of H(T ), i.e.,

M(I, T ) = max
H(T )

p(H(T )|V ) = max
H(T )

p(V |H(T ))p(H(T ))

p(V )
(6)

Let p(vi|hi) be the likelihood of having an edge point
vi given a template point hi. Assume that p(vi|hi) can be
computed using some distance, e.g.,

p(vi|hi) ∝ exp[−αd(hi)] (7)

where d(hi) is computed as in (3) or (4), α is a positive
parameter.

We further assume that: 1) vi is independent of each
other, i.e. p(V |H(T )) = p(v1, v2, ..., v|H(T )||H(T )) =∏|H(T )|
i=1 p(vi|H(T )), and 2) vi is determined based on

only hi using the DT, i.e. p(vi|H(T )) = p(vi|hi),∀i ∈
{1, ..., |H(T )|}, and 3) p(V ) is uniform. The MAP prob-
lem in (6) can be rewritten as,

M(I, T ) ∝ max
H(T )

|H(T )|∏
i=1

p(vi|hi)p(H(T )) (8)

Note that the OCM in [22, 19] and DCM in [16] can be
considered as special cases of our proposed template match-



ing where extended template points are not used and ev-
ery template point is matched independently. Indeed, when
F (ti) = ∅, i ∈ {1, ..., |T |}, H(T ) becomes T , i.e. hi = ti,
and V is the set of closest edge points of T . In addition, as-
suming that p(T ) is uniform and using (7) and (5), (8) can
be simplified as,

M(I, T ) ∝
|T |∏
i=1

p(vi|ti)

= exp

[
− α

|T |∑
i=1

d(ti)

]
= exp[−αC(I, T )] (9)

where C(I, T ) is defined in (5).
As can be seen in (8), the term p(H(T )) is the prior of

possible locations of template points. It represents the con-
straint on the deformations of the object shape. To esti-
mateM(I, T ) using (8), an exhausted search over all possi-
ble configurations ofH(T ) would requireO(

∏|T |
i=1 |F (ti)∪

{ti}|) = O(
∏|T |
i=1(|F (ti)| + 1)) operations. Assume that

|F (ti)| + 1 = f for every ti ∈ T , the computational com-
plexity of the estimation of M(I, T ) using (6) would be
O(f |T |). In addition, since the MRF model is not a tree
structure, exact inference algorithms such as dynamic pro-
gramming (or Viterbi) [23], belief propagation cannot be
applied. In the following section, an alternative solution to
effectively estimate M(I, T ) based on the variational mean
field approach will be proposed.

4. Variational Mean Field Approach
For simplicity but without ambiguity, H will be used in-

stead of H(T ) hereafter. The core idea of the variational
approach in estimation of a MAP p(H|V ) is to use an ana-
lytical but simple variational distribution Q(H) to approxi-
mate p(H|V ) and at the same time to approximate log p(V )
through optimising an objective function J(Q) as follows,

J(Q) = log p(V )−KL(Q(H)||p(H|V ))

= −
∫
H

Q(H) logQ(H)dH +

∫
H

Q(H) log p(H,V )dH

= H(Q) + EQ{log p(H,V )} (10)

whereH(Q) is the entropy of the variational distributionQ,
EQ{·} represents the expectation with regard to Q, KL is
the Kullback-Leibler divergence [15] defined as,

KL(Q(H)||p(H|V )) =

∫
H

Q(H) log
Q(H)

p(H|V )
dH (11)

As shown in (10), J(Q) is the lower bound of log p(V )
(as the KL-divergence is nonnegative). Thus, maximising
J(Q) with respect to Q corresponds to calculating the opti-
mal approximation of both log p(V ) and p(H|V ). In this

paper, the simplest variational distribution which can be
fully factorised is adopted as,

Q(H) =

|T |∏
i=1

Qi(hi) (12)

where Qi(hi) is the distribution of hi.

The entropyH(Q) then becomes,

H(Q) =

|T |∑
i=1

H(Qi) (13)

whereH(Qi) is the entropy of Qi.

As shown in [12], the optimum of J(Q) can be obtained
by a set of interrelated Gibbs distributions:

Qi(hi) =
1

Zi
eEQ{log p(H,V )|hi} (14)

where EQ{·|hi} is the conditional expectation with respect
to the variational distribution Q given hi, Zi is the normal-
isation factor computed as,

Zi =

∫
hi

eEQ{log p(H,V )|hi} (15)

In addition, the maximisation of J(Q) can be performed
individually for each Qi, i.e. Qj , j 6= i remain unchanged
when Qi is updated using (14). In other words,

J(Q) = const. +H(Qi) +

∫
hi

Qi(hi)EQ{log p(H,V )|hi}

(16)

Equations (14) and (15) will be called iteratively until
the optimum value of J(Q) is obtained using (16). To com-
puteQi(hi), it is required to estimate EQ{log p(H,V )|hi}.
As in a standard MRF, we assume that the estimation of
EQ{log p(H,V )|hi} depends only on neighbouring sites
of hi. In particular, let N (hi) denote the set of hidden
neighbours of hi. As presented in [13], the update of
EQ{log p(H,V )|hi} (and also J(Q)) can be done locally
on cliques (or edges in the field model) containing hi as,



EQ{log p(H,V )|hi}

← EQ

{
log

[
p(vi, hi)

∏
hj∈N (hi)

p(hi, hj)

]}
= log p(vi|hi) + log p(hi)

+ EQ

{ ∑
hj∈N (hi)

log p(hj) + log p(hi, hj)

}
= log p(vi|hi) + log p(hi)

+
∑

hj∈N (hi)

∫
hj

Qj(hj) log p(hj)

+
∑

hj∈N (hi)

∫
hj

Qj(hj) log p(hi, hj) (17)

where the likelihood p(vi|hi) is computed similarly to (7).
In (17), p(hi) and p(hi, hj) can be considered as the

potential functions of a MRF. Assume that every template
point has the same importance, p(hi) can be set to a con-
stant; p(hi, hj) is computed as,

p(hi, hj) ∝ exp

[
− β|Θ(

−−→
hihj ,

−→
titj)|

]
(18)

where β is a user-defined value, Θ(
−−→
hihj ,

−→
titj) is some mea-

sure of the angle between two vectors
−−→
hihj and

−→
titj (e.g.

Θ(
−−→
hihj ,

−→
titj) = 1 − | cos(

−−→
hihj ,

−→
titj)| in our implementa-

tion); ti and tj are template points (i.e. hi ∈ F (ti) ∪ {ti}
and hj ∈ F (tj) ∪ {tj}).

If hi and hj are line segments as used in [16],
−−→
hihj can

be computed as the vector connecting the middle points of
hi and hj . As can be seen, the term p(hi, hj) encodes the
local deformations of the template and is compensated by
the likelihood p(vi|hi) computed individually on every tem-
plate point/line.

To update EQ{log p(H,V )|hi} using (17), we assume
that Qi(hi) is initialised uniformly, i.e. Qi(hi) =

1
|F (ti)∪{ti}| = 1

|F (ti)|+1 . Finally, after J(Q) is maximised,
the returned variational distribution Q(H) can be consid-
ered as an approximate of p(H|V ). In addition, sinceQ(H)
is fully factorised, M(I, T ) in (8) can be estimated as,

M(I, T ) ≈
|T |∏
i=1

Qi(h
∗
i ) (19)

where h∗i = arg maxhi
Qi(hi).

Assume that each node hi has n edges connecting it to
other hidden nodes and to vi, EQ{log p(H,V )|hi} in (17)
can be updated in O(nf2) where f = |F (ti)| + 1. Thus,
the computational complexity of matching all points on a

template T would be O(nf2|T |). This is the advantage of
the variational approach compared with the brute-force es-
timation of maxH p(H|V ) that requires the complexity of
O(f |T |) for searching all possible configurations of H .

5. Experimental Results
5.1. Experimental Setup

The proposed method was applied for object detection.
We experimented the proposed method with the use of two
common Chamfer template matching techniques: OCM
[22, 19] and DCM [16] in calculating the distance values.
In particular, we computed d(hi) in (7) using (3) and (4).
Recall that when DCM [16] is used, each hi is a line seg-
ment and d(hi) is the sum of the distance values of all points
on hi. To speed-up the computation, integral images corre-
sponding to different directions were used. For the DCM
method, we used the default settings provided by the au-
thors in their paper, e.g. the number of scales was 8, the ra-
tio between two consecutive scales was 1.2, the same non-
maximal suppression (to merge overlapping detection re-
sults) was used. For the OCM method [22, 19], λ was set to
1.0. For the variational mean field model, α in (7) and β in
(18) were set to 10.0 and 5.0 respectively.

The proposed method was tested on two datasets:
ETHZShapeClass [8] and INRIAHorse [7]. Both the
datasets are challenging to include objects in various sizes,
appearance, and high articulation. Edge maps are avail-
able in both the test sets. The ETHZShapeClass dataset
includes 255 images containing five different classes: ap-
ple logos, bottles, giraffes, mugs, and swans. On this set,
templates (one per class) are also provided. Once an object
class is evaluated, images of other classes are considered as
negative images. The INRIAHorse dataset consists of 170
images containing instances of horse and other 170 back-
ground images. This set does not include any templates,
thus we manually created a template for the experiments.

5.2. Performance Evaluation

We first evaluated the proposed method in two cases:
with the use of OCM [22, 19] and DCM [16] in calculating
the distance values. For each case, we investigated the de-
tection accuracy when the number of extended points/lines
for each template point/line ti was varied in 1, 2, and 3 for
each direction of the normal vector. This means that the to-
tal number of extended points/lines per template point/line
will be 2, 4, and 6; and the number of possible values that
each hi can take will be 3, 5, and 7 points/lines respec-
tively. In our experiments, extended points/lines were dis-
tributed uniformly along the normal vectors and the interval
between adjacent extended points/lines was set to 3 (pixels).
Note that this value could be set adaptively to the template
size. Figure 4 shows the detection performance of the pro-



Figure 4. The ROC curves of variants of the proposed method, e.g. Mean Field DCM 2 indicates the use of DCM to calculate the distances
in (7) and the number of extended points/lines for each template point/line is 2. The horizontal axis corresponds to False Positive Per Image
rate and the vertical axis represents the Detection rate. This figure is best viewed in colour.

Figure 5. Comparison of the proposed method with other existing methods. This figure is best viewed in colour.

posed method when OCM and DCM was used with differ-
ent number of extended points/lines in the template. As can

be seen in this figure, the different settings gain different
performances. We have also noticed that, except the “Gi-



Figure 6. Some detection results of the apple logos (1st row), bottles (2nd row), giraffes (3rd row), mugs (4th row), swans (5th row) and
horses (6th row). Templates are the most right images.

raffes” class, in all other cases, the DCM significantly out-
performed the OCM. Some detection results are presented
in Figure 6.

We have also investigated the computational complexity
of the proposed template matching method. For the best
performance (with DCM), we have found that, on the av-
erage, one image could be processed in 0.76 seconds ap-
proximately. These experiments were conducted on the
ETHZShapeClass dataset and on an Intel(R) Core(TM) i7
2.10GHz CPU computer with 8.00 GB memory.

5.3. Comparison

In addition to performance evaluation, we compared
the proposed method with existing methods including [22]
(marked as “OCM”), [16] (marked as “DCM”), [8] (marked

as “Ferrari et al ECCV 2006”), and [7] (marked as “Fer-
rari et al IJCV 2010”). Figure 5 shows the comparison
results on the ETHZShapeClass and INRIAHorse dataset.
As can be seen in this figure, in general, the use of varia-
tional mean field improves the detection accuracy when it
is applied to the OCM and DCM. On the ETHZShapeClass,
the proposed method could obtain comparable performance
in comparison to the state-of-the-arts. On the INRIAHorse
dataset, the method in [7] outperformed our method. How-
ever, it is notice that only one template was used in our
method. It would be expected that better performance could
be gained if more templates are used. Moreover, our method
does not require off-line training and thus it is suitable for
applications where the templates are provided by the user
on the fly.



For the computational complexity, as reported in [16],
the DCM method could achieve roughly 0.39 seconds per
image by truncating more than 90% of detection hypothe-
ses. In our experiments, we accepted more detection hy-
potheses to avoid miss detections. However, experimental
results have shown that the proposed method still kept low
false alarm rate in comparison to the DCM method.

Although the methods in [8, 7] did not report the pro-
cessing time of their detection system, they potentially have
high computational complexity. First, extracting pairs of
adjacent segments from edge maps requires some level of
computations. Second, those methods make use the Hough
transform to locate the object; while Hough transform is
known for its highly computational complexity. Third, the
Thin-Plate Spline Robust Point Matching algorithm [4] is
used to refine the detection results. Again, this algorithm is
expensively computational as acknowledged by the authors.

6. Conclusion

This paper proposes a novel mean field-based template
matching method. In the proposed method, the template
is represented as a field model in which hidden variables
correspond to possible locations of the template points and
observation nodes are their closest edge points. The prob-
lem of template matching is then formulated as estima-
tion of a maximum a posteriori (MAP) of hidden variables
given the observation data. Mean field variational method
is adopted in the paper to effectively approximate the MAP.
The proposed method was applied to two common Chamfer
template matching techniques for the task of object detec-
tion. Experimental results on two challenging datasets have
showed that the proposed method significantly improved
the detection accuracy in comparison to the two Cham-
fer template matching techniques and achieved comparable
performance to state-of-the-art on the test sets.
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