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Abstract

We study the theory of projective reconstruction for
multiple projections from an arbitrary dimensional pro-
jective space into lower-dimensional spaces. This prob-
lem is important due to its applications in the anal-
ysis of dynamical scenes. The current theory, due to
Hartley and Schaffalitzky, is based on the Grassmann
tensor, generalizing the ideas of fundamental matrix,
trifocal tensor and quadrifocal tensor used in the well-
studied case of 3D to 2D projections. We present a
theory whose point of departure is the projective equa-
tions rather than the Grassmann tensor. This is a bet-
ter fit for the analysis of approaches such as bundle
adjustment and projective factorization which seek to
directly solve the projective equations. In a first step,
we prove that there is a unique Grassmann tensor cor-
responding to each set of image points, a question that
remained open in the work of Hartley and Schaffalitzky.
Then, we prove that projective equivalence follows from
the set of projective equations given certain conditions
on the estimated camera-point setup or the estimated
projective depths. Finally, we demonstrate how wrong
solutions to the projective factorization problem can
happen, and classify such degenerate solutions based on
the zero patterns in the estimated depth matrix.

1. Introduction

This paper contains new theoretical results on pro-
jective reconstruction for multiple projections from an
arbitrary dimensional projective space Pr−1 to lower-
dimensional spaces Psi−1. A set of such projections can
be represented as

λijxij = PiXj (1)
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where Xj ∈ Rr is the j-th high-dimensional (HD)
point, Pi ∈ Rsi×r is the i-th projection matrix, rep-
resenting a projection Pr−1 → Psi−1, xij ∈ Rsi is
an image point and λij-s are nonzero scalars known
as projective depths. Projective reconstruction is to
obtain the projection matrices Pi, the points Xj and
the depths λij , up to a projective ambiguity, given the
image points xij . This paper extends the current re-
construction theory, which is mostly fit for the tensor-
based approaches, and provides theoretical tools for the
analysis of the reconstruction methods, like projective
factorization, in which the set of equations (1) is di-
rectly solved. We also fully specify possible incorrect
solutions obtained by projective factorization methods.

The classic case of projections from 3D scenes to 2D
images (r = 4, si = 3) has been intensely studied in
the past two decades [4]. When the scene is rigid, the
traditional way of analysing and solving the problem of
projective reconstruction is via the bifocal tensor (fun-
damental matrix), trifocal tensor or quadrifocal tensor
[4, 5]. The standard procedure is to build a multi-view
tensor from point (or line) correspondences, extract the
camera matrices, up to projectivity, from the tensor,
and estimated the 3D points through triangulation.

The recovery of structure and motion is more chal-
lenging in the case of nonrigid motions. Wolf and
Shashua [12] consider several structure and motion
problems in which the scene observed by a perspective
camera is nonrigid. They show that all those prob-
lems can be modeled as projections from a higher-
dimensional projective space Pk into P2 for k =
3, 4, 5, 6. They use tensorial approaches to address each
of the problems. Hartley and Vidal [2] consider the
problem of perspective nonrigid deformation, assum-
ing that the scene deforms as linear combination of k
linearly independent basis shapes. They show that the
problem can be modeled as projections from P3k to P2.

Such applications manifest the need for a general
theory of projective reconstruction for arbitrary dimen-
sional spaces. Hartley and Schaffalitzky [3] present



such a theory by introducing the Grassmann tensor,
generalizing the concepts of bifocal, trifocal and quadri-
focal tensors used for P3 → P2 projections, and other
tensors which had been introduced for special cases in
other dimensions. The central theorem in [3] proves
that the projection matrices can be obtained up to pro-
jectivity from the corresponding Grassmann tensor.

Tensor-based projective reconstruction is sometimes
not accurate enough, especially in the presence of noise.
One problem is imposing certain nonlinear constraints
on the tensor. While the tensor is determined using the
linear constraints imposed by point correspondences,
one should also consider the internal constraints which
are intrinsic to each type of multi-view tensor. For
instance, the fundamental matrix (bifocal tensor) is
known to have a zero determinant which imposes a
single polynomial constraint. This is the only re-
quired constraint. The number of such internal con-
straints grows dramatically with the dimensionality of
the multi-view tensor. For example, the trifocal tensor
is known to have 8 internal constraints. For the quadri-
focal tensor this number is 51 (see [4, Sect. 17.5]). The
number of internal constraints is even larger for pro-
jections from higher dimensions. As the tensors are
usually estimated linearly, imposing such constraints
can be an issue specially when data is noisy.

Another issue is that a multi-view tensor can be de-
fined only for up to a limited number of views. This
limit is four views for P3 → P2 projections [4]. In gen-
eral, for projections from Pr−1, at most r views can be
involved in multilinear relations corresponding to a sin-
gle tensor [3]. This prevents us from using data from all
views to reduce the estimation error. Such issues has
led to the use of other approaches such as bundle ad-
justment [11] and projective factorization [10, 6, 9, 1] in
which the projection equations (1) are directly solved
for projection matrices Pi, points Xj and depths λij .
Such approaches are either used in conjunction with a
tensor method or independently. Analysing such meth-
ods requires a theory which derives projective recon-
struction from the projection equations (1), rather than
the multi-view tensor. Providing such a theory is the
purpose of this paper.

As a first step, we need to answer a question which
is left open in [3], namely whether sufficiently many
image points xij uniquely determine the multi-view
(Grassmann) tensor. Notice that this is important even
for tensor-based reconstruction. The uniqueness of the
multi-view tensor has been shown in section 3.

The second question is when an estimated configura-
tion of projections and points satisfying relations (1) is
projectively equivalent to the true configuration. This
is important for the analysis of bundle adjustment as

well as projective factorization. The answer to such a
simple question is by no means trivial. Notice that the
uniqueness of the Grassmann tensor is not sufficient for
answering this, as it does not rule out the existence of
degenerate solutions {Pi} for which the corresponding
Grassmann tensor is zero. In sections 4 and 5 we re-
spectively give conditions on the estimated projection-
point setup and the estimated projective depths under
which projective equivalence holds. Especially, in Sect.
5 we show that the two setups are projectively equiva-
lent if the estimated projective depths are all nonzero.

The last issue, which only concerns the projective
factorization approaches, is classifying the wrong solu-
tions to the projective factorization equation

Λ� [xij ] = P X. (2)

This is the matrix form of (1) and shows the idea be-
hind factorization-based methods: find an estimation
of the depth matrix Λ = [λij ] such that the matrix of
weighted image points Λ� [xij ] = [λijxij ] has a rank-r
factorization PX. While the true projective depths are
naturally nonzero, it is difficult or inefficient to directly
constrain all the depths estimated by such algorithms
away from zero. It is known that the iterative fac-
torization algorithms may give degenerate solutions in
which a subset of projective depths converge to zero,
as shown by Oliensis and Hartley [9]. This is why al-
most all such algorithms restrict or balance the depth
matrix during estimation. We refer the readers to [8]
for a review such algorithms and the constraints used.

The constraints are mostly aimed to avoid zero rows
and zero columns in the depth matrix, which are the
two well-known classes of degenerate solutions. Recent
work by the authors [8] shows that, for P3 → P2 projec-
tions, apart from the solutions with zero rows or zero
columns, there exists one and only one class of wrong
solutions in which the depth matrix has a cross-shaped
structure. In Sect. 6 we extend this result by giving
a classification of the wrong solutions for arbitrary di-
mensional projections based on the zero patterns in the
depth matrix. It turns out that the form of such degen-
erate solutions varies from case to case, and in general,
can be much more complex compared to 3D to 2D pro-
jections. Besides verification of the solutions given by
an algorithm, the importance of this result is that the
constraints on projective depths need only rule out spe-
cific classes of zero patterns rather than preventing all
projective depths from converging to zero.

Due to space constraints, we cannot provide the full
proofs here. The object of this paper is, therefore, to
list the main results and give the general outline of the
proofs. We refer the reader to [7] for full proofs and
more details.



2. Background

2.1. Conventions

We use typewriter letters (A) for matrices, bold let-
ters (a,A) for vectors, lower-case normal letters (a)
for scalars and upper-case normal letters (A) for sets,
except for special sets like R and P. Calligraphic let-
ters (A) are used for both tensors and mappings (func-
tions). To refer to the column space and null space of a
matrix A we respectively use C(A) and N (A). The ver-
tical concatenation of a set of matrices A1, A2, . . . , Am
is denoted by stack(A1, . . . , Am). We make use of the
terms “generic” and “in general position” for entities
such as points, matrices and subspaces. In such cases,
if the generic properties are not explicitly stated, we
mean that those objects belong to some open and dense
subset which is implicitly determined from the proofs.

Throughout the paper we deal with a true
setup ({Pi}, {Xj}, {λij}) and an estimated setup

({P̂i}, {X̂j}, {λ̂ij}). The true setup is the actual con-
figuration of projections, HD points and depths from
which the image points are created as xij = PiXj/λij .
The estimated setup, denoted by hatted quantities, is
obtained from the image points xij , supposedly by a
reconstruction algorithm, such that it satisfies all the
projection equations λ̂ijxij = P̂iX̂j . One can usually
make certain genericity assumptions about the true
projection-point setup ({Pi}, {Xj}) or safely assume
λij 6= 0 for all i, j. Such natural assumptions can-
not be as easily made about the estimated quantities,
as they are to be obtained by an algorithm. It is our
goal to present minimal conditions on the estimated
setup ({P̂i}, {X̂j}, {λ̂ij}) under which ({Pi}, {Xj}) and

({P̂i}, {X̂j}) are projectively equivalent. We usually

combine the two equations λijxij = PiXj and λ̂ijxij =

P̂iX̂j after a simple change of variables xij ← λijxij ,

λ̂ij ← λ̂ij/λij to get P̂iX̂j = λ̂ijPiXj . This change of
variables does not affect our results as there are no as-
sumptions about xij-s and the only assumption about

a projective depth λ̂ij is whether or not it is zero.

We must stress that, here, the projection matri-
ces Pi, P̂i, HD points Xj , X̂j and image points xij are
treated as members of a real vector space, even though
they might represent quantities in a projective space.
For instance, Xj ∈ Rr represents a point in Pr−1 in
homogeneous coordinates. Any equality sign “=” here
is strict and never implies equality up to scale.

2.2. Projective equivalence

We formalize the concept of projective equivalence
for HD points and projection matrices as follows.

Definition 1. Two sets of projection matrices {Pi}
and {P̂i}, with Pi, P̂i ∈ Rsi×r for i = 1, 2, . . . ,m are
projectively equivalent if there exist nonzero scalars
τ1, τ2, . . . , τm and an r×r invertible matrix H such that

P̂i = τi Pi H, i = 1, 2, . . . ,m. (3)

Two sets of points {Xj} and {X̂j} with Xj , X̂j ∈ Rr
for j = 1, 2, . . . , n, are projectively equivalent if there
exist nonzero scalars ν1, ν2, . . . , νn and an invertible
r×r matrix G such that

X̂j = νj GXj , j = 1, 2, . . . , n. (4)

Two setups ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are pro-
jectively equivalent if (3) and (4) hold with G = H−1.

Lemma 1. Consider a set of points X1,X2, . . . ,Xn ∈
Rr with n > r with the generic properties

(P1) span(X1, . . . ,Xn) = Rr, and

(P2) the set of points {Xi} cannot be partitioned into
p ≥ 2 nonempty subsets, such that subspaces de-
fined as the span of each subset are independent1.

Now, for any set of points {X̂i} projectively equivalent
to {Xi}, the matrix G and scalars νj defined in (4) are
unique up to a scale ambiguity of the form (βG, {νj/β})
for any nonzero scalar β.

Notice that (P2) is generic only when n > r. The
proof [7] is based on the theory of eigenspaces.

2.3. Triangulation

The problem of Triangulation is to find a point X
given its images through a set of known projections
P1, . . . , Pm. The next lemma provides conditions for
the uniqueness of triangulation.

Lemma 2 (Triangulation). Consider a set of projec-
tion matrices P1, P2, . . . , Pm with Pi ∈ Rsi×r, and a
point X ∈ Rr, configured such that

(T1) there does not exist any linear subspace of di-
mension one or two, passing through X and
nontrivially intersecting2 all the null spaces
N (P1),N (P2), . . . ,N (Pm).

Now, for any nonzero Y 6= 0 in Rr if the relations

PiY = βiPiX, i = 1, 2, . . . ,m (5)

hold for scalars βi, then Y = βX for some scalar β 6=0.

1Subspaces U1, . . . , Up are independent if dim(
∑p

j=1 Uj) =∑p
j=1 dim(Uj), where

∑p
j=1 Uj = {

∑p
j=1 uj |uj ∈ Uj}.

2Two linear subspaces nontrivially intersect if their intersec-
tion has dimension one or more.



Notice that we have not assumed βi 6= 0. For the
classic case of projections P3 → P2, (T1) simply means
that the camera centres N (Pi) ∈ P3 and the projective
point span(X) ∈ P3 are not (projectively) collinear.
Besides the proof, in [7] we show that (T1) is a generic
property for arbitrary dimensional projections.

2.4. Valid profiles and the Grassmann tensor

Consider a set of projection matrices P1, P2, . . . , Pm,
with Pi ∈ Rsi×r, such that

∑m
i=1(si − 1) ≥ r. A valid

profile [3] is defined as an m-tuple of nonnegative3 in-
tegers α = (α1, α2, . . . , αm) such that 0 ≤ αi ≤ si−1
and

∑
αi = r. Clearly, there might exist different valid

profiles for a setup {Pi}. One can choose r×r subma-
trices of P = stack(P1, P2, . . . , Pm) according to a profile
α, by choosing αi rows from each Pi. Notice that due
to the property αi ≤ si−1, all the rows of Pi are never
chosen for building such a submatrix.

Consider m index sets I1, I2, . . . , Im, such that each
Ii contains the indices of some αi rows of Pi. Each
way of choosing I1, I2, . . . , Im gives a square subma-
trix of P = stack(P1, . . . , Pm) where the rows of each
Pi are chosen in order. The determinant of this sub-
matrix is multiplied by a corresponding sign4 to form
T I1,I2,...,Imα , which is a Grassmann coordinate of C(P),
the column space of P. Such entries for different choices
of the Ii-s can be arranged in a multidimensional array
Tα called the Grassmann tensor corresponding to α.
The dimension of Tα is equal to the number of nonzero
entries of α = (α1, α2, . . . , αm), as Tα does not depend
on those Pi with αi = 0. To show the dependence of
the Grassmann tensor on projection matrices Pi, we
sometimes use the mapping Gα which takes a set of
projection matrices to the corresponding Grassmann
tensor, that is Tα = Gα(P1, P2, . . . , Pm). Notice that
Gα itself is not a tensor. Obviously, Gα(P1, . . . , Pm) is
nonzero if and only if P has at least one non-singular
submatrix chosen according to α.

Hartley and Schaffalitzky [3] show that if a point
X is projected through P1, P2, . . . , Pm into the image
points x1,x2, . . . ,xn, according to λixi = PiX, then
for any set of full-column-rank matrices U1, U2, . . . , Um
with Ui ∈ Rsi×(si−αi) and xi ∈ C(Ui) we have

∑
I1,...,Im

T I1,I2,...,Imα

m∏
i=1

det(UĪii ) = 0, (6)

3Notice that, the definition of a valid profile here slightly dif-
fers from [3] which needs αi ≥ 1. We choose this new definition
for convenience, as it does not impose the restriction m ≤ r on
the number of views.

4The sign is defined by
∏m

i=1 sign(Ii) where sign(Ii) is +1 or
−1 depending on whether the sequence (sort(Ii) sort(Īi)) is an
even or odd permutation, where Īi = {1, . . . , si} \ Ii (see [3]).

where UĪii is the square submatrix of Ui made by choos-

ing rows in Īi = {1, . . . , αi} \ Ii. Notice that det(UĪii )
for different values of Īi form the Grassmann coordi-
nates of C(Ui), the column space of Ui. The main theo-
rem of [3] states that the projection matrices Pi can be
uniquely constructed from the Grassmann tensor, up
to projectivity:

Theorem 1 ([3]). Consider a set of m generic pro-
jection matrices P1, P2, . . . , Pm, with Pi ∈ Rsi×r, such
that m ≤ r ≤

∑m
i=1(si − 1), and a valid profile

(α1, α2, . . . , αm) for which αi ≥ 1 for all i. Then if
at least one si is greater than 2, the matrices Pi are
determined up to a projective ambiguity from the set of
minors of P chosen with αi rows from each Pi. If si = 2
for all i, there are two equivalence classes of solutions.

The constructive proof of [3] gives a procedure
to obtain the projections Pi from the Grassmann
tensor. From each set of image point correspon-
dences x1j ,x2j , . . . ,xmj one or more sets of subspaces
U1, U2, . . . , Um can be passed such that xij ∈ Ui. Each
choice of subspaces U1, . . . , Um gives a linear equation
(6) on the elements of the tensor. The Grassmann ten-
sor can be obtained as the null vector5 of the matrix
of coefficients of the set of linear equations.

Lemma 3 ([7]). Consider a set of projection matrices
P1, . . . , Pm with Pi 6= 0 for all i. Assume that there
exists a valid profile α = (α1, α2, . . . , αm) with αk = 0
such that Gα(P1, . . . , Pm) is nonzero. Then there exists
another valid profile α′ = (α′1, α

′
2, . . . , α

′
m) with α′k > 0

such that Gα′(P1, . . . , Pm) is nonzero.

3. The Grassmann tensor is unique

This section asserts that if two configurations
({Pi}, {Xj}) and ({P̂i}, {X̂j}) project into the same im-
age points xij , then the associated Grassmann tensors
of {Pi} and {P̂i} can only differ by a scaling factor.
In other words, the Grassmann tensor is unique up to
scale given a set of image points xij = PiXj/λij .

Theorem 2. Consider a setup ({Pi}, {Xj}) of m
generic projection matrices and n points in general po-
sition and sufficiently many, and a valid profile α =
(α1, α2, . . . , αm) such that αi ≥ 1 for all i. Now, for

any other configuration ({P̂i}, {X̂j}) with X̂j 6= 0 for
all j, the set of relations

P̂iX̂j = λ̂ijPiXj (7)

implies Gα(P̂1, . . . , P̂m) = β Gα(P1, . . . , Pm) for some
scalar β.

5In Sect. 3 we prove that the Grassmann tensor is unique,
meaning that the matrix of coefficients has a 1D null space.



Notice that λ̂ij-s have not been assumed to be
nonzero. Considering the definition of a valid profile,
the condition αi ≥ 1 implies that the above theorem
only applies when m ≤ r. Here, we present an outline
of the proof and refer the reader to [7] for the full proof.

We consider two submatrices Q and Q′ of P =
stack(P1, . . . , Pm) chosen according to the valid profile
α = (α1, . . . , αm), such that all rows of Q and Q′ are
equal except for the l-th rows qTl and q′Tl , which are
chosen from different rows of Pk for some view k. We
also represent by Q̂ and Q̂′ the corresponding subma-
trices of P̂ = stack(P̂1, . . . , P̂m). Then we show that if
det(Q) 6= 0, the equations (7) imply

det(Q̂′) =
det(Q′)

det(Q)
det(Q̂). (8)

The rest of the proof is trivial: By starting with a sub-
matrix Q of P according to α, and iteratively updating
Q by changing one row at a time in the way described
above, we can finally traverse all possible submatrices
chosen according to α. Due to genericity we assume
that all submatrices of P chosen according to α are
non-singular6. Therefore, (8) implies that during the
traversal the ratio β = det(Q̂)/ det(Q) stays the same.
This means that each element of Gα(P̂1, . . . , P̂m) is β
times the corresponding element of Gα(P1, . . . , Pm), im-
plying Gα(P̂1, . . . , P̂m) = β Gα(P1, . . . , Pm).

The relation (8) is obtained in two steps. The first
step is to write (7) in matrix form as

M(Xj)

(
λ̂j
X̂j

)
= 0, j = 1, 2, . . . , n, (9)

where λ̂j = [λ̂1j , . . . , λ̂mj ]
T , and

M(X) =


P1X P̂1

P2X P̂2

. . .
...

PmX P̂m

 . (10)

The matrix M(X) is (
∑
i si)×(m+r), and therefore

a tall (or square) matrix. Due to the assumption

X̂j 6= 0 in Theorem 2, we conclude that M(Xj) is
rank deficient for all Xj . This means that for any
(m + r)×(m + r) submatrix M′(Xj) of M(Xj) we
have det(M′(Xj)) = 0. As det(M′(X)) is a poly-
nomial expression in X, having det(M′(Xj)) = 0 for
sufficiently many points Xj in general position implies
that det(M′(X)) is identically zero. The only other
possibility is that Xj-s all lie on a polynomial surface
which can be ruled out by genericity.

6though the proof is possible under a milder assumption,

The second step is to choose a proper value for X
and a proper submatrix M′(X) of M(X), such that
(8) follows from det(M′(X)) = 0. This proper choice
for X is Q−1el, where el is the l-th standard basis and
l is the row which is different in Q and Q′, as defined
earlier. The submatrix M′(X), is made by choosing
the corresponding rows of P = stack(P1, . . . , Pm) con-
tributing to making Q, choosing the corresponding row
q′Tl of Pk contributing to making Q′, and choosing one
extra row from each Pi for i 6= k. See [7] for details.

4. Projective Reconstruction

Here, we state a theorem of projective reconstruc-
tion showing the projective equivalence of two setups
({Pi}, {Xj}) and ({P̂i}, {X̂j}) projecting into the same

image points, given conditions on ({P̂i}, {X̂j}). Based
on this, we present an alternative theorem in the next
section with conditions on the projective depths λ̂ij .

Theorem 3 (Projective Reconstruction). Consider a
setup of m projections and n points ({Pi}, {Xj}) where
the matrices Pi ∈ Rsi×r are generic,

∑m
i=1(si− 1) ≥ r,

and si ≥ 3 for all views7, and the points Xj ∈ Rr
are sufficiently many and in general position. Given a
second setup ({P̂i}, {X̂j}) which for all i, j satisfies

P̂iX̂j = λ̂ijPiXj (11)

for some scalars λ̂ij, if

(C1) P̂i 6= 0 for all i, and

(C2) X̂j 6= 0 for all j, and

(C3) there exists a non-singular r×r submatrix Q̂

of P̂ = stack(P̂1, P̂2, . . . , P̂m) containing strictly
fewer than si rows from each P̂i. (equivalently
Gα(P̂1, . . . , P̂m) 6= 0 for some valid profile α),

then the two configurations ({Pi}, {Xj}) and

({P̂i}, {X̂j}) are projectively equivalent.

It is important to observe the theorem does not
assume a priori that the projective depths λ̂ij are
nonzero. The outline of the proof is as follows. Given
the profile α = (α1, . . . , αm) from condition (C3),

1. for the special case of αi ≥ 1 for all i,
using Theorem 2, we have Gα(P̂1, . . . , P̂m) =
β Gα(P1, . . . , Pm), where β is nonzero due to (C3).

2. As Gα(P̂1, . . . , P̂m) is equal to Gα(P1, . . . , Pm) up
to a nonzero scale, Theorem 1 by Hartley and

7We could have assumed the milder condition of si≥3 for at
least one i. Our assumption avoids unnecessary complications.



Schaffalitzky [3] suggests that {Pi} and {P̂i} are
projectively equivalent. Using the Triangulation
Lemma 2 we can then obtain that ({Pi}, {Xj})
and ({P̂i}, {X̂j}) are projectively equivalent.

3. To prove the theorem for the general case where
some αi-s might be zero (and hence the number of
views can be arbitrarily large), first notice that, by
Lemma 3, different valid profiles α′ can be chosen
with a nonzero Grassmann tensor. Theorem 3 can
be proven for the subset of views i with α′i 6= 0.
The collection of such subsets due to different
choices of α′ span the whole set of views. Using
Lemma 1 we can then stitch the projective equiv-
alence for different subsets of views together and
prove that for the whole set of views ({Pi}, {Xj})
and ({P̂i}, {X̂j}) are projectively equivalent.

5. Restricting projective depths

This section provides a second version of Theorem 3
in which it is assumed that λ̂ij-s are all nonzero, instead

of putting restrictions on ({P̂i}, {X̂j}).

Theorem 4 (Projective Reconstruction). Consider a
setup of m projections and n points ({Pi}, {Xj}) with
Pi ∈ Rsi×r generic, si ≥ 3 for all views i,

∑m
i=1(si −

1) ≥ r, and the points Xj ∈ Rr sufficiently many and
in general position. Now, for any second configuration
({P̂i}, {X̂j}) satisfying

P̂iX̂j = λ̂ijPiXj . (12)

for some nonzero scalars λ̂ij 6= 0, the configuration

({P̂i}, {X̂j}) is projectively equivalent to ({Pi}, {Xj}).

In Sect. 6 we will discuss that the theorem can be
proved under milder restrictions than λ̂ij 6= 0 for all
i, j. However, by proving projective equivalence, it
eventually follows that λ̂ij-s are all nonzero. The next
lemma is the key for the proof of the above theorem.

Lemma 4. Consider m projection matri-
ces P̂1, P̂2, . . . , P̂m with P̂i ∈ Rsi×r, such that∑m
i=1(si−1) ≥ r, and P̂ = stack(P̂1, . . . , P̂m) has

full column rank r. If P̂ has no full-rank r×r
submatrix created by choosing strictly fewer than
si rows from each P̂i, then there exists a partition
{I, J,K} of the set of views {1, 2, . . . ,m}, with
I 6= ∅ (nonempty) and

∑
i∈I si +

∑
i∈J(si−1) ≤ r,

such that P̂K = stack({P̂i}i∈K) has rank
r′ = r −

∑
i∈I si −

∑
i∈J(si−1). Further, the

row space of P̂K is spanned by the rows of an r′×r
submatrix Q̂K = stack({Q̂i}i∈K) of P̂K , where each Q̂i
is made by choosing strictly less than si rows from P̂i.

The proof of this lemma is quite long and intricate.
The interested reader is referred to [7].

To prove Theorem 4 we just need to show that the
condition λ̂ij 6= 0 implies (C1-C3) in Theorem 3. As-

sume that λ̂ij 6= 0 for some i and j. Then from the
genericity of Pi and Xj we have PiXj 6= 0, and thus

P̂iX̂j = λ̂ijPiXj 6= 0, implying P̂i 6= 0 and X̂j 6= 0.

Thus, λ̂ij 6= 0 for all i, j implies (C1) and (C2).

The hardest part is to show that λ̂ij 6= 0 implies
(C3), that is P̂ has a full-rank r×r submatrix cho-
sen with strictly fewer than si rows from each P̂i. To
get a contradiction, assume P̂ does not have such a
submatrix. For the present, suppose that P̂ has full
column rank. Then by Lemma 4, there exists a par-
tition {I, J,K} of views with I 6= ∅ and

∑
i∈I si +∑

i∈J(si−1) ≤ r, such that P̂K = stack({P̂i}i∈K)
has a row space of dimension r′ = r −

∑
i∈I si −∑

i∈J(si−1), spanned by the rows of an r′×r matrix

Q̂K = stack({Q̂i}i∈K), where each Q̂i consists of strictly
less than si rows8 from P̂i. By relabeling the views if
necessary, we assume that P̂K = stack(P̂1, . . . , P̂l) and
Q̂K = stack(Q̂1, . . . , Q̂l). As rows of Q̂K span the row

space of P̂K , we have P̂K = A Q̂K for some (
∑l
i=1 si)×r′

matrix A. From (12), we have P̂iX̂j = λ̂ijPiXj and, as

a result, Q̂iX̂j = λ̂ijQiXj , where Qi is the submatrix of
Pi corresponding to Q̂i. This gives

P̂K X̂j = diag(P1Xj , P2Xj , . . . , PlXj) λ̂j (13)

Q̂K X̂j = diag(Q1Xj , Q2Xj , . . . , QlXj) λ̂j (14)

where diag(·) is the block diagonal matrix of its argu-

ments, and λ̂j=[λ̂1j , . . . , λ̂lj ]
T . From P̂K=AQ̂K we get

M(Xj) λ̂j = 0 (15)

where

M(X) = diag(P1X, P2X, . . . , PlX)

− Adiag(Q1X, Q2X, . . . , QlX). (16)

Notice that,M(X) is (
∑l
i=1 si)×l, and thus a tall ma-

trix. As λ̂j 6= 0 (since λ̂ij 6= 0 for all i, j),M(Xj)λ̂j =
0 implies that M(Xj) is rank deficient, and thus, all
of its l×l submatrices have a zero determinant. Since
for any l×l submatrixM′(X) ofM(X) the expression
det(M′(X)) is a polynomial on X which is equal to
zero at sufficiently many points Xj in general position,
we can say that det(M′(X)) is identically zero9 for all
submatricesM′(X) ofM(X). It follows thatM(X) is

8It might happen that for some i ∈ K no row of P̂i is contained
in Q̂K . In this case one can think of Q̂i as a matrix with zero rows.

9otherwise all Xj-s must lie on a polynomial surface, which
can be ruled out by genericity.



rank deficient for all X. As Q̂K is r′×r with r′ < r and
Pi-s are generic, we can take a nonzero vector Y in the
null space of Q̂K such that no matrix P̂i for i = 1, . . . , l
has Y in its null space10. In this case, we have QiY = 0
for all i, implying M(Y) = diag(P1Y, . . . , PlY). Now,
from Y /∈ N (P̂i), we have PiY 6= 0 for i = 1, . . . , l. This
implies that M(Y) = diag(P1Y, . . . , PlY) has full col-
umn rank, contradicting the fact that M(X) is rank
deficient for all M(X). Therefore, condition (C3) in
Theorem 3 also holds, which completes the proof of
Theorem 4 for when P̂ has full column rank. One can
show that this is always the case and the rank defi-
ciency assumption about P̂ leads to contradiction. The
trick is to consider the matrix X̂ = [X̂1, , . . . , X̂m], re-
factorize P̂X̂ as P̂′X̂′ such that P̂′ has full column rank,
prove projective equivalence for ({P̂′i}, {X̂′j}), and fi-

nally, show that P̂ has full column rank from P̂X̂ = P̂′X̂′.
The reader can refer to [7] for a more detailed proof.

6. Wrong solutions to projective factor-
ization

Let us write equations λ̂ijxij = P̂iX̂j in matrix form

Λ̂� [xij ] = P̂ X̂, (17)

where Λ̂ = [λ̂ij ], Λ̂ � [xij ] = [λ̂ijxij ], P̂ =

stack(P̂1, . . . , P̂m) and X̂ = [X̂1, . . . , X̂n]. The projec-
tive factorization algorithms seek to find Λ̂ such that
Λ̂�[xij ] can be factorized as the product of a (

∑
i si)×r

matrix P̂ by an r×n matrix X̂. If xij-s are obtained
from ({Pi}, {Xj}) as xij = PiXj/λij , our theory says
that any solution (Λ̂, P̂, X̂) to (17) is equivalent to the
true solution (Λ, P, X), provided that (Λ̂, P̂, X̂) satisfies
certain restrictions, such as conditions (C1-C3) on P̂

and X̂ in Theorem 3, or Λ̂ having no zero element in
Theorem 4. It is worth to see what degenerate (projec-
tively nonequivalent) forms a solution (Λ̂, P̂, X̂) to (17)
can get when such restrictions are not completely im-
posed. This is important in the factorization-based
methods, in which sometimes such restrictions cannot
be efficiently implemented.

The reader can check that Theorem 4 can be proved
under weaker assumptions than λ̂ij 6= 0, as follows

(D1) The matrix Λ̂ = [λ̂ij ] has no zero rows,

(D2) The matrix Λ̂ = [λ̂ij ] has no zero columns,

(D3) For every partition {I, J,K} of views {1, 2, . . . ,m}
with I 6= ∅ and

∑
i∈I si +

∑
j∈J(sj−1) < r, the

matrix Λ̂K has sufficiently many nonzero columns,

10Y must be chosen from N (QK)\∪li=1(N (QK)∩N (Pi)) which

is nonempty (in fact open and dense in N (QK)) for generic Pi-s.

where Λ̂K is the submatrix of Λ̂ created by selecting
rows according to K.

Notice that (D1) and (D2) respectively guarantee (C1)
and (C2) in Theorem 3 due to PiXj 6= 0 (by genericity)

and P̂iX̂j = λ̂ijPiXj . The condition (D3) guarantees

that the vector λ̂j used in (15), which is the j-th col-
umn of Λ̂K defined in (D3), is nonzero for sufficiently
many j-s. Therefore, (D3) is used to guarantee (C3),
that is P̂ has a nonzero minor chosen according to some
valid profile11. The discussion under (16) implies that
“sufficiently many” in (D3) means as many such that
M(X) is guaranteed to be rank deficient for all X.

It is trivial to see how violating (D1) and (D2) can
lead to a false solution to (17). For example set X̂ = X,
P̂k and the k-th row of Λ̂ equal to zero, and the rest of P̂
and Λ̂ equal to P and Λ. In what comes next, we assume
that (D1) and (D2) hold, that is Λ̂ has no zero rows or
zero columns, and look for less trivial false solutions to
(17). According to our discussion above, for this class
of wrong solutions conditions (C3) about P̂ and (D3)
about Λ̂ must be violated. This means that the set
of views {1, 2, . . . ,m} can be partitioned into I, J,K
with I nonempty and

∑
i∈I si +

∑
i∈J(si−1) < r, such

that the submatrix Λ̂K of Λ̂ has few nonzero columns.
Moreover, by Lemma 4, the submatrix P̂K of P̂ has
rank r′ = r −

∑
i∈I si −

∑
i∈J(si−1). Here, we show

how this can happen with a simple example in which
J = ∅. It is possible, however, to show that degenerate
solutions exist for every partition {I, J,K} satisfying
the properties mentioned above.

For a setup ({Pi}, {Xj}), partition the views into
I and K, such that

∑
i∈I si < r. Split P row-wise

into submatrices PI and PK . By possibly relabeling
the views, we assume that P = stack(PI , PK). Notice
that PI has

∑
i∈I si rows and r columns, and therefore,

at least an r′ = r −
∑
i∈I si dimensional null space.

Consider an r×r′ matrix N with orthonormal columns
all in the null space of PI . Also, let R be the orthogonal
projection matrix into the row space of PI . Divide the
matrix X = [X1, . . . ,Xm] into two parts as X = [X1, X2]
where X1 = [X1, . . . ,Xr′ ] and X2 = [Xr′+1, . . . ,Xm].
Define the corresponding submatrices of P̂ and X̂ as

P̂I = PI , P̂K = PK X1 N
T , (18)

X̂1 = R X1 + N, X̂2 = R X2. (19)

One can easily check that

P̂X̂=

[
P̂I

P̂K

]
[X̂1, X̂2]=

[
PIX1 PIX2

PKX1 0

]
= Λ̂� (PX) (20)

11Notice that (D3) does not consider the case of
∑

i∈I si +∑
j∈J (sj−1) = r. One can show that in this case K must be

non-empty and P̂K must be zero [7]. This is precluded by (D1).



where Λ̂ has a block structure of the form

Λ̂ =

[
Λ̂I

Λ̂K

]
=

[
1 1

1 0

]
(21)

As P̂I ∈ R(r−r′)×r at most has rank r−r′ and P̂K =
PKX1 N

T (with N ∈ Rr×r′) at most has rank r′, if
P̂ = stack(P̂I , P̂K) has maximal rank r then P̂K has
to have rank r′, as also confirmed by Lemma 4. One
can check that P̂ = stack(P̂I , P̂K) has no full rank sub-
matrix chosen by less than si rows from each P̂i. Thus,
(C3) is violated and the Grassmann tensor of {P̂i} cor-
responding to any valid profile is zero. Also, observe
that in (21) the submatrix Λ̂K of Λ̂ ∈ Rm×n has only
r′ nonzero columns, no matter how large n is. This is
how (D3) is violated.

Using the above style for finding wrong solutions, Λ̂K

can have at most r′ nonzero columns. Unfortunately,
this is not always the case. Instead, the limit for the
number of nonzero columns allowable in a wrong solu-
tion is as many such that the rank of Λ̂K � (PKX) is
not more than r′. This is necessary for having a wrong
solution as Λ̂K � (PKX) = P̂K X̂, and P̂K cannot have a
rank of more than r′ according to Lemma 4. One can
also show that this is a sufficient condition for having
a wrong solution. With a little more complication, one
can as well construct examples of wrong solution for
partitions {I, J,K} with J nonempty.

For the classic case of P3 → P2 projections (r =
4, si = 3), the only possible partition {I, J,K} is when
I is a singleton and J is empty. This is due to the
conditions I 6= ∅ and

∑
i∈I si +

∑
j∈J(sj−1) < r = 4.

In this case, Λ̂I consists of only one row. Further, we
have r′ = r −

∑
i∈I si −

∑
j∈J(sj−1) = 4− 3− 0 = 1.

The reader can check that the condition Rank(Λ̂K �
(PKX)) ≤ r′ = 1, implies that only one column of Λ̂K

can be nonzero, causing Λ̂ to have a cross-shaped struc-
ture. Therefore, the theory given in the authors’ pre-
vious work [8] follows as a special case.

7. Conclusion

This paper investigates projective reconstruction for
arbitrary dimensional projections. We obtain the fol-
lowing results for a generic setup:

• The multi-view (Grassmann) tensor is unique, up
to a scaling factor, given the image points xij .

• Any solution to the set of equations λ̂ijxij =

P̂iX̂j is projectively equivalent to the true setup,

if the P̂i-s and X̂j-s are nonzero and P̂ =
stack(P̂1, . . . , P̂m) has at least one non-singular
r×r submatrix created by choosing strictly fewer
than si rows from each P̂i ∈ Rsi×r.

• Any solution to the set of equations λ̂ijxij = P̂iX̂j

is projectively equivalent to the true setup if λ̂ij is
nonzero for all i, j.

• False solutions to the projective factorization
problem Λ̂ � [xij ] = P̂ X̂ in general case can be
much more complex than in the case of projec-
tions P3 → P2, as demonstrated in Sect. 6.

A possible extension to this work is to consider the
case of incomplete data, where some image points xij
are missing. It would be also useful to compile a simpli-
fied list of all the required generic properties needed for
the proof of projective reconstruction. This is because
in almost all applications the projection matrices and
points have a special structure, meaning they are mem-
bers of a nongeneric set. It is now a nontrivial question
whether the restriction of the genericity conditions to
this nongeneric set is relatively generic.
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