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Abstract

Many computer vision algorithms employ subspace
models to represent data. Many of these approaches ben-
efit from the ability to create an average or prototype for a
set of subspaces. The most popular method in these situa-
tions is the Karcher mean, also known as the Riemannian
center of mass. The prevalence of the Karcher mean may
lead some to assume that it provides the best average in all
scenarios. However, other subspace averages that appear
less frequently in the literature may be more appropriate for
certain tasks. The extrinsic manifold mean, the Ly-median,
and the flag mean are alternative averages that can be sub-
stituted directly for the Karcher mean in many applications.

This paper evaluates the characteristics and perfor-
mance of these four averages on synthetic and real-world
data. While the Karcher mean generalizes the Euclidean
mean to the Grassman manifold, we show that the extrinsic
manifold mean, the Lo-median, and the flag mean behave
more like medians and are therefore more robust to the pres-
ence of outliers among the subspaces being averaged. We
also show that while the Karcher mean and Lo-median are
computed using iterative algorithms, the extrinsic manifold
mean and flag mean can be found analytically and are thus
orders of magnitude faster in practice. Finally, we show
that the flag mean is a generalization of the extrinsic mani-
fold mean that permits subspaces with different numbers of
dimensions to be averaged. The result is a ”cookbook” that
maps algorithm constraints and data properties to the most
appropriate subspace mean for a given application.

1. Introduction

Many computer vision algorithms model collections of
data samples as subspaces. For example, the set of images
of a single object under different illuminations can be mod-
eled as an illumination subspace, and the subspace can be
estimated from a finite number of images. Alternatively,
the frames of a video can be viewed as data samples, and
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the video as a whole modeled as the subspace that spans
the observed frames. These are only two of many examples
of subspaces being used to model sets of high-dimensional
data; for more examples, see [1, 2, 8, 14, 16]. When collec-
tions of data are modeled as subspaces, a natural next step
is to compute averages of subspaces. For example, when
videos are modeled as subspaces, one task might be to clus-
ter subspaces using K-means to determine which videos are
similar; K-means, in turn, needs to compute averages of sets
of subspaces.

The best known method for computing averages of sub-
spaces is the Karcher mean [10], a.k.a. the Riemannian
center of mass. However, just as there are many ways to
select a prototype from a set of scalars, including the mean,
median or mode values, there are many ways to select a
prototype for a set of subspaces. This paper reviews four
such methods for selecting prototypes. In addition to the
well-known Karcher mean, it describes the extrinsic mani-
fold mean [14], the Lo-median [8], and the flag mean [6].
The four averages are interchangeable in the sense that they
can all compute an average subspace given a set of sub-
spaces. Thus, current applications that employ the Karcher
mean could substitute any of the other three methods in a
straightforward manner. The four averages, however, have
different mathematical properties which may make one per-
form better than another in any specific context.

The primary contribution of this paper is to analyze all
four averages with regard to three properties: (1) how they
behave in the presence of multiple underlying processes
and/or outliers, (2) their efficiency as a function of the num-
ber and similarity of samples, and (3) their generality, i.e.
whether or not all the subspaces must span the same num-
ber of dimensions (i.e. lie on a single Grassman manifold).
The analysis is performed on both synthetic and real data,
with K-means and prototype video selection as the guiding
applications. By analyzing averages in terms of these three
properties, we show that no single method is always best,
and produce a “cookbook” indicating how to select an aver-
age for any particular application.



2. Related Work: Subspace Averages

As mentioned above, this paper compares four methods
of computing an average or prototype for set of vector sub-
spaces. Generally, these methods are described as averaging
points on a Grassmann manifold, which is defined as the set
of all g-dimensional subspaces of an n-dimensional vector
space. In this paper, the vector space is R™, and the rel-
evant Grassmann manifold is denoted Gr(n, ¢). Points on
Gr(n, q) are equivalence classes of n x ¢ matrices, where
X ~Yif X =YU forsome U € O(q), the set of orthogo-
nal ¢ x ¢ matrices. Computations on Grassmann manifolds
are performed using orthonormal matrix representatives for
the points, so measures of distance must be orthogonally in-
variant. In this paper, subspaces, or Grassmann data points
will be denoted with square brackets like, [X] € Gr(n,q),
while matrices and the orthonormal bases for Grassmann
points will be denoted by capital letters like, X € R™*4,

2.1. The Karcher mean

Distances on a Grassmannian are measured by the length
of the shortest geodesic between two points. The canonical
metric, the geodesic distance based on arc length, measures
the distance between [X], [Y] € Gr(n, q) as d([X],[Y]) =
I8]|2, where © is the vector of ¢ principal angles between
the subspaces [X] and [Y] as discussed by Bjorck and
Golub [4]. The Karcher mean, [ux], is the intrinsic mean
on the Grassmann manifold because it is the point that min-
imizes the mean squared error using the canonical metric,

P

[ux] = argmin » d([X;],[u])*. Q)

[n]€Gr(n,q) i=1

The Karcher mean is most commonly found by using an
iterative algorithm like Newton’s method or first-order gra-
dient descent [I, 2]. These algorithms exploit the matrix
Exp and Log maps to move the data to and from the tangent
space of a single point at each step. A unique optimal so-
lution is guaranteed for data that lives within a convex ball
on the Grassmann manifold, but in practice not all data sets
satisfy this criterion [2, 10]. Using the geodesic distance
based on arc length, the maximum distance between two
points on Gr(n, q) is (7/2),/q, but as Begelfor and Werman
illustrated, the convexity radius is 7/4 [2]. This means that
if the point cloud being averaged has a radius greater than
7/4 the Exp and Log maps are no longer bijective, and the
Karcher mean is no longer unique.

The iterative nature of the Karcher mean algorithms
make them quite costly. First-order gradient descent and
Newton’s method algorithms typically report linear and
quadratic convergence, respectively [, 2, 7, 15]. However,
the number of iterations, Ny ., needed to find the Karcher
mean depends heavily on the diameter of the data set, d,
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Figure 1: Tterations needed to find the Karcher mean, [1x],
versus diameter of the data for different values of e.

and the error tolerance parameter, €, so that even with effi-
cient algorithms this calculation can be prohibitive for high-
dimensional image and video data.

Figure 1 shows the number of iterations required to find
the Karcher mean of 30 points from Gr(1000, 20) to within
the specified error tolerance as the diameter of the data be-
ing averaged grows. The diameter is measured as the fur-
thest distance between any two points using the geodesic
distance based on arc length. The maximum number of
iterations was set to 1000 so that the algorithm would
not run indefinitely. The complexity for our first-order
gradient descent implementation of the Karcher mean is
O (anQNdye), and Figure 1 shows that N, . can be quite
large if the data being averaged are far apart.

2.2. The L,-median

The Lo-median, [py,], is one of many ways of general-
izing the median for 1-dimensional data into higher dimen-
sions. It is referred to by many names including the spatial
median, the geometric median, the mediancentre, and con-
fusingly the L;-median [5, 9, 13]. By any name, the Lo-
median is the point that minimizes the sum of the distances
to the sample points, rather than the sum of the squares of
the distances. For subspace data it solves

P

[ur,] = argmin » d([Xi], [u]), )

[W]€Gr(n,q) =7

where again d([X;], [¢]) is the geodesic distance based on
arc length. As a direct generalization of the median for 1-
dimensional data, the Lo-median is robust to outliers [5].
That is to say, if the data being averaged comes from mul-
tiple underlying processes, [11.,] will better represent the
dominant process rather than the entire set of data. This
is in contrast to the behavior of the Karcher mean, which
represents the center of mass.

Methods for finding [ur,] also take advantage of the
matrix Exp and Log maps, and thus fall prey to the same



uniqueness condition as the Karcher mean. One such
method comes from Fletcher et al., and adapts the Weiszfeld
algorithm to Riemannian manifolds [8]. This algorithm is
also a gradient descent method, so while Figure 1 shows
data only for the Karcher mean, it can be assumed that the
Ly-median is similarly sensitive to data diameter and error
tolerance, and the complexity is also O (RPg*Ng.).

2.3. The extrinsic manifold mean

Srivastava and Klassen proposed the extrinsic mani-
fold mean, [pg], as an alternative to the Karcher mean in
2002 [14]. Given a set of points on Gr(n,q), the extrin-
sic mean is the point that minimizes the Frobenius norm
squared of the difference in projections of the Grassmann
points into the space of n x n matrices of rank ¢. That is,

P

[uE] = argmin dpr(1X3], (1), 3)

[N] €Gr(n,q) i=1

where d,r([Xi], [1]) = 272 | X, XT — pupT||p is the pro-
jection Frobenius norm, or projection F-norm, between the
points. In contrast to [ux] and [ur,], the extrinsic mean
can be found analytically as the solution to an eigenvalue
problem, and thus the complexity is O(n3) [12]. The flag
mean is a generalization of the extrinsic mean, so more of
the details will be included in Subsection 2.4.

2.4. The flag mean

As the most recent and least well-known of the sub-
space averages, the flag mean will be explained in more
depth. We begin with some necessary definitions. Let
Q = {q1,42,-..,qun} be an ordered set of integers such
that g3 < g2 < ... < qu. A flagin R™ oftype@isa
nested sequence of subspaces S; C So C -+ C Sy where
dim(S;) = ¢;. More background on flags and flag mani-
folds can be found in [11]. We describe a method for gen-
erating a flag that is central to a subspace point cloud. The
flag is central in the sense that the kth subspace within the
flag is the best k-dimensional representation of the data with
respect to a cost function based on the projection Frobe-
nius norm. We refer to the result as the flag mean, denoted
[ppr], where the double square brackets are meant to dis-
tinguish a flag from the single square brackets used for a
subspace.

Let {[X;]}[_, be a finite collection of subspaces of R™
such that X X; = I. Let é ={q,...,qp} be a collec-
tion of positive integers, and suppose that dim([X;]) = ¢;

fori = 1...P. We can consider {[X;]}[; to be a
point cloud in the disjoint union of a set of Grassmannians,
H@ GI'(?’L, qi)'

For this collection of subspaces we wish to find the one-
dimensional subspace [u(!)] € Gr(n, 1) that minimizes the
sum of the squares of projection F-norms between itself and

[X;] for i = 1...P. The projection F-norm loses its dis-
tinction as a metric when it is used to compare points that do
not live on the same manifold, because it is possible to have
dpr ([uM], [X;]) = 0 with [uM] # [X;]. However, there is
still merit in using it to measure the similarity between the
objects. Thus we aim to solve

arg min
(]

W1, [X5])2
;dpF([ I, [Xil) @

subjectto  uMTuM =1,

This optimization problem is recognizable as the one
solved by the extrinsic manifold mean, with the caveat that
the data points and the solution are not restricted to live on
a single Grassmannian. After finding the optimal [u(")], the
problem is extended to find a sequence of 1-dimensional
subspaces that optimize Equation 4 with additional con-
straints. By solving

arg min
[u(@)]

P
> dpr (], [X:])?

i=1

S ®)
subjectto  uTy) =1
uDTy®) =0 for k < j,

it is possible to find r ordered 1-dimensional subspaces,
{[u™], [u®], ... [u"]}, where r is the dimension of the
span of UZ | [X;]. These subspaces are then central to the
collection of points {[X;]}Z_,. From this sequence of mu-
tually orthogonal vectors, the flag mean is defined explicitly
as

lprl = Span{u(l)} C span{u(l),u@)} -

o, ©)

... Cspan{u®, ...

While the subspaces {[u(M], [uP], ..., [u()]} are de-
rived iteratively, they can actually be computed analyti-
cally. Edelman er al. provide the identity d,r([X], [Y]) =
| sin ©]2 as another way of computing the projection F-
norm between two points [7]. This equality and the
method of Lagrange multipliers lead to the computation of
{[u®], [u®)], ..., [u("]} as the left singular vectors of the
matrix X = [X;1]|Xs|...|Xp], where X, is an orthonor-
mal basis for [X;]. This algorithm for finding [, r] is pre-
sented in Algorithm 1. The complexity of this algorithm is
(’)(n(Zil ¢;)?). More details on the derivation and math-
ematical background of the flag mean can be found in [6].

2.5. Flag mean as generalized extrinsic manifold
mean

The cost function of the flag mean is the same as the
cost function for the extrinsic manifold mean. One sepa-
ration between the two comes from the relaxation of the



(a) Tracks labeled ‘ride-bike’

(b) Tracks labeled ‘carry’

(c) Tracks labeled ‘walk-group’

Figure 2: Still frames of tracks in three action classes from the Mind’s Eye data.

Algorithm 1 [, ([X1], ... [Xp])

Ensure: XX, =Ifori=1,...,P
Let X = [X1|X2| e |XP]
Let r = dim(span(UZ_; [X;]))
USVT = thin SVD(X),
such that U = [u™M[u®)] ... |u()]
[pr] = {[u®], [u®[u®], .. [u®]. . u]}

requirement that all subspaces be of the same dimension.
Requiring data to live on a single Grassmannian can be un-
desirably restrictive. For example, suppose subspaces are
being used to represent objects under a variety of illumina-
tion conditions. Belhumeur and Kriegman discovered that
the illumination space of an object is a convex cone that
lies near a low dimensional linear subspace [3]. However,
the dimension of that subspace depends on the number of
unique surface normals. Thus different objects may require
subspaces of different dimensions to fully capture variations
in lighting, and these subspaces cannot be directly averaged
by [us], [uk], or [uL,].

A typical workaround for this problem is to find the sub-
space in the data set with the largest dimension, and up-
project the rank-deficient data to its Grassmannian. For an
n x ¢ matrix X with dim(X) < ¢, let ULV be the thin
singular value decomposition of X. Then dim(UV7T) = ¢
and [UV 1] is the closest point to [X] on Gr(n, ¢). Unfortu-
nately this projection is not unique, and can create artifacts
if [UVT] is a point to be averaged. The flag mean can be
computed for subspaces of different dimensions, because
[ipr] is built one dimension at a time. Thus it avoids this
non-unique projection. For all three of the averages other
than the flag mean, this method for finding the closest or-
thonormal matrix is used to preprocess the video data in the
experiments of Subsection 3.3 & Subsection 3.4. We will
see in Figure 4a that this projection has a significant nega-
tive effect on the ability of the extrinsic mean to represent
the data.

3. Empirical evaluation

This section describes three experiments that were per-
formed to illustrate the characteristics of the various sub-
space averages. The first experiment finds the averages of
a synthetic 2-dimensional data set in an effort to visualize
how the different methods behave when a point cloud is not
tightly clustered or contains data generated by multiple pro-
cesses. The second experiment uses [uk], [tL,], ], and
[itpr] to identify exemplars from clusters of similar data that
have been grouped using a method that does not require av-
eraging. Each choice of prototype is then evaluated accord-
ing to whether or not it matches the dominant class of data
in its cluster. The third and final experiment uses the av-
erages to perform K-means clustering, and the results are
evaluated for cluster purity. The second and third experi-
ments are performed on noisy, real-world data.

3.1. Data

Three data sets are used to evaluate the subspaces av-
erages. The first, used in Subsection 3.2, is a collection
of 1-dimensional subspaces in R?, or points on Gr(2,1).
These lines were generated synthetically by two processes.
They come from normal distributions about two orthogonal
means with standard deviations of o = 0.2.

The data for prototype selection in Subsection 3.3 con-
sists of 2,345 short video clips extracted from larger and
longer outdoor videos collected as part of DARPA’s Mind’s
Eye project. The video clips — which we call tracks — were
automatically centered on moving objects, mostly people,
through background subtraction. However, the background
subtraction process is imperfect and sometimes only part of
the person or object is visible. All tracks are 48 frames long
(about 1.5 seconds) and are rescaled to a size of 32 x 32
pixels. The tracks were manually assigned labels based on
the action they depict. There are a total of 77 unique la-
bels. Figure 2 shows examples of frames from tracks la-
beled “ride-bike”, “carry”, and “walk-group”. The largest
number of tracks associated with a label is 637 (“walk”™)

and the smallest is 1 (“climb,” “shove,” etc.).



The third data set is a subset of the second, and is used for
K-means clustering in Subsection 3.4. Some classes are in
the second data set are singletons, making it poorly suited
to K-means clustering. It was pruned to 601 tracks with
17 unique labels. In this subset, the largest class has 187
members and the smallest has 3. To represent the videos
as subspaces, the frames of each track are vectorized and
concatenated into a matrix of size 1024 x 48. The Grass-
mann point associated with each track is the span of the col-
umn space of its matrix. One might expect that the result-
ing data points would live on a single Grassmann manifold;
i.e. Gr(1024,48). Often, however, the matrices are not full
rank. Physically, this means that some of the frames in the
track are linearly dependent. Therefore, apart from the flag
mean which can be computed for subspaces of variable di-
mensions, we replace rank-deficient samples with the near-
est point on Gr(1024, 48) as described in Subsection 2.5.

Additionally, these experiments use a single subspace,
[tpr], from within the flag [, 7] as the subspace average,
because using the full flag would require different measures
of distance and would make the results incomparable. The
subspace chosen as [p,r] in each experiment is the one
that lives on the same manifold as the other averages, i.e.
Gr(2,1) for the first experiment, and Gr(1024,48) for the
second two. Note that a subspace of the appropriate size
will always be contained within [, 7], and that it can serve
as a direct replacement for the others in practice.

3.2. Experiment 1: Data fitting

The purpose of this experiment is to gain intuition about
the behavior of the averages. The data set contains points
generated from two processes, which are normal distribu-
tions centered around the axes. The first process generates
the points about [0, 1]7. There are 30 points from this dis-
tribution with 0 = 0.2. The second process creates points
about [1,0]7 with & = 0.2. Figure 3 shows the behavior
of the subspace averages as points from the second process
are added to the data set. For this synthetic data, the points
are all subspaces of the same dimension. Thus the extrin-
sic mean and the flag mean produce the same solution. In
Figure 3 they are both represented by the green line.

In agreement with our intuition, [px| behaves like the
center of mass. The introduction of even a small number
of points from the second process pulls [px] to the fringe
of the data generated by the first process. It appears to best
represent the entire set of data, not just the points from one
process. If all the data is valid for the task at hand, this point
is the one that truly minimizes the mean squared error.

The other three averages are more resistant to the intro-
duction of points around the horizontal axis. They appear to
better represent the larger cloud of points, which were gen-
erated by the first process. This agrees with what one would
expect from a robust average like the Lo-median. The flag
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Figure 3: Behavior of the flag and extrinsic means (green),
the Karcher mean (red), and the Ly-median (blue), as points
from the second process are added to the data set.

mean and the extrinsic mean are mathematically not gen-
eralizations of a median. However, the use of the projec-
tion F-norm allows them to imitate that behavior. Using
|| sin ©]|2 in the cost function gives large angles less weight
than small ones. For the resulting averages, this translates
into points that approximate medians by paying more atten-
tion to the data that is tightly clustered than the points that
are far away. If the data from the second process in Figure 3
is interpreted as noise, [upr], [14£], and [uL,] do a better job
of representing the relevant data.

3.3. Experiment 2: Prototype selection

Figure 3 shows that the Lo-median, extrinsic mean and
flag mean are more robust to outliers than the Karcher, at
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Figure 4: Results of the Experiment 2: Prototype selection.

least in theory. But real data is never as clean as a theoretical
model. The second experiment tests all four means on the
task of selecting prototypes from noisy sets of real tracks,
while also allowing us to measure the cost of computation
and the effects of rank deficient data. On each trial, the
system is given a set of similar tracks, and computes the
means of the set. It then selects the closest sample to the
mean as a prototype. Since the goal is to find prototypes that
represent the set well, an automatically selected prototype is
considered ‘correct’ if the action label associated with the
prototype is the most common action label in the set, and
‘incorrect’ otherwise. The quality of a mean is measured by
how often it predicts a correct prototype.

Some methodological details. First, the Karcher mean
and Lo-median are sensitive to how similar the samples be-
ing averaged are to each other. We therefore formed sets of
similar tracks by clustering. To avoid interactions between
the prototype selection method and the clustering algorithm,
we clustered with a method that does not require computing
means, namely agglomerative clustering with Ward’s link-
age. Second, the Karcher mean and the L,-median require
an error tolerance threshold to determine convergence. We
tested them with e = 0.01 radians to achieve our results.

Figure 4a illustrates how often the prototype’s label
matches the label of the dominant action in a cluster. We
see that when the number of clusters is small, and thus the
number of samples per cluster is high, the flag mean (green)
outperforms the others, followed by the Lo-median (red).
We believe this is because large clusters contain more out-
liers. As the number of clusters grows, the accuracy of each
mean increases and they all converge. This is consistent
with there being fewer outliers. When the number of clus-
ters approaches 350, there are on average only 7 tracks per
cluster, making the choice of prototype less difficult. Near
this point all four methods converge in accuracy. One con-
clusion that these results suggest is that the flag mean and
the Lo-median do a better job of finding the dominant action

in a cluster when there are more tracks per cluster. When the
clusters have fewer actions and thus presumably more pure,
all four means perform comparably.

Figure 4a also shows that the flag mean significantly out-
performs the extrinsic manifold mean when the number of
clusters is small. This might seem counter-intuitive, since
both means minimize the sum of the squared sines of the
principal angles. Some of the video tracks generate rank de-
ficient matrices, however. In the case of the extrinsic man-
ifold mean, these data samples have to be up-projected, as
described in Section 2.5. This introduces error and makes
the extrinsic manifold mean less accurate. The flag mean
does not require this step, leading to a more accurate mean.

Figure 4b shows the total time needed to compute the
mean of all clusters versus the number of clusters used.
The number of clusters in a trial ranged from 50 to 350
in increments of 50. The experiment was run with Matlab
code timed by the computer’s wall clock, but even with that
caveat the differences are meaningful. On average, it took
0.50 seconds to compute the flag mean for a single cluster,
1.40 seconds for the extrinsic manifold mean, 55.16 sec-
onds for the Ly-median, and 63.37 seconds for the Karcher
mean. To compute the means for all the clusters in a trial
took on average 66.07 seconds for [, r], 235.76 seconds
for [pg], 7.85 x 102 seconds or 2.18 hours for [ur,], and
8.58 x 10? seconds, or about 2.38 hours for [ x].

One point of interest in Figure 4b is how the time needed
to compute the extrinsic mean for all clusters increases as
the number of clusters grows, in contrast to the behavior
of the flag mean. The complexity of the eigenvector de-
composition used to find [ug] is O(n?), and is indepen-
dent of the number of samples. However, since the ambient
space here is R19%4, repeating that computation 350 times is
costly. The complexity of the flag mean, O(“(Zil 4)?),
depends on the ambient dimension, the number of samples,
and the dimension of the sample subspaces. If the num-
ber of samples per cluster was constant as the number clus-
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Figure 5: Results of Experiment 3: K-means clustering.

ters increased, the total time for the flag mean would be
much closer to that of the extrinsic mean. Furthermore, if
S 7. ¢i > n, the SVD in Algorithm 1 can be replaced with
an eigenvector decomposition to reduce the cost.

3.4. Experiment 3: K-means clustering

The second task on real data is K-means clustering. K-
means is a well-known algorithm that iteratively clusters
data by computing the means of sets of samples and then
re-assigning every sample to the nearest mean. As a re-
sult, it matters both how accurate the computed mean is and
how quickly it can be computed. The first step of K-means
initializes cluster centers to randomly chosen samples from
the data set. Distances are then calculated between every
vector space and each cluster center, and subspaces are as-
signed to the closest center. In the second step, means are
re-calculated from the vector spaces (i.e. data points) as-
signed to each cluster, distances are calculated between the
means and the spaces, and each point is re-assigned to the
nearest cluster center mean. We allow Step 2 to iterate un-
til the calculation of a new mean does not change cluster
membership. We measure the quality of a cluster in terms
of its label purity. For example, if all the samples in a cluster
share the same label, its purity is 100%; if half the samples
share a label, its purity is 50%. In general, if there are N
samples in a cluster, the lowest possible purity is %

In Figure 5a, we see the cluster purity for the K-means
clusters made using [p,r], [K], [t1,], and [pg]. For this
task, the error tolerance was set at ¢ = 0.1 radians, because
the tolerance used in Experiment 2 was computationally in-
feasible. The clustering was run 10 times for each value of
K to get the data displayed. The cluster purity is low for all
of the subspace means, indicating that the data set is chal-
lenging. The highest purity for a single cluster was 60%,
achieved by the Karcher mean when K was 20. The highest
average purity for a single value of K was 43.4%, reached

by the Lo-median with K= 15. It makes sense that the best
results were achieved for K values of 15 and 20, because
there are 17 unique labels in the data set.

Figure 5b shows the total time required to compute the
means of each cluster until the K-means algorithm has con-
verged. The time is almost two orders of magnitude bigger
for the Karcher mean and the Lo-median than the extrinsic
mean and the flag mean. On average, creating all K means
for one iteration took 7.68 seconds for [u, ], 13.92 seconds
for [1x], 258.62 seconds for [px], and 294.48 seconds for
[1r,]. The difference in time between the iterative meth-
ods and the closed form ones decreases as the number of
clusters grows. One interpretation of this trend is that as the
average number of tracks in a cluster shrinks, the diameter
of the point set on the Grassmann manifold likely does as
well. This in turn speeds up the convergence of the Karcher
mean and L,-median algorithms as we saw in Figure 1.

Overall the Ly-median appears to have a slight edge in
terms of accuracy, as one might expect from a robust av-
erage on a messy data set. However, the average purity of
each method for each value of K is within the error bars of
the others. The greatest difference comes from the speed
with which we obtain these comparable results. The ex-
trinsic mean and the flag mean far out-stripped the iterative
methods. In fact, the total time for the K-means algorithm
to converge was on the order of one day per trial for the
Karcher mean and Ly-median, whereas the analytical meth-
ods could complete one trial in tens of minutes.

4. Conclusion

This paper explores the utility of four subspace averages.
Each method has advantages in the right context, but the Lo-
median, the extrinsic mean, and the flag mean have been
overshadowed by the Karcher mean in the literature. Build-
ing an intuition about the properties of each mean allows us
to choose the appropriate representation for an application.



Model All Data Model Dominant
Process
Speed is less Karcher mean Lo-median
important
Speed is more ? flag mean
important

Table 1: Mean selection cookbook.

When the vector subspaces being averaged span the
same number of dimensions, are close together, and are
equally reliable, all of the subspace averages provide a sim-
ilar solution, as in Figure 3a. However, without these ideal-
ized properties, a choice of representation must be made. In
a scenario where the data are subspaces of variable dimen-
sions, the flag mean is the only method that can directly av-
erage the subspaces; the other averages require some form
of non-unique projection as a pre-process.

If we assume that the dimension of the subspaces is the
same, the choice becomes one of application. For tasks
where data is generated by a single process and the subspace
dimension is low or time is not an issue, the Karcher mean
is the appropriate choice. It is the sole average that mini-
mizes the mean squared error using the intrinsic metric of
the Grassmann manifold. When data contains outliers or is
generated by a mixture of processes, on the other hand, the
other averages do a better job of modeling the dominant pro-
cess. In particular, the Lo-median is a true generalization of
a median. It is robust to outliers, and like the Karcher mean
employs the intrinsic distance of the Grassmann manifold.

If time is a factor, the extrinsic mean and the flag mean
can approximate the Lo-median at a fraction of the cost.
The flag mean can provide the same result as the extrinsic
mean whenever the extrinsic mean is applicable. However,
flag mean’s ability to accommodate data without additional
projection can lead to a more accurate representation as we
saw in Figure 4a and the flag mean can be computed more
quickly as shown in Figure 4b, thus it is a better choice.

Table 1 summarizes the scenarios in which each sub-
space average is most appropriate. There is no fast ap-
proximation of the Karcher mean currently in the literature,
so the bottom left box remains empty. It is important to
note that the choices made in Table | are based on the cost
functions being minimized by the averages. Our experi-
ments support these claims, but the claims themselves are
based on mathematical properties. Our experiments simply
confirm what the mathematics say. All Matlab code and
experimental data from this paper is publicly available at
www.cs.colostate.edu/~vision/summet.
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