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Abstract

We propose a joint foreground-background mixture
model (FBM) that simultaneously performs background
estimation and motion segmentation in complex dynamic
scenes. Our FBM consist of a set of location-specific dy-
namic texture (DT) components, for modeling local back-
ground motion, and set of global DT components, for mod-
eling consistent foreground motion. We derive an EM al-
gorithm for estimating the parameters of the FBM. We also
apply spatial constraints to the FBM using an Markov ran-
dom field grid, and derive a corresponding variational ap-
proximation for inference. Unlike existing approaches to
background subtraction, our FBM does not require a man-
ually selected threshold or a separate training video. Un-
like existing motion segmentation techniques, our FBM can
segment foreground motions over complex background with
mixed motions, and detect stopped objects. Since most dy-
namic scene datasets only contain videos with a single fore-
ground object over a simple background, we develop a new
challenging dataset with multiple foreground objects over
complex dynamic backgrounds. In experiments, we show
that jointly modeling the background and foreground seg-
ments with FBM yields significant improvements in accu-
racy on both background estimation and motion segmenta-
tion, compared to state-of-the-art methods.

1. Introduction
Separating the background from foreground is a funda-

mental step in computer vision applications. Current meth-
ods for background subtraction work well on scenes where
the background is mostly static over short periods of time
[1–3]. For scenes with dynamic backgrounds (e.g., moving
tree leaves, water, fountain), the background motion field
can be represented using dynamic textures (DTs) [4–6], a
probabilistic motion model that treats the video a sample
from a linear dynamical system. To separate foreground
from background, the majority of background models re-
quire manually setting a threshold on the background score,
which can vary significantly across scenes [7]. In addi-
tion, most methods require prior knowledge in the form of
a “clean” training video containing only the background.

Dynamic texture models have also shown promise in
clustering the microscopic and macroscopic motion patterns
present in dynamic scenes [8–10]. [8] performs motion seg-
mentation by clustering video patches using a mixture of
DTs. However, one drawback is that this method is based
purely on motion, and hence will fail to segment an object
that has stopped moving. For example, the crowd segmen-
tation used in [11] treats temporarily stopped pedestrians as
background, and hence cannot count stationary people.

In this paper, we propose a joint foreground-background
mixture (FBM) model for simultaneous motion segmen-
tation and background estimation in dynamic scenes (see
Fig. 1). The FBM consists of a set of location-specific
background DTs, for modeling local background motion,
and a set of global foreground DTs, for modeling global
consistent motion of the foreground. A Markov random
field (MRF) grid is used to add spatial constraints to the
segmentation and reduce spurious noise. Our proposed
joint model addresses the above problems associated with
performing background estimation and motion segmenta-
tion separately: 1) our model does not require a thresh-
old since the background model can be directly compared
with the foreground motion models; 2) our model does
not require a dedicated training video to learn the back-
ground; 3) our model can segment temporarily stopped
objects. Finally, because both the background and fore-
ground are jointly estimated, our model can more accurately
separate foreground segments and background in complex
dynamic scenes, compared to separately performing back-
ground subtraction or motion segmentation.

The contributions of our work are three-fold. First,
we propose a novel foreground-background mixture (FBM)
model, based on dynamic textures, for jointly representing
the background and foreground motions in dynamic scenes.
Second, we derive an EM algorithm to learn the parame-
ters of the FBM, as well as a variational approximation to
the posterior, and develop an adaptive threshold-based ini-
tialization strategy. Third, we evaluate the performance of
FBM on background subtraction and motion segmentation
in challenging dynamic scenes. Because most previously
available datasets consist of a single foreground object and
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Figure 1: Joint learning procedure for the foreground-background mixture model (FBM). The input video is divided into a set of video
patches (spatiotemporal cubes). An FBM is trained using the EM algorithm with MRF constraints, resulting in B location-specific back-
ground DTs and K global foreground DTs. Finally, likelihood maps for the background and foregrounds are compared to perform joint
motion segmentation and background estimation.
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Figure 2: Example frames from our FBDynScn dataset.

relatively simple background [5, 6, 12], we introduce a new
challenging dynamic scenes dataset FBDynScn, which con-
sists of seven sequences with multiple foreground objects
(e.g., boat, person) over complex backgrounds (e.g., foun-
tain, trees, water) (see Fig. 2).

2. Related work
A number of techniques for adaptive background sub-

traction are available, exemplified by the seminal work of
Stauffer and Grimson (SG) [1], which uses an adaptive
Gaussian mixture model (GMM). Since then a number of
extensions to the SG mixture, which, for example, include
properties of local image neighborhoods and global con-
sistency, have been proposed [2, 3]. These methods as-
sume that the background is relatively static over short time
scales, which makes them perform poorly in highly dy-
namic scenes. Similarly static backgrounds are assumed in
some moving object detection methods [7]. Joint domain-
range methods [13, 14] use a joint feature space to model
the foreground and background at each pixel, and perform
background subtraction by comparing the foreground and
background scores. However, [13, 14] are based on color
distributions, and hence are not suitable for complex dy-
namic scenes. They also cannot perform segmentation of
the foreground into multiple motions.

Several methods have also been proposed for model-
ing dynamically moving backgrounds. [15] performs back-
ground subtraction by separating “salient” (foreground)
motion from the background motion, while [16] integrates
moving object detection and background learning into a sin-
gle process using a low-rank representation of the back-
ground to accommodate the global variations. Other meth-
ods for modeling dynamic backgrounds are based on dy-
namic textures (DT) [17]. In [6], a DT models the entire
video frame, and a robust Kalman filter is used to mark pix-

els that are not well explained by the DT as foreground. In
[5], a local PCA-based DT method is proposed where each
patch in the current frame is marked as foreground if it is
not well modeled by the PCA basis. Finally, [4] proposes
an extension of the adaptive SG model, where the mixture
components are DTs, and a corresponding online learning
algorithm to account for changes in scene over time.

DT models have also been applied to motion segmenta-
tion. [8] proposes a mixture of DTs for clustering spatio-
temporal video patches to obtain a motion segmentation,
and yields improved accuracy on complex motions, com-
pared with traditional motion representations such as opti-
cal flow [18]. The layered dynamic texture (LDT) [9] mod-
els the whole video as a composition of layers, each mod-
eled by a separate DT. Note that [8, 9] cannot be directly
used for background subtraction. Each segment must cor-
respond to a unique motion, and hence backgrounds with
mixed motions (e.g., water, trees, and static) will be over-
segmented. Other layered models [19, 20] perform seg-
mentation by representing a video as a superposition of sub-
ject layers, undergoing homogeneous motion over a back-
ground layer. These models are based on optical flow and
parametric motion that assume a piece-wise planar world,
and hence are not applicable to scenes with backgrounds or
foregrounds with complex dynamic appearance.

Our proposed FBM is a natural combination of location-
specific dynamic background models (e.g., [4]) and DT mo-
tion segmentation [8], but with the following 3 challenges:
1) merging location-specific background DTs and global
foreground DTs into a unified mixture, and proper handling
of motion and non-motion areas; 2) proper initialization of
background/foreground components for EM; 3) smoothness
constraints (MRF) to regularize the model. To the best of
our knowledge there exists no previous method that per-
forms joint learning of foreground motions and background
motions in dynamic scenes. Our FBM can be seen as an
extension of [13, 14] to use dynamic appearance models.
However, in contrast to [13, 14], our FBM also segments the
foreground into multiple motions. In contrast to traditional
background models (e.g., [4]), our FBM does not require
a manually selected threshold to perform the background
separation, and does not need a separate training video. In
contrast to the motion segmentation of [8], our FBM can



segment stopped objects and can segment complex back-
grounds with mixed motions. In contrast to [16], which
only produces a single foreground segment, our FBM can
segment the foreground into multiple motions.

Our FBM is inspired by [21], which does feature se-
lection by augmenting a GMM with extra components to
model non-selected features as noise, and by [12] which
does joint object categorization and motion segmentation.

3. Foreground-background mixture models
In this section, we propose our foreground-background

mixture model. We begin with a brief review of the the
dynamic texture (DT) and dynamic texture mixture (DTM).

3.1. Dynamic textures
A dynamic texture [22, 23] is a generative model for

both the appearance and the dynamics of video sequences.
It consists of a random process containing an observation
variable yt, which encodes the appearance of the video
frame at time t, and a hidden state variable xt, which en-
codes the dynamics of the video over time. The state and
observation variables are related through the linear dynam-
ical system (LDS) defined by{

xt+1 = Axt + vt
yt = Cxt + wt

, (1)

where xt ∈ Rn and yt ∈ Rm (typically n � m). The
parameter A ∈ Rn×n is a state transition matrix and C ∈
Rm×n is an observation matrix (e.g. containing the prin-
cipal components of the video sequence when learned with
[23]). The driving noise process vt is normally distributed
with zero mean and covarianceQ, i.e. vt ∼ N (0, Q,) where
Q ∈ Sn+ is a positive-definite n×n matrix. The observation
noise wt is also zero mean and Gaussian, with covariance
R, i.e. wt ∼ N (0, R,) whereR ∈ Sm+ . The dynamic texture
is specified by the parameters Θ = {A,Q,C,R, µ, S}.

While a DT models a time-series as a single sample from
a LDS, the dynamic texture mixture (DTM) [8] models mul-
tiple time-series as samples from a set ofK DTs. The prob-
ability of a given video sequence y1:τ under a DTM with K
dynamic texture components {Θ1, . . . ,ΘK} having prior
probabilities α = {α1, . . . , αK} is

p(y1:τ ) =

K∑
j=1

αjp(y1:τ |Θj), (2)

where p(y1:τ |Θj) is the observation likelihood function of
a DT with parameters Θj .

3.2. Foreground-background mixture model
The foreground-background mixture model (FBM) con-

sists of two sets of DTs for simultaneous background es-
timation and motion segmentation: 1) a set of location-
specific DTs that model local background motions; 2) a set
of non-location-specific DTs that model global consistent
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Figure 3: (a) Graphical model of the foreground-background mix-
ture model. There are B replicas of the original dynamic texture
(DT) mixture model (one for each location b). The parameters for
the foreground components Θ1:K are shared across all locations b,
whereas each location has its own background DT Θb

0 and mixture
weights αb; (b) MRF neighborhood for z(i)b .

motion in the foreground. Our proposed FB mixture and
joint estimation procedure is summarized in Fig. 1.

The video (W × H × T ) is split into a set of overlap-
ping video patches (p × p × τ spatio-temporal cubes), ex-
tracted along a regularly spaced grid. There are a total of
B background locations in the video frame, each having
a total of Nb video patches along temporal dimension. In
the FBM, each location b is associated with one location-
specific background DT component Θb

0, while the fore-
ground is modeled with K DT components {Θ1, . . . ,ΘK}.
Note that we use the index 0 for the background component
at b, and indices 1 toK for the foreground components. Un-
der the FBM, the video patch yb,1:τ observed at location b
is a sample from a mixture of its background DT and the K
global foreground DTs, i.e., {Θb

0,Θ1, . . . ,ΘK},

p(yb,1:τ ) = αb0p(yb,1:τ |Θb
0) +

K∑
j=1

αbjp(yb,1:τ |Θj), (3)

where αb = {αb0, αb1, . . . , αbK} are the component weights,
with

∑K
m=0 α

b
m = 1. p(yb,1:τ |Θb

0) is the class condi-
tional density of the bth background DT, parameterized by
Θb

0 = {Ab0, Qb0, Cb0, Rb0, µb0, Sb0}, while p(yb,1:τ |Θj) is the
class conditional density of the jth foreground DT, param-
eterized by Θj = {Aj , Qj , Cj , Rj , µj , Sj}.

The system of equations that define the mixture of fore-
ground and background DTs is{

xb,t+1 = Azbxb,t + vb,t
yb,t = Czbxb,t + wb,t

(4)

where zb ∼ multinomial(αb0, α
b
1, . . . , α

b
K) is the assign-

ment variable that indicates the mixture component from
which the observation is drawn. The initial condition is
given by xb,1 ∼ N (µzb , Szb), and the noise processes by
vb,t ∼ N (0, Qzb) and wb,t ∼ N (0, Rzb). When zb = 0,
then the DT parameters are selected from Θb

0, while for
zb > 0 the DT parameters are from Θzb . The graphical
model for the FBM is presented in Fig. 3. Since there are
K foreground DTs and B background DTs, the complexity
of exact inference on the FBM is K + B times that of the
underlying DT. Finally, the complete set of parameters for
the FBM is Θ = {{αb,Θb

0}Bb=1, {Θj}Kj=1}.



3.3. EM algorithm for parameter estimation
Given a set of video patches {y(i)

b }
Nb
i=1 at each back-

ground location b, we aim to estimate the parameters Θ of
the FBM that maximizes the likelihood of the data [24],

Θ∗ = argmax
Θ

B∑
b=1

Nb∑
i=1

log p(y
(i)
b ; Θ). (5)

When the probabilistic model depends on hidden variables
(e.g., the output of the system is observed, but its state is
unknown), the maximum-likelihood solution can be found
with the EM algorithm [25]. For FBM, each observation
y
(i)
b at location b is associated with the missing data: 1) as-

signment z(i)b to one of the global foreground or local back-
ground mixture components, and 2) hidden state sequence
x
(i)
b that produces y

(i)
b . Each EM iteration consists of:

E− Step : Q(Θ; Θ̂) = EX,Z|Y ;Θ̂[log p(X,Y, Z; Θ)], (6)

M− Step : Θ̂
∗

= argmax
Θ

Q(Θ; Θ̂), (7)

where p(X,Y, Z; Θ) is the complete-data likelihood of the
observations (video patches) Y = {{y(i)

b }
Nb
i=1}Bb=1, the cor-

responding hidden state sequences X = {{x(i)
b }

Nb
i=1}Bb=1,

and the assignment variables Z = {{z(i)b }
Nb
i=1}Bb=1.

As is usual in the EM literature [25], we introduce an
indicator zb,i,m ∈ {0, 1}, such that zb,i,m = 1 if and only if
z
(i)
b = m. The complete-data likelihood is then

p(X,Y, Z) (8)

= p(Z)

B∏
b=1

Nb∏
i=1

p(x
(i)
b ,y

(i)
b |Θ

b
0)zb,i,0

K∏
j=1

p(x
(i)
b ,y

(i)
b |Θj)

zb,i,j ,

where p(x(i)
b ,y

(i)
b |Θ) is the density for a DT Θ, and

p(Z) =

B∏
b=1

Nb∏
i=1

K∏
m=0

(αbm)zb,i,m . (9)

Applying the expectation of (6) to the log of the
complete-data likelihood in (8) yields a Q function simi-
lar to that of the DTM in [8]. The E and M steps for FBM
can then be derived by following a procedure similar to [8]
(see supplemental for complete derivation).

The E-step consists of computing the conditional expec-
tations with the Kalman smoothing filter [26],

x̂
(i)
b,t|m = E

x
(i)
b |y

(i)
b ,z

(i)
b =m

[
x
(i)
b,t

]
, (10)

P̂
(i)
b,t,t|m = E

x
(i)
b |y

(i)
b ,z

(i)
b =m

[
x
(i)
b,t(x

(i)
b,t)

T
]
, (11)

P̂
(i)
b,t,t−1|m = E

x
(i)
b |y

(i)
b ,z

(i)
b =m

[
x
(i)
b,t(x

(i)
b,t−1)T

]
, (12)

and the assignment probabilities,

ẑb,i,m =
αbmp(y

(i)
b |z

(i)
b = m)∑K

k=0 α
b
kp(y

(i)
b |z

(i)
b = k)

, (13)

where p(y(i)
b |z

(i)
b = j) is the observation likelihood, which

is calculated with the Kalman filter (see [26]). The expec-
tations for each component m ∈ {0, · · · ,K} are then ag-
gregated over all video patches at location b, and then over
all locations for foreground components j ∈ {1, · · · ,K},

N̂b
m =

∑
i ẑb,i,m, N̂j =

∑
b N̂

b
j ,

ξbm =
∑
i ẑb,i,mx̂

(i)

b,1|m, ξj =
∑
b ξ
b
j ,

ηbm =
∑
i ẑb,i,mP̂

(i)

b,1,1|m, ηj =
∑
b η

b
j ,

Φbm =
∑
i ẑb,i,m

∑τ
t=1 P̂

(i)

b,t,t|m, Φj =
∑
b Φbj ,

φbm =
∑
i ẑb,i,m

∑τ
t=2 P̂

(i)

b,t−1,t−1|m, φj =
∑
b φ

b
j ,

ϕbm =
∑
i ẑb,i,m

∑τ
t=2 P̂

(i)

b,t,t|m, ϕj =
∑
b ϕ

b
j ,

Ψb
m =

∑
i ẑb,i,m

∑τ
t=2 P̂

(i)

b,t,t−1|m, Ψj =
∑
b Ψb

j ,

Γbm =
∑
i ẑb,i,m

∑τ
t=1 y

(i)
b,t(x̂

(i)

b,t|m)T , Γj =
∑
b Γbj ,

Λbm =
∑
i ẑb,i,m

∑τ
t=1 y

(i)
b,t(y

(i)
b,t)

T , Λj =
∑
b Λbj .

(14)

For the M-step, the parameters of each foreground compo-
nents j ∈ {1, · · · ,K} is updated with

Ĉj = Γj(Φj)
−1, R̂j = 1

τN̂j
(Λj − ĈjΓj),

Âj = Ψj(φj)
−1, Q̂j = 1

(τ−1)N̂j
(ϕj − ÂjΨT

j ),

µ̂j = 1
N̂j
ξj , Ŝj = 1

N̂j
ηj − µ̂j(µ̂j)T ,

(15)

and the parameters for each background b is updated,

Ĉb0 = Γb0(Φb0)−1, R̂b0 = 1
τN̂b

0

(Λj − Ĉb0Γj),

Âb0 = Ψb
0(φb0)−1, Q̂b0 = 1

(τ−1)N̂b
0

(ϕb0 − Âb0ΨT
j ),

µ̂b0 = 1
N̂b

0

ξb0, Ŝ
b
0 = 1

N̂b
0

ηb0 − µ̂b0(µ̂b0)T , α̂bm =
N̂b

m

Nb
.

(16)

4. FBM with MRF constraints
In this section we add an MRF to the hidden assignment

variables to encourage spatially smooth segmentations.

4.1. MRF constraints
The model we will consider is a FBM where the assign-

ment variables Z = {z(i)b } have MRF constraints based on
their positions. Rather than assume that the z(i)b are inde-
pendent as in (9), we apply an MRF so that the assignments
obey neighborhood constraints similar to [9],

p(Z) =
1

Z

[
B∏
b=1

Nb∏
i=1

V (z
(i)
b )

]
·
∏

((b,i),(d,n))∈E

V (z
(i)
b , z

(n)
d ), (17)

where V (z
(i)
b ) is the self potential, and V (z

(i)
b , z

(n)
d ) is the

neighbor potential,

V (z
(i)
b = m) = αbm, (18)

V (z
(i)
b , z

(n)
d ) =

{
γ1, z

(i)
b = z

(n)
d

γ2, z
(i)
b 6= z

(n)
d

. (19)



The set E contains all edges between neighbors, with each
node indexed by the pair (b, i). In this paper we use the six-
connected neighborhood, as shown in Fig. 3(b). Finally, Z
is the normalization constant. Since an MRF is introduced
on Z, there is no closed-form solution for inference.

4.2. Variational approximation to the posterior
We present a variational approximation to the posterior

p(X,Z|Y ) (see supplemental for derivation). Define the
approximate posterior q(X,Z), which factorizes by sample,

p(X,Z|Y ) ≈ q(X,Z) =

B∏
b=1

Nb∏
i=1

q(x
(i)
b , z

(i)
b ). (20)

The optimal variational distribution is obtained by iterat-
ing between updating the variational parameters hb,i,m,

∆b,i,m =
∑

((b,i),(d,n))∈E

ẑd,n,m, (21)

log gb,i,m = logαbm + ∆b,i,m log
γ1
γ2
, (22)

hb,i,m =
gb,i,m∑K
k=0 gb,i,k

, (23)

and the variational assignment probabilities,

ẑb,i,m =
hb,i,mp(y

(i)
b |z

(i)
b = m)∑K

k=0 hb,i,kp(y
(i)
b |z

(i)
b = k)

. (24)

In (21), ∆b,i,m is the soft number of neighbors of z(i)b as-
signed to component m. Finally, the variational posterior
q∗(x

(i)
b , z

(i)
b ) is equivalent to the FBM posterior with inde-

pendent z(i)b (as in Section 3.2), but with prior probabilities
as hb,i,m that are different for each sample i. The variational
approximation is summarized in Alg. 1.

4.3. Summary
A summary of the EM algorithm for FBM using MRF

is presented in Alg. 2. For initialization of background
and foreground DTs, we use an adaptive threshold scheme
where minimum variance and motion likelihood thresholds
(T and L) select patches for learning the initial DTs with
[23] (see supplemental). After initialization, EM is run on
all the patches. During EM, we assume that foreground DTs
should only model patches with motion (foreground motion
is always dynamic), while background DTs should model
motion and non-motion patches (background can be static
or dynamic). After EM converges, the segmentation is pro-
duced by assigning each video patch to the most likely mix-
ture component (either background or labeled foreground),
according to the posterior probability ẑb,i,m. Stopped ob-
jects are detected by identifying non-motion patches that do
not have high-likelihood under the background component.

Algorithm 1 Variational posterior assignments

1: Input: Set of video patches Y , FBM Θ.
2: Initialize hb,i,m = 1

K+1 , ∀{b, i,m}.
3: Using (24), calculate ẑb,i,m, ∀{b, i,m}.
4: repeat
5: for b = {1, . . . , B} and i = {1, . . . , Nb} do
6: {Update variational parameters of node (b, i)}
7: Using (21)-(24), update hb,i,m and ẑb,i,m, ∀m.
8: end for
9: until convergence of hb,i,m.

10: Output: variational parameters {hb,i,m}, assignment
probabilities {ẑb,i,m}.

Algorithm 2 Variational EM for FBM

1: Input: Set of video patches Y , number of foreground
components K, MRF parameters {γ1, γ2}.

2: Initialize FBM Θ = {{αb,Θb
0}Bb=1, {Θj}Kj=1}.

3: repeat
4: {Expectation Step}
5: Calculate variational approximation to {ẑb,i,m} us-

ing Algorithm 1.
6: for b = {1, . . . , B} and i = {1, . . . , Nb} do
7: Calculate the expectations in (10-12) for y

(i)
b and

each DT in {Θb
0,Θ1, . . . ,ΘK}.

8: end for
9: Calculate aggregate expectations (14), ∀b, ∀j.

10: {Maximization Step}
11: for j = {1, . . . ,K} do
12: Update foreground DT Θj with (15).
13: end for
14: for b = {1, . . . , B} do
15: Update background DT Θb

0 and αb with (16).
16: end for
17: until convergence
18: Output: background models {Θb

0}Bb=1, foreground
models {Θj}Kj=1, priors {αb}Bb=1.

5. Experiments and results
In this section, we present applications of FBM on back-

ground estimation and motion segmentation.

5.1. Datasets
To evaluate the performance of FBM, we collect a new

challenging dataset FBDynSyn, consisting of 7 videos con-
taining multiple foreground objects over a complex back-
ground (e.g. boats and people over water, fountains, and
trees), as depicted in Fig. 2. The videos are in grayscale
with varying sizes (average size of 160 × 304 × 316). We
annotated each video with a ground truth segmentation of
the foreground objects and background. We also tested our
algorithm on the most challenging video (in terms of quan-
titative measures) “Sailing02” from [4].



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
si

tiv
e

 R
a

te

Boat1Person2

 

 

FBM−0.988
BDTM3−0.938
GMM−0.894
PCA−0.689
DT−0.797
RKF−0.873

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
si

tiv
e

 R
a

te

Fountain1Person2

 

 

FBM−0.971
BDTM3−0.952
GMM−0.938
PCA−0.570
DT−0.748
RKF−0.908

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
si

tiv
e

 R
a

te

Sailing02

 

 

FBM−0.988
BDTM3−0.931
GMM−0.888
PCA−0.725
DT−0.832
RKF−0.673

Figure 4: The ROC curves for background estimation on two videos from FBDynScn and Sailing02 from [4]. The AUC for each method
is listed in the legend. The blue circle is the operating point of the FBM†.
†The FBM operating point does not lie on the ROC curve. The ROC curve is based on thresholding the log-likelihood of the background DT, whereas the
operating point of FBM is based on comparing the posterior probabilities of background and foreground segments.

AUC FPR
video FBM BDTM3 [4] GMM [27] PCA [4] DT [5] RKF [6] FBM BDTM3 [4] GMM [27] PCA [4] DT [5] RKF [6]
Sailing02 0.988 0.931 0.888 0.725 0.832 0.673 0.016 0.271 0.555 0.495 0.353 0.782
Boat1Person1 0.994 0.974 0.824 0.853 0.814 0.812 0.004 0.031 0.007 0.004 0.013 0.106
Boat1Person2 0.988 0.938 0.894 0.689 0.797 0.873 0.009 0.052 0.005 0.103 0.069 0.033
Fountain1Person2 0.971 0.952 0.938 0.570 0.748 0.908 0.034 0.073 0.175 0.847 0.518 0.332
Fountain2Person2 0.973 0.947 0.962 0.525 0.846 0.930 0.064 0.069 0.035 0.997 0.194 0.231
Person2Tree1 0.985 0.960 0.977 0.675 0.911 0.927 0.030 0.071 0.013 0.986 0.164 0.244
Boat2 0.989 0.977 0.784 0.971 0.917 0.707 0.004 0.007 0.110 0.005 0.014 0.250
average 0.984 0.954 0.895 0.715 0.838 0.833 0.023 0.082 0.129 0.491 0.189 0.283

Table 1: Background estimation results. The left side shows the AUC, while the right side is the FPR for TPR=0.90 (0.55 for Boat1Person1,
Boat1Person2, and Boat2). Bold values indicate the best performance on each video.

FBM DECOLOR[16]
video TPR FPR TPR FPR
Sailing02 0.968 0.040 0.947 0.164
Boat1Person1 0.973 0.019 0.967 0.007
Boat1Person2 0.919 0.022 0.977 0.018
Fountain1Person2 0.972 0.055 0.791 0.007
Fountain2Person2 0.892 0.038 0.946 0.086
Person2Tree1 0.953 0.056 0.967 0.017
Boat2 0.955 0.022 0.931 0.008
StopPerson1 0.945 0.026 0.642 0.003
average 0.947 0.035 0.896 0.039

Example of stop case

Table 2: Background estimation performance for FBM and DE-
COLOR at the operating point of the algorithms, and an example
of detecting a temporarily stopped object.

5.2. Experimental setup
For our FBM, we divide each video into spatiotemporal

overlapping patches with dimensions 10 × 10 × 15 (step:
5× 5× 10). The number of global foreground components
K is set according to the number of motion components
present in each video1. For the MRF, we use the neighbor-
hood shown in Fig. 3(b), and set log γ1

γ2
= 50. To segment

a video, an FBM with n = 10 is learned from the video
using the EM algorithm (Alg. 2). For the initialization pro-
cedure, we set the minimum variance threshold T = 1 and

1Similar background estimation results were obtained when setting
K = 1, which collapses all foreground motions into a single class.

the motion likelihood threshold L = 100.
We compare our FBM with several state-of-the-art meth-

ods in both background subtraction and motion segmenta-
tion2. For background subtraction, we compare with the
adaptive GMM of [27], which automatically selects the
number of components. We also consider the DT-based
method [5] (denoted as DT) using a patch size of 7× 7, and
the robust Kalman filter (RKF) [6] (both using n = 10).
From [4], we test the best performing adaptive background
DTM method with 3 components (denoted as BDTM3). We
also used the PCA model from [4] with patch size 7 × 7
and n = 10. We test DECOLOR [16], a recent moving ob-
ject detector that also runs in batch mode like FBM. Finally,
our dataset does not have a separate training video for each
scene. To make a fair comparison, for background models
that require training, we first train the model on the video,
and then run background subtraction on the same video.

For motion segmentation, we compare against the DTM
[8] with K + 1 components (the extra component is for the
background motion). We extend the DTM by adding the
same MRF constraints as the FBM. We also compare with
the temporal-switching LDT [28], again using K + 1 com-
ponents. Other parameter settings are the same as FBM.

To measure the accuracy of background estimation, ROC
curves are calculated by sweeping a threshold on the back-
ground score image (e.g., from the background component
in FBM), and calculating the true positive rate (TPR) and

2Note that these models perform either background subtraction or mo-
tion segmentation tasks, whereas our FBM performs both simultaneously.
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Figure 5: Example frames of background estimation using FBM and other methods. The results of FBM are based on the operating point
(Table 2). For the other methods, the thresholds are set to yield a TPR of 0.90 or 0.55 (see Table 1).

false positive rate (FPR) with respect to the ground-truth
background segment. The overall performance is measured
by the area under the ROC curve (AUC). The motion seg-
mentation results are evaluated using the Rand index (RI)
[29] to measure the percentage of agreement between the
ground-truth and segmentation masks.

5.3. Results on background estimation
Table 1 compares the AUC for FBM and the tested back-

ground subtraction methods. FBM has the highest average
AUC of 0.984, while the next best method BDTM3 has an
AUC of 0.954. Note that BDTM3 uses 3 background DT
components at each location, where as FBM uses only a
single background DT at each location. Despite this, FBM
is able to achieve higher AUC by also modeling the global
foreground motion. Fig. 4 shows the ROC curves for 3
videos. As the FPR is lowered, FBM typically maintains
a higher TPR than other methods, especially in the high
TPR regime (upper-right). Table 2 shows the performance
of FBM and DECOLOR at the operating point of the al-
gorithms. The operating point of FBM is typically in the
high TPR regime (average of 0.947) with a corresponding
low FPR of 0.0353. Compared to DECOLOR, FBM has
higher average TPR (0.947 vs. 0.896) while maintaining a
similar FPR (0.035 vs. 0.039). DECOLOR does poorly on a
few videos with complex backgrounds (Fountain1Person2)
or with stopped objects (StopPerson1).

Table 1 presents the FPR for a fixed TPR of 0.90 (or 0.55
for more difficult videos). For the same setting of TPR, our
FBM achieves the lowest average FPR of 0.023, compared
with other methods, e.g., 0.082 and 0.129 for BDTM3 and
GMM. Fig. 5 presents examples of background estimation

3The average TPR/FPR for FBM without MRF is 0.936/0.092.

on each video. Since FBM is a patch-based framework,
we do not get a fine-detailed foreground mask. FBM has
the least noise as compared to other methods, which some-
times learn portions of the background as foreground. For
BDTM3, the segmented foreground is typically larger than
the actual foreground, creating more false positives than
FBM. GMM obtains good details on the foreground mask,
but also has a significant amount of false positive noise.

5.4. Results on motion segmentation
Table 3 shows the Rand index results on motion seg-

mentation, while Fig. 6 presents examples of segmentation
masks for each video. FBM significantly outperforms other
motion segmentation methods with an average RI of 0.94
versus 0.76 and 0.51 for LDT and DTM. Even with an ex-
tra DT component, DTM is not able to model the complex
background as a single segment. Instead, it oversegments
the background and puts multiple foreground motions into
the same segment (e.g., Boats2Person2). LDT performs
well on some scenes where the background is homogeneous
(e.g., Person2Tree1), and thus can be modeled well with
one DT layer. However, LDT also fails on scenes with
complex backgrounds with different dynamics (e.g., Foun-
tain2Person2). In contrast, FBM can correctly segment both
the complex background and different foreground motions.

Finally, FBM can successfully segment stopped objects
(e.g., StopPerson1 in Fig. 6, ), whereas pure motion seg-
mentation methods, DTM and LDT, cannot segment these.

6. Conclusion
In this paper, we proposed a novel foreground-

background mixture model that jointly performs motion
segmentation and background estimation. We derive an
EM algorithm for estimating the parameters of FBM, and



Boat1Person1 Boat1Person2 Fountain1Person2 Fountain2Person2 Person2Tree1 Boat2 StopPerson1 average RI
DTM [8] 0.7030 0.4890 0.3638 0.3885 0.4325 0.5379 0.6716 0.5123
LDT [9] 0.9524 0.7021 0.7769 0.3833 0.8646 0.7986 0.8668 0.7635

FBM 0.9632 0.9428 0.9156 0.9388 0.9270 0.9610 0.9482 0.9424
Table 3: Motion segmentation results on the FBDynScn data set.

Boat1Person1 Boat1Person2 Fountain1Person2 Fountain2Person2 Person2Tree1 Boat2 StopPerson1

video

truth

FBM

DTM [8]

LDT [9]

Figure 6: Example frames of motion segmentation on each video in FBDynScn. Foreground segments are colored as red, green, or indigo,
while the background segment has no coloring. Stopped objects are colored yellow.

also derive a variational posterior for FBM with MRF con-
straints. Experiment results show that jointly estimating the
background and foreground segments with the FBM can
improve the accuracy of both background estimation and
motion segmentation, compared to state-of-the-art methods.
Once FBM is trained from a video, it can do online back-
ground estimation and motion segmentation on any new
video frames. Future work will consider online updating,
similar to [4], and automatically selecting the number of
components, e.g. using a variational Bayesian framework.
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