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Abstract

This paper presents an improvement of the J-linkage al-
gorithm for fitting multiple instances of a model to noisy
data corrupted by outliers. The binary preference analysis
implemented by J-linkage is replaced by a continuous (soft,
or fuzzy) generalization that proves to perform better than
J-linkage on simulated data, and compares favorably with
state of the art methods on public domain real datasets.

1. Introduction

A widespread problem in Computer Vision is estimat-
ing the parameters of mathematical models from a set of
observed data that may be contaminated with noise and out-
liers. When multiple instances of the same structure are
present in the data, the problem becomes challenging, as
it is a typical example of a chicken-and-egg dilemma: in
order to estimate models one needs to first segment the data,
and in order to segment the data it is necessary to know the
models associated with each data point. Moreover, the pres-
ence of multiple structures strains robust estimation, which
have to cope with both gross outliers and pseudo-outliers (i.e.
“outliers to the structure of interest but inliers to a different
structure” [15]). The main challenge is therefore the simul-
taneous robust estimation of both segmentation and models
without knowing in advance the correct number of models.
This issue is ubiquitous and can be encountered in many
applications, as in homography estimation, or in multi-body
segmentation, just to name a few. Many solutions have been
proposed, which will be discussed in Sec. 1.1. In this paper
we improve the J-Linkage approach [20], that has proven
successful in several applications [5, 6, 19, 16, 21]. In par-
ticular, we propose a continuous (or “soft”) relaxation of the
binary, winner-take-all approach followed by J-linkage. This
new algorithm, called T-linkage, will be shown to perform
better than J-linkage on some simulated data (Sec. 3) and
will be compared against state-of-the art methods on publicly
available real datasets.

1.1. Related work

The existing methods aimed at fitting multiple models
can be divided in parametric methods and non parametric
ones. Within the first, mode finding in parameter space and
Randomized Hough Transform (RHT) [26] cope naturally
with multiple structures, but cannot deal with high percent-
age of gross outliers, especially as the number of models
grows and the distribution of inliers per model is uneven.

Among the non parametric methods one of the most pop-
ular paradigms is the one based on random sampling typified
by RANSAC and related multi-model estimators like Multi-
RANSAC [30] and FLoSS [8]. The latter, for example,
is an iterative method that constructs models similarly to
RANSAC, but it considers them all simultaneously.

Somehow orthogonal to the consensus analysis (analyz-
ing the distribution of residuals per each model) is the pref-
erence analysis, introduced by RHA [29], that consist in
inspecting the distribution of residuals of individual data
points with respect to the models. In the same spirit of RHA,
J-Linkage [20] avoids a consensus oriented approach in fa-
vor of working in the preference space. J-Linkage adopts a
conceptual representation of points: each data point is repre-
sented with the characteristic function of the set of models
preferred by that point. Multiple models are revealed as
clusters in the conceptual space.

Along the same line, [1] presented a method where a point
is represented by the permutation that arranges the models in
order of ascending residuals. A kernel is then defined, based
on this representation, such that in the corresponding Repro-
ducing Kernel Hilbert Space inliers to multiple models and
outliers are well separated. This allows to remove outliers,
then the clean data is over-clustered with kernel-PCA and
spectral clustering and the resulting structures are merged
with a sequential ad-hoc scheme that incorporates model
selection criteria. In [2] this last stage has been refined with
kernel optimization. Residual information is also exploited
in [11], a single-model estimation technique based on ran-
dom sampling, where the inlier threshold is not required.
The representation of points by a permutation of models is
also exploited in [28] by QP-MF a quadratic programming
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aimed to maximize mutual preferences of inliers.
A model selection approach is taken in [13, 3, 9, 10, 7],

where the cost function to be minimized is composed by
a data term that measures goodness of fit and a penalty
term which weighs model complexity (see e.g. [22]). So-
phisticated and effective minimization techniques such as
SA-RCM [10], ARJMC [9] and PEaRL [7] have been pro-
posed. The latter, for example, optimize a global energy
function that balances geometric errors and regularity of
inlier clusters, also exploiting spatial coherence.

A recent direction of investigation focuses in particular on
subspace segmentation [27, 12, 4]. Local subspace affinity
(LSA) [27] is an algebraic method that uses local information
around points in order to fit local subspaces and to cluster
points using spectral clustering with pairwise similarities
computed using angles between the local subspaces. Ag-
glomerative Lossy Compression (ALC) [12] is a bottom up
clustering algorithm that aims at segmenting the data mini-
mizing a coding length needed to fit the points with a mixture
of degenerate Gaussians up to a given distortion.

SSC [4] exploits sparse representation for segmenting
data. Since high dimensional data can be expressed as linear
combination of few other data points, SSC use the sparse
vectors of coefficients of these linear combinations as a con-
venient conceptual representation of points. Then spectral
clustering is performed for segmenting data in this concep-
tual space.

2. Method

The proposed method starts, as J-Linkage [20], with ran-
dom sampling: m model hypotheses H = {hj}j=1...m are
generated by drawing m minimal sets of data points nec-
essary to estimate the model, called minimal sample sets
(MSS).

When the pool of hypotheses has been generated, the
conceptual space for representing cluster of points can be
defined. While in [20] each data point is represented by
the characteristic function of the set of models it prefers,
we propose to exploit a more general conceptual space for
depicting point preferences.

2.1. Conceptual space

In J-Linkage at first the consensus set (CS) of each model
is computed as in RANSAC. The CS of a model is the set
of points such that their distance from the model is less
than a threshold ε ∈ R. In this way each data point x can
be seen as its preference set (PS), the set of models it has
given consensus to, or equivalently it can be thought as the
characteristic function on the hypothesis space H:

χ(h) =

{
1 se d(x, h) < θ
0 otherwise. (1)

Note that the PS encodes the same information of CS, but
with the roles of data points and models reversed. This is
the key idea of the algorithm: rather than taking models
and see what points match them, J-linkage uses the models
each point matches to determine which points belong to the
same cluster. As a result the conceptual space adopted is
{0, 1}H = {χ : H → {0, 1}}.

T-Linkage generalizes this idea introducing a relaxation
of the binary PS: the preference function of a point (PF).
Each data point is described by a function φ taking values
in the whole closed interval [0, 1] and not only in {0, 1}. In
this way the conceptual space is generalized from the set of
characteristic functions to [0, 1]H = {φ : H → [0, 1]}, and
we are allowed to express more accurately the preferences
of a point integrating more specific information on residu-
als. Please note how this parallels the difference between
RANSAC and MSAC [23], if CS is considered.

In practice, the idea is to mitigate the truncating effect of
threshold in (1) defining the PF of a point x as:

φ(h) =

{
e−d(x,h)/τ if d(x, h) < 5τ
0 if d(x, h) ≥ 5τ .

(2)

The time constant τ plays the same role of the inliers thresh-
old ε , however, compared to the discrete case, the threshold
defined by (2) is less critical since it replaces the abrupt
truncation in (1) with an exponential decay. Please note that
setting to zero the residuals smaller than 5τ is quite natu-
ral since for x > 5τ the function e−x/τ can be considered
almost constant, with variations that do not exceed 0.7 %.

Observe that, since the hypothesis space H is finite, both
the conceptual space described above can be embedded into
vectorial spaces. As {0, 1}H ' {0, 1}m, PS can also be
conceived as binary vector, while, since [0, 1]H ' [0, 1]m,
PF can be figured as vector in the m-dimensional unitary
cube. The rationale beyond this construction is that the i-th
component (p)i of the preference function p of a point x
expresses with a vote in [0, 1] the preference granted by x
to the hypothesis model hi. For simplicity sake we identify
these functions with their images and adopt this vectorial
interpretation in the rest of the paper.

2.2. T-Linkage clustering

J-linkage [20] extracts models by agglomerative cluster-
ing of data points in the conceptual space, where each point
is represented by the function of its preference. The general
agglomerative clustering algorithm proceeds in a bottom-
up manner: starting from all singletons, each sweep of the
algorithm merges the two clusters with the higher similar-
ity. For this purpose we need at first to define a suitable
conceptual representation for clusters and then we have to
endow the conceptual space with an appropriate notion of
similarity. J-Linkage accomplishes these two tasks relying
on the set-interpretation of {0, 1}m. The preference set of



T-Linkage J-Linkage

Space [0, 1]m {0, 1}m
Cluster min PF

⋂
PS

Similarity Tanimoto Jaccard

Table 1: The differences between T-Linkage and J-Linkage

a cluster is defined as the intersection of preference set of
its points. The similarity between two clusters is computed
as the Jaccard distance between their PS. Given two sets A
and B, the Jaccard distance is

dJ(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
. (3)

The Jaccard distance measures the degree of overlap of the
two sets and ranges from 0 (identical sets) to 1 (disjoint sets).
These notions can be extended and made apt to the contin-
uous space [0, 1]m. The preference function of a subset of
data point S is defined vectorially as follows. If S = {x} the
preference function of S is simply the preference function
of x, denoted by qx, otherwise the preference function of S
is a vector p ∈ [0, 1]m such that its i-th component is

(p)i = min
x∈S

(qx)i. (4)

The similarity measure in [0, 1]m is provided by the so called
Tanimoto distance [18] (hence the name T-linkage):

dT (p, q) = 1− 〈p, q〉
‖p‖2 + ‖q‖2 − 〈p, q〉

, (5)

here with the notation 〈·, ·〉 we indicate the standard inner
product of Rm and with ‖ · ‖ the corresponding induced
norm. The Tanimoto distance ranges in [0, 1] and it is simple
to show that ∀p, q 6= 0 ∈ [0, 1]m

dT (p, q) = 0 ⇐⇒ p = q, (6)
dT (p, q) = 1 ⇐⇒ p ⊥ q. (7)

The main differences between the conceptual space adopted
by T-Linkage and J-Linkage are summarized in Table 1.

Please observe that if we confine ourselves to the space
{0, 1}m the Tanimoto distance coincides with the Jaccard
one, and also the definition of PF of a cluster is identical to
the one proposed for preference set.

In the continuous case, as in its discrete counterpart, the
cutoff value is set to 1, which means that the algorithm will
only link together elements whose preference functions are
not orthogonal. As a consequence

• for each cluster there exist at least one model for which
all the points have expressed a positive preference (i.e.,
a model that fits all the points of the cluster)

• it is not possible that two distinct clusters grant a pos-
itive preference to the same model (otherwise they
would have been linked).

Each cluster of points defines (at least) one model. If more
models fit all the points of a cluster they must be very similar.

Agglomerative clustering algorithms in principle fit all
the data: bad models must be filtered out a-posteriori (as will
be discussed in the next section). Finally, the model for each
cluster of points is estimated by least squares fitting.

2.3. Outliers rejection

Following the idea of MINPRAN [14] we make the mild
assumption that outliers have a uniform distribution and com-
pute the probability that k outliers by coincidence define a
model as α(k) = 1−F(k;n, p) where F is the binomial cu-
mulative distribution function, n is the total number of points
and p is the ratio between the inlier threshold and the range
of the absolute residual of outliers (estimated with Monte-
Carlo simulation). Thus, based on the observation that large
clusters of outliers are very unlikely, we can assume that the
smallest inlier structure have a cardinality significantly larger
than the largest outliers cluster. In practice, this translates
into the following rejection criterion:

• sort the clusters by cardinality, add one dummy cluster
with the cardinality of the MSS at the end (to cater for
the outliers-free case)

• retain as inliers all those clusters that are large enough
to have a negligible probability α(k) of being coinci-
dences (we used k = α−1(0.01))

• among the remaining clusters find the point where the
cardinality drops, by seeking the largest difference;
clusters below that point are rejected as outliers.

This strategy is far from perfect: small clusters of inliers
will be inevitably filtered out. T-linkage is agnostic about
the outliers rejection strategy that comes after; depending on
the application, different rejection criteria can be adopted.
This one, however, proven sufficiently powerful in our ex-
periments, as will be reported in the next section.

A final remark concerns the sampling strategy. In this
paper since the data we are dealing with have a geometric
nature, we gain some benefits (see Fig. 1) by introducing
a locality bias. In particular, we adopt a mixed sampling
strategy, combining uniform sampling with local sampling
for selecting neighboring points with higher probability. In
this way we are able to exploit local information and at the
same time to explore hypothesis space.

T-Linkage is summarized as shown in Algorithm 1:

3. Experiments with simulated data
In this section we aim at characterizing the performances

of T-linkage with respect to J-Linkage on simulated data



(a) Uniform sampling (b) Localized sampling

Figure 1: At equal number of hypotheses, localized sampling
helps in producing more accurate results.

Algorithm 1 T-Linkage

Input: the set of data points

Output: clusters of point belonging to the same model

Put each point in its own cluster and compute their PF
while (∃ PF not orthogonal) do

Find p, q : dT (p, q) = minr,s dT (r, s).
Replace these two cluster with the union of the two

original ones and compute the PF of this new cluster
end while
Outliers rejection
Fit models to inliers clusters

(Fig. 2). The experimental results will confirm the benefits
of working with continuous values rather than operating
with hard thresholding: T-linkage takes advantage of the
more expressive representation of points both in term of
misclassification error and robustness to outliers.

 

 

Figure 2: Star5 data consisting of 250 points on five lines
forming a star with added noise, as in [20].

We first compare the performances of J-Linkage and T-
linkage on fitting lines to the Star5 data (Fig. 2) using the
misclassification error (ME), defined as follows:

ME =
# misclassified points

# points
. (8)
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Figure 3: Misclassification errors as functions of inlier
thresholds. The misclassification error committed by J-
Linkage and T-Linkage on Star5 is reported as a function
of their corresponding threshold parameters. We have set
θ =

∫ 5τ

0
e−

x
5τ dx so that the area under the two voting func-

tion is the same.

where a point is misclassified when it is assigned to the
wrong model, according to the ground-truth.
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Figure 4: Misclassification error in presence of outliers in cir-
cle fitting. For each outliers level the corresponding misclas-
sification error is reported for both J-Linkage and T-linkage.

The results can be appreciated in Fig. 3 where the corre-
sponding ME is reported as a function of threshold param-
eters for both J-Linkage and T-linkage. The advantages of
T-linkage over J-linkage are twofold. On the one hand T-
linkage reaches a lower ME, thereby obtaining a more refined
clustering. On the other hand, the soft threshold parameter τ
is much less critical compared to the inlier threshold ε: the
error function for T-linkage presents a larger plateau where
for a large interval of τ T-linkage obtains values near the
optimum.

The superior performance of T-linkage is due to the more



 

 

 

 

(a) 60% outliers
 

 

 

 

(b) 80% outliers
 

 

 

 

(c) 100% outliers

Figure 5: Circle fitting: comparison between J-Linkage (left) and T-linkage (right) for different levels of outliers’ contamination.
Note that J-Linkage is not able to find all the models, whereas T-linkage always estimates the correct models. This figure is
best viewed in color.

expressive representation provided by the continuous con-
ceptual space of points in proximity of models intersections,
with respect to the binary classification of inliers adopted by
J-Linkage.

We also compare J-Linkage and T-linkage on data con-
tamined by to gross outliers. For this purpose we address
the problem of circle fitting taking into account different
levels of outliers as shown in Fig. 5. Even if J-Linkage is
– in general – very robust to outliers, in some challenging
cases, as the one considered here, it fails in finding the cor-
rect estimate of models. In particular it finds only three of
the four circles present in the ground truth. On the contrary
T-linkage can successfully handle the outliers finding all the
models and giving rise to a more accurate segmentation as
corroborated by the ME reported in Fig. 4.

4. Experimental results with real data

In this section we aim at benchmarking T-linkage on
some real datasets that have been used in the literature. In
particular, we refer to the two-views experiments reported in
[25], dealing with fitting multiple homographies and multiple
fundamental matrices, and to the image sequences used in
[4], dealing with segmenting multiple motions in video.

4.1. Two-views segmentation

The datasets used in these experiments consist of match-
ing points in two uncalibrated images with gross outliers. In
the first case (plane segmentation) the (static) scene contains
several planes, each giving rise to a set of point correspon-
dences described by a specific homography. The aim is to
segment different planes by fitting homographies to subsets
of corresponding points.

In the second case (motion segmentation) the setup is
similar, but the scene is not static, i.e., it contains several
objects moving independently each giving rise to a set of
point correspondences described by a specific fundamental
matrix. The aim is to segment the different motions by fitting

fundamental matrices to subsets of corresponding points.
Using the same data as [10] we are able to compare

directly to SA-RCM [10] and indirectly to ARJMC [9],
PEarL [7], QP-MF [28], and FLoSS [8]. The figures regard-
ing all methods but T-linkage are taken from [10]. All meth-
ods, including T-linkage and J-Linkage, have been tuned
separately on each dataset for best performance.

PEARL QP-MF FLOSS ARJMC SA-RCM J-Lnkg T-Lnkg

johnsona 4.02 18.5 4.16 6.48 5.90 5.07 4.02
johnsonb 18.18 24.65 18.18 21.49 17.95 18.33 18.33
ladysymon 5.49 18.14 5.91 5.91 7.17 9.25 5.06
neem 5.39 31.95 5.39 8.81 5.81 3.73 3.73
oldclassicswing 1.58 13.72 1.85 1.85 2.11 0.27 0.26
sene 0.80 14 0.80 0.80 0.80 0.84 0.40

Mean 5.91 20.16 6.05 7.56 6.62 6.25 5.30
Median 4.71 18.32 4.78 6.20 5.86 4.40 3.87

Table 2: Misclassification error (%) for two-view plane
segmentation.

PEARL QP-MF FLOSS ARJMC SA-RCM J-Lnkg T-Lnkg

carsturning 13.08 9.72 19.07 15.53 10.93 17.32 16.68
carsbus 9.36 11.17 18.44 12.81 8.03 19.54 17.97
biscuitbookbox 4.25 9.27 8.88 8.49 7.04 1.55 1.54
breadcartoychips 5.91 10.55 11.81 10.97 4.81 11.26 3.37
breadcubechips 4.78 9.13 10.00 7.83 7.85 3.04 0.86
breadtoycar 6.63 11.45 10.84 9.64 3.82 5.49 4.21
carchipscube 11.82 7.58 11.52 11.82 11.75 4.27 1.81
cubebreadtoychips 4.89 9.79 11.47 6.42 5.93 3.97 3.05
dinobooks 14.72 19.44 17.64 18.61 8.03 17.11 9.44
toycubecar 9.5 12.5 11.25 15.5 7.32 5.05 3.03

Mean 8.49 11.06 13.09 11.76 7.55 8.86 6.20
Median 7.99 10.17 11.49 11.39 7.58 5.27 3.21

Table 3: Misclassification error (%) for two-view motion
segmentation.

As far as the plane segmentation is concerned, we used
DLT for hypothesis generation and Sampson distance for
computing the residual. The results are reported in Table 2
in which for every sequence the corresponding misclassifica-
tion error obtained by each method is indicated. As can be



(a) jhonsona (b) neem

Figure 6: Sample T-linkage results in two-view plane seg-
mentation (point membership is color coded, points marked
in red are rejected as outliers)

(a) breadcubechips (b) cubebreadtoychip

Figure 7: Sample T-linkage results in two-view motion seg-
mentation (point membership is color coded, points marked
in red are rejected as outliers)

appreciated, T-linkage is very accurate, achieving the best
ME in 5 out of 6 cases and attaining the lowest average and
median ME.

In Fig. 6 we present a two samples results obtained by
T-Linkage. In particular, in Fig. 6a we can observe that
the points on the stair wall are rejected as outliers even if
they belong to a plane. This is due to our outliers rejection
scheme that consider as outliers clusters with cardinality
close to minimum sample set.

For the two-view motion segmentation problem we con-
sider the AdelaideRMF [25] dataset and additional se-
quences from the Hopkins 155 [24], as in [10]. Fundamental
matrices were computed with the 8-point algorithm and resid-
uals using the Sampson distance. The results are reported
in Table 3 in which for every image pair the corresponding
misclassification error obtained by each method is indicated.
As can be seen, T-linkage scores the best ME in 6 out of 10
cases and achieves the lowest average and median ME.

These experiments also confirm that T-Linkage perform
at least as well as J-linkage, gaining some additional benefits
in terms of accuracy from the soft representation of data.

In Fig. 7 we present some of the results obtained by T-
Linkage. The reader might notice how in Fig. 7b some
points of the background, classified as outliers according
to the ground-truth, are recognized as inliers because they
happen to lie near the fundamental manifold of a motion in
the scene.

4.2. Motion segmentation in video sequences

In motion segmentation the input data consist in a set
of features trajectories across a video taken by a moving
camera, and the problem consist in recovering the different
rigid-body motions contained in the dynamic scene.

Motion segmentation can be seen as a subspace segmen-
tation problem under the modeling assumption of affine cam-
eras. In fact under affine projection it is simple to demon-
strate that all feature trajectories associated with a single
moving object lie in a linear subspace of dimension at most

4 in R2F (where F is the number of video frames). For this
reason feature trajectories of a dynamic scene containing n
rigid motion lie in the union of n low dimensional subspace
of R2F and segmentation can be reduced to clustering data
points in a union of subspaces.

We evaluate T-linkage on the Hopkins 155 motion dataset
[24], which is available online at http://www.vision.
jhu.edu/data/hopkins155. The dataset consists of
155 sequences of two and three motions, divided into three
categories: checkerboard, traffic, and other (articulated/non-
rigid) sequences. The trajectories are inherently corrupted
by noise, but no outliers are present.

We compare T-linkage with RANSAC, J-Linkage and
with algorithms tailored to subspace clustering: SSC [4]
LSA [27] and ALC [12]. The average and median misclas-
sification errors are listed in Tables 4 and 5 (the figures
regarding all methods but T-linakage are taken from the site
mentioned above). All methods have been tuned separately
on each dataset for best performance.

In the two-motion sequences the results of T-linkage are
mixed, however it always achieves a zero median error (as
SSC does) and in one case (Traffic) also the best average
error. The overall average is the second best after SSC, and
fairly close to it.

On the three-motion sequences, the results of T-linkage
are worse than in the other sequences, and are also somehow
odd: on the traffic sequence it achieves the lowest ME, but
on Checkerboard and Others it scores only third (it is second,
however in the mean and median ME).

In the attempt to explain the incongruous results of T-
linkage on these sequences, we plot in Fig.9, for each data
point, the ratio of the distance to its “second” closest model
over the distance to its ground truth model, in order to get an
indication of the separation between the models. As a matter
of fact, there seems to be a positive correlation between
incidence of ambiguous points and increase in ME, which
makes a lot of sense. Surprsingly, it turnes out that in some
cases the ratio is greater than one, meaning that the “second”

http://www.vision.jhu.edu/data/hopkins155
http://www.vision.jhu.edu/data/hopkins155


(a) Cars3 (b) 1RT2TC (c) Articulated (d) 2T3RCRTP

Figure 8: Sample T-linkage results for motion segmentation in video sequences (points membership is color coded)

Ransac LSA 4n ALC 5 ALC sp SSC J-Lnkg T-Lnkg

Checkerboard mean 6.52 2.57 2.56 1.49 1.12 1.73 1.20
median 1.75 0.72 0.00 0.27 0.00 0.00 0.00

Traffic mean 2.55 5.43 2.83 1.75 0.02 0.70 0.02
median 0.21 1.48 0.30 1.51 0.00 0.00 0.00

Others mean 7.25 4.10 6.90 10.70 0.62 3.49 0.82
median 2.64 1.22 0.89 0.95 0.00 0.00 0.00

All mean 5.56 3.45 3.03 2.40 0.82 1.62 0.86
median 1.18 0.59 0.00 0.43 0.00 0.00 0.00

Table 4: Motion segmentation: misclassification error
(%) for video sequences with two motions

Ransac LSA 4n ALC 5 ALC sp SSC J-Lnkg T-Lnkg

Checkerboard mean 25.78 5.80 6.78 5.00 2.97 8.55 7.05
median 26.02 1.77 0.92 0.66 0.27 4.38 2.46

Traffic mean 12.83 25.07 4.01 8.86 0.58 0.97 0.48
median 11.45 23.79 1.35 0.51 0.00 0.00 0.00

Others mean 21.38 7.25 7.25 21.08 1.42 9.04 7.97
median 21.38 7.25 7.25 21.08 0.00 9.04 7.97

All mean 22.94 9.73 6.26 6.69 2.45 7.06 5.78
median 22.03 2.33 1.02 0.67 0.20 0.73 0.58

Table 5: Motion segmentation: misclassification error
(%) for video sequences with three motions

closest model is actually closer than the ground-truth model.
The presence of such equivocal points in the dataset might
be related to the problems mentioned in a very recent paper
[17] which we plan to consider in the forthcoming work.

In Fig. 8 some sequences of the Hopkins 155 dataset are
reported with the corresponding segmentation obtained by
T-Linkage. Fig 8a and Fig. 8c show correctly segmented
scenes whereas T-Linkage fails in finding the correct number
of motions in Fig. 8b (undersegmentation) and in Fig. 8d
the background is split into two clusters one of which also
includes the moving object in the top of the image.

Empirical results suggest that computation time is linear
in the number of points as shown in Fig. 10.

5. Conclusion

We introduced a variant of J-linkage based on a continous
conceptual representation of data points, which copes better
with intersecting structures and alleviates the critical depen-
dence from the inlier threshold. Together with our outlier
rejection strategy it performed better, on the average, than
competing methods on two-views segmentation problems.
On video sequences results are less conspicuous but still
T-linkage is the second best method overall and sometimes it
scores first. The MATLAB code is avaible on the web from
the authors’ web pages.
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