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Abstract

In this paper, we propose a Switchable Deep Network
(SDN) for pedestrian detection. The SDN automatically
learns hierarchical features, salience maps, and mixture
representations of different body parts. Pedestrian detection
faces the challenges of background clutter and large vari-
ations of pedestrian appearance due to pose and viewpoint
changes and other factors. One of our key contributions
is to propose a Switchable Restricted Boltzmann Machine
(SRBM) to explicitly model the complex mixture of visual
variations at multiple levels. At the feature levels, it auto-
matically estimates saliency maps for each test sample in
order to separate background clutters from discriminative
regions for pedestrian detection. At the part and body
levels, it is able to infer the most appropriate template for
the mixture models of each part and the whole body. We
have devised a new generative algorithm to effectively pre-
train the SDN and then fine-tune it with back-propagation.
Our approach is evaluated on the Caltech and ETH datasets
and achieves the state-of-the-art detection performance.

1. Introduction

Pedestrian detection is an important topic in computer
vision [5, 30, 9, 36, 34]. This problem is particularly
challenging because pedestrian images undergo large vari-
ations of visual appearance due to the changes of poses,
viewpoints, clothing, lighting, and resolutions. Background
clutters in a detection window also confuse the detectors.
Some examples are shown in Fig.1 (a).

Many pedestrian detectors [5, 34, 36, 8, 17, 11] have
been developed to address these challenges. They extract
manually designed features, such as HOG [5] and Haar-
like descriptors [34] or their combinations [36, 18], from
images, and then employ classifiers such as boosting [&],
SVM [5], and structure SVM [36] to decide whether a
detection window should be classified as a pedestrian. Hier-
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Figure 1. Pedestrian detection is challenging due to background clutter,
poses, and large variations of appearance of the upper- and lower-body,
as shown in (a). It is hard to learn a single model to represent each body
part or the whole body. Background clutter also confuses detectors. SDN
learns hierarchical features, salience maps, and mixture representations of
the entire body and different body parts. The saliency maps that separate
the background clutters and the discriminative regions are shown in (b).

archical deformable part-based models (DPM) [40, 17, 11]
are proposed to handle moderate pose variation. In order
to handle more complex and larger variations, a mixture
of templates is learned for each body part [2, 40]. Such
templates (e.g., poselets [2]) are learned through clustering
pose annotations and region appearance.

In recent years, deep learning has been applied to pedes-
trian detection and achieved promising results [30, 24, 25].
Instead of using handcrafted features, it can automatically
learn features in an unsupervised or supervised fashion,
such as restricted Boltzmann machine (RBM) [12], and
discriminative RBM [13]. They are often stacked into
multiple layers so as to map the raw data into gradually
higher-level representations [15, 31, 30]. Then, the entire
network is fine-tuned with label information and the top
layer output is often adopted as features to train classifiers.
However, the hierarchical representations learned by deep
models do not have semantic meanings (such as the body



parts of head-shoulder, upper-body, and lower-body) as in
previous hierarchical deformable part-based models [40,

, 11, 16, 37]. Ouyang and Wang [25] extend DPM to a
deep model by learning feature representations and jointly
optimizing the key components of DPM. However, they did
not explicitly model mixture of templates for each body
parts as in [2, 40] and did not depress the influence of
background clutters.

We propose a novel Switchable Deep Network (SDN)
for pedestrian detection. The SDN automatically learns
hierarchical feature representations that correspond to body
parts and the whole body. The key contribution of the model
is that it introduces a new Switchable Restricted Boltzmann
Machine (SRBM) to explicitly model the complex mixture
of visual appearance at multiple levels. SRBM is used
to build switchable layers added into the hierarchy of the
SDN. At each feature level, SRBM estimates saliency maps
(indicating a pixel is on the background or a pedestrian)
for each test sample. For instance, in the root layer, the
saliency map separates background clutter from discrimi-
native regions for pedestrian detection. Some examples are
shown in Fig.1 (b). In a part layer, the saliency map also
helps to localize each part in the same way. In addition, our
deep model learns a mixture of templates for each part to
represent it in different views and poses. SRBM can infer
the most appropriate template for each part or the whole
body. Since all the body parts and their templates have
semantic meanings, they are initialized through clustering
image regions. A new generative algorithm is devised to
effectively pre-train the SDN and then fine-tune it with
back-propagation.

In summary, our work makes three key contributions.
First, we propose a unified deep model to jointly learn
features, saliency maps, and mixture representations of the
whole body and different body parts in a hierarchy. This
makes it possible to maximize the strengths of all of the
components. Second, we enrich the traditional convolu-
tional neural network (CNN) by introducing a switchable
layer built with a new switchable restricted Boltzmann
machine. This layer depresses background clutters by
estimating saliency maps and handles complex pedestrian
appearance variations with mixture of part templates. Our
third contribution is to propose a EM-like algorithm to pre-
train the switchable layer. With this algorithm, some hidden
variables can be estimated directly in the E-step without
Gibbs sampling, so that it can reduce the computation time
compared with the conventional methods.

1.1. Related Works

We review previous works in three aspects as follows.

Feature Learning. Recent works on deep neural net-
works such as [15, 12, 30, 13, 42, 19, 23, 41, 20, 32, 33]
are capable to learn features in terms of complex object

categories. For instance, [12, 15, 30, 19] unsupervisedly
pre-trained the networks in a layerwise manner. Moreover,
[13, 41, 20] layerwisely pre-trained the network with su-
pervised information and showed superior results. In this
paper, we learn discriminative features with a new pre-
training strategy, which incorporates label information.

Hierarchical Deformable Models. DPM is one of the
widely used methods [11]. It learns a two-layer hierarchy
of root and part templates using a weakly-supervised latent
SVM. Zhu et al. [40] and Lin et al. [17] extended this
hierarchy with more layers and the mixture of templates.
Bourdev and Malik [2] modeled complex variations of part
appearance with poselets, which are a set of templates
learned through clustering. However, these methods rely
on the hand-crafted features, the discriminative capacities
of which are not optimized for pedestrian detection.

Mixture of Deep Models. Recent studies [21, 4, 31]
have shown that a mixture of deep models works better
than singleton. Nair and Hinton [21] proposed the mixture
of RBMs to learn features from raw pixels, by including
a gating variable to determine which RBM should be
activated. Sohn ef al. [31] partitioned the learned features
to two components: relevant features on the foreground
and the irrelevant features on the background. Ciresan et
al. [4] separated the data into several groups according to
some domain knowledge (multi-scales, for example), and
then constructed an ensemble of deep neural networks for
image classification. Unlike the existing works that focus
either on learning features or constructing an ensemble of
models, the mixture of the switchable layer in the SDN is
designed to model high-level object hierarchy as well as
saliency maps, and is jointly trained and optimized with the
features extracted by the convolutional layers. Therefore,
it is more robust to account for pedestrian variations and
enables us to incorporate more domain knowledge (such as
the design of body parts and initialization of part templates)
into the network for object detection.

2. Switchable Restricted Boltzmann Machine

The proposed switchable restricted Boltzmann machine
(SRBM) is a key building block in the SDN to model
the hierarchical feature representations and the mixtures of
body parts and entire body for pedestrian detection. We
first review the regular RBM in Sec.2.1 and then introduce
SRBM and its pre-training method in Sec.2.2.

A graphical model with both observed and hidden vari-
ables can be formulated as follows

P(Vi0)= Y en(-E(V.H), ()
H

where V, H are the sets of observed and hidden variables,
and Z is the normalizing constant. E(V,H) is an energy
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Figure 2. The architectures of the regular RBM and the SRBM.

function and © denotes a set of parameters that can be
optimized using maximum likelihood estimation, where the
gradient can be computed by

dlogp(V) O0E(V,H) OE(V,H)
g0~ Emv[—5e HEvml—5g

, 2

w is the partial derivative of the parameters. The

first term in Eq.(2) calculates the expectation of the hidden
variables given the observed data and the second term
calculates the expectation of the joint probability under the
current model, which has to be inferred by sampling. For
example, [12] approximated the gradient of Eq.(2) by Gibbs
sampling.

2.1. Restricted Boltzmann Machine

RBM is a Markov Random Field that defines on both the
observed and hidden variables. In the traditional RBM as
shown in Fig.2 (a), V"™ = {x} and H"*™ = {h} are the
input and output (hidden features) of the layer, respectively,
and © = {W, c,b} contains the weight matrices and the
bias vectors of the input and output. Note that bold letters
indicate vector or matrix. Its energy function is written as

E(x,h) = —c’x — bTh — x"Wh, (3)

where the first two terms can be considered as the unary
potentials as in MRF, while the last term is the pairwise
potential. The probabilities of one set of variables given
the other are conditional independent and the conditional
probabilities for Gibbs sampling are as follows

ph=1x) =
px=1lh) =

T(Wx + b),
7(WTh + ¢),

“4)
®)

where 7(x) = 1/(1 + exp(—x)) is the sigmoid function.

2.2. Switchable RBM

One of the contributions of this study is to extend RBM
by modeling the mixture and saliency maps using SRBM.
As shown in Fig.2 (b), V*™ = [x y} and H*"'™ =
{h,m, s}, where y,m,s denote the labels, the saliency
maps, and the switch variables indicating which component
in the mixture is activated. We employ both the input
data and the labels as observed variables other than only
using the data as in RBM, because supervised information

.

can improve classification performance [13]. The energy
function is formulated as
K
E(x,y,h,s,m;0) = = > " syh{ (W (x 0o my) + by)
k=1
K K
- Z skc;‘g(x omy) — yI'u Z sghy —dTy,
k=1 k=1
(6)

in which K indicates the number of components in the
mixture and © = {W,b,c,U,d}, where U is a fully-
connect weight matrix to transform the features to labels
and d is the bias vector of the label. The switch variable
sp € [0,1], Z,{;l sp = 1 indicates which component is
activated. In the SRBM, the output features are the linear
combination of the hidden features of different components;
thatis h = Zszl sihy as shown in Eq.(6). For each com-
ponent, my € [0, 1]"*™ is the saliency map representing
the discriminative regions of the pedestrian. As shown in
Fig.1 (b), the value of 0 indicates background and the value
of 1 indicates discriminative regions. Element-wise product
of two vectors is denoted with o.

Similar to RBM, the observed and hidden variables
are conditionally independent given the others, and the
conditional probabilities can be derived as below.

p(hy = 1|x,y,s,m) = 7(s;,(Wy(x omy) + b, + UTy)),

K
p(x =1|h,s,m) = T(Z spmy(Wihy, +cy)),
k=1

K
ply = 1|h,s) = 7(U(D_ sihe) +d).
k=1

(M

Eq.(7) shows that the sampling of h, x,y can be derived in
a similar way as RBM. Moreover, the conditional probabil-
ities of m, s are

p(mg = 1|x,h,s) = T(st(Wghk +ck)),
1
p(sx = 1|x,y,h,m) = - exp{hi (Wi (x omy) + by)

+cF(xomy) +y U},
(®)

where the saliency map of the k-th component can be
considered as the correlation between the original input x,
and the recovered input W7 hy, + ¢, by this component.
High correlation indicates high saliency. The computation
of s is similar to Eq.(6) and suggests that, if a component
has a smaller energy value, it is more likely to be activated.

However, the optimization procedure for SRBM has
comparatively high computational cost because the calcu-
lation of Eq.(2) must alternately sample five different kinds



of variables as in Eq.(7) and (8). We simplify the training
procedure using an EM-like algorithm by considering the
switch variables as pseudo-observed variables. In this case,
we can estimate their values directly in the E-step, and
then update the parameters in the M-step using Eq.(2) by
sampling the other four variables. This strategy saves 20
percent of the pre-training time.

Pseudo-observed SRBM. The joint probability of x, y,
and the pseudo-observed variables s is written as

p(x,y,s;0) x p(x,yl[s; ©)p(s). )

[Tr, A%, where A, =
% 25:1 Snk 18 the mixing coefficient indicating the frac-
tion of training samples assigned to the k-th components.
p(x,y|s) can be defined by integrating over h and m,

2 efE'xyhsm)
1 dT T T
Zedly sp(y  U+b’ )hy
o<Ze || g e’r k

k=1 hy

The prior is specified by p(s) =

p(x,y[s) o

(10)

||
H(]- —+ @Sk(wg,i*hk+ck7:)wi)
1=1

K x|

x 7 [T G

k=1i=0 hy

where the energy function E(-) is given in Eq.(6). The
second equation in (10) integrates m and the last one sums
over both m, h, where G, expresses the expansion of the
product of |x| binomials. For example, G and Gy, are
6s;¢/(yTU+bT)h;C and esk(yTUerT)hk .(6sk(WkT’1*hk+ck1)r1+
65k(WkT,z*hk+Ck2)I2 +o+ esk(wz;i*hk“rcki)fﬂi + ..), re-
spectively.  Thus, the integration of Gpr over hy is
th‘ (1 + ess& Ui +b:)) . More details are provided in
the supplementary material'. Combining Eq.(9) and (10)
with the Bayes rules, the posterior distribution becomes
p(S‘X, y) = % Hf:l /\Zk Zh,m eXp{_E(X7 Y, h7 S, m)}’
from which we can estimate the value of s.
Implementation details. The pre-training contains two
steps: (1) initialization and (2) EM optimization. In the
first step, we start by grouping the input to X components
using k-means. As many variants of RBM [13], we then
train a regular RBM for each component to initialize the
weight matrixes. To obtain discriminative power and save
computation time, we retain the weights related to the
discriminative hidden features and discard the others by
using t-Test [39]. In the second step, the EM algorithm
proceeds as follows. We evaluate s in the E-step and keep

! http://mmlab.ie.cuhk.edu.hk/publications.html

Algorithm 1 Pre-training pseudo-observed SRBM

Input: input {x} and labels {y};
Output: © = {W,U,b,c,d};
1: group input data {x} into K components using k-
means;
2: train RBM to initialize W, b, ¢ for each component and
initialize U, d, A randomly; prune W by t-Test;
3: if not stopping criterion loop
4. E-step: estimate s for each x;

5.  M-step:
for a minibatch x do
6: perform gibbs sampling for ¢ steps according to

Eq.(7) and (8) to obtain x°, y°, h®, m°, and

—t
—t —t —t.
X,y ,h ,m"

7. VO « E[OE(X ,y;glo,mo,s)]_E[aE(it,Z;éHt,ﬁt,s)];
end

8:  update parameters, © < © + nVo;

9:  update mixing coefficients, A\ = % ZnN:1 Snks

10: end loop

s fixed and maximize the log likelihood log p(x, y|s) with
respect to © in the M-step, which is similar to Eq.(2) and
can be calculated following contrastive divergence [12].
The details are given in Alg.1.

3. Switchable Deep Network (SDN)

We stack a convolutional layer, four switchable layers
(that is, modeled with SRBM), and one logistic regression
layer into the SDN for pedestrian detection. As shown in
Fig.3, the convolutional layer learns to extract low- and
mid-level features, the switchable layers model high-level
mixture representations and salience maps of the entire
body and different body parts (head-shoulder, upper-body,
and lower-body), and the logistic regression layer predicts
labels. This architecture is designed for pedestrian detec-
tion. More layers can be added to handle more complex
object hierarchies.

The input image data x° (Fig.3 (a)) have six channels,
each of which is in the size of 108 x 36. The first three
channels are obtained by resizing the bounding box cen-
tered on the pedestrian with three different scales and then
extract the Y-channels of these three images in the YUV
color spaces. The last three channels are the edge maps of
the first three channels by using Sober edge detector. This
is to encourage the SDN to learn features with multi-scales
and boundary cues.

As shown in Fig.3 (a), the convolutional layer outputs 64
channels by learning 64 filters, each with a size of 9 x 9 x 6.
This layer can be formulated as below

I
xh = tanhabs(z W} x? + b)), (11)

=1
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Figure 3. Architecture of the SDN. It stacks three types of layers, including a convolutional layer (a) at the bottom to extract low- and mid-level features, four
switchable layers (b) in the middle for high-level mixture representations (i.e., body, head-shoulder, upper-body, and lower-body), and a logistic regression
layer (c) on the top for label prediction. The spatial max pooling in (b) is illustrated in (d). It divides the whole body into three sub-regions and pass their

feature maps to next layers.

where tanh®®(-) = |tanh(-)| is the absolute values of the
hyperbolic tangent function, * indicates convolution, and
1 = 1..6 and j = 1...64 are the indices of the input and
output channels, respectively. W' and b' are the filter
matrixes and bias vector. The output x' are then sub-
sampled by a max pooling layer to obtain more compact
representation.

As shown in Fig.3 (b), we stack four switchable layers
as a hierarchy to model the decomposition of pedestrians,
including a root layer for body, three sub-layers for head-
shoulder, upper-body, and lower-body, respectively. Each
switchable layer is a mixture of &' components (K = 10 in
our experiment), each of which connects to the input using
a fully-connect weight matrix that is to capture the global
pose or view of pedestrians. The [-th layer can be computed
as

10
x! = Z sk tanh®* (W (x'"toml) +bl)), (12)
k=1

where k is the index of components and o denotes the
element-wise product. mj denotes the saliency map. sy
denotes the switch variable, which serves as a gate and
outputs the features of the most informative component.
One possible output of the SDN is illustrated by the red
arrows of Fig.3 (b). Both s and m are the hidden variables,
the values of which vary for different samples and have to
be inferred during training and testing. Furthermore, the
spatially max pooling layer partitions the learned features
of the entire body into three parts, as shown in Fig.3 (d).
Such partition works fine for pedestrian detection and the
number of partitions can be changed to deal with the other
object categories.

As shown in Fig.3 (c), the logistic regression layer
predicts the label by concatenating the output of all the
switchable layers as input,

y = 1(Whxl=1 4 bl (13)

where W' is a fully-connect weight matrix.

3.1. Pre-training and Fine-tuning

The training stage of SDN needs to update a set of filters
and infer the hidden variables; that is, switches and saliency
maps. This is challenging because there are a large number
of such variables. For instance, if we divide the body into
three parts and have five components for each part, there
are millions of parameters and over 2, 000 hidden variables.
Therefore, we have adopted the same scheme as many other
deep learning methods have done, which is to pre-train the
network in a layerwise manner and then fine-tune all the
parameters.

We use Gabor filters to initialize the filters of the
convolutional layer, because Gabor filters can capture the
boundary shapes of pedestrians. For the four switchable
layers in Fig.3 (b), we pre-train them following Alg.1.

As the existing methods [15, 12, 13, 4] have proved,
fine-tuning deep networks can improve classification per-
formance. Similarly, we fine-tune all the parameters of the
SDN by minimizing the error entropy

Err(x°;0) =ylogy + (1 —y)log(1 —y), (14

in which y is the predicted label. The parameters are
updated using stochastic gradient descent. For instance,
we update the weights by W, 1 + W, — n%%(,’:". For
the convolutional layers and the logistic regression layer
as shown in Fig.3 (a) (¢), aa%’{,” are calculated in the same
way as the traditional CNN [14]. For the switchable layer,
the gradient of the weight matrix for the k-th component is

computed as

oErr -1

oW, — kX e my)e’”, (15)

which is the outer product of the back-propagation error e

and the input of the k-th component. Then, the error e’ is
obtained by a recurrence relation as
e = [B'(1 — tanh?(6"))];, [tanh(8))]; > 0
L [B'(tanh?(8') — 1)];, otherwise ’
(16)



where [-]; denotes the i-th element of a vector and diag(-)
is the diagonal matrix. Furthermore, §' = Wi (x'~! o
m) ) + b' is the output of the I-th layer without the absolute
hyperbolic tangent function, and 8! = diag(W!+1" e!*+1).
The back-propagation error is computed in this piecewise
manner because of the absolute function.

3.2. Inference

In the testing stage, unlike the existing deep learning
methods that deal with different samples with the same
network architecture, the SDN selects the most appropriate
structure for each sample. This is achieved by inferring
the hidden variables s, m. First, the switch variables s can
be estimated based on Eq.(10). Second, we can infer the
saliency maps m as discussed in Eq.(8) given x, h, and s.

4. Experiments

We conduct experiments on the Caltech dataset [9] and
the ETH dataset [10]. The former consists of approximately
10 hours video in an urban environment. A total of 350, 000
bounding boxes and 2,300 pedestrians were annotated.
The latter has three testing sequences with a total of 1804
frames. To reduce the computational time, we adopt a
simple detector trained with HOG+CSS+SVM to prune
the candidate windows at both the training and the testing
stages. We keep approximately 60,000 windows that are
not pruned by the detector for training. At the testing
stage, SDN takes less than 0.1 second per image after
the HOG+CSS+SVM detector has pruned most candidate
windows. For both datasets, we strictly follow the criteria
proposed in [9] to evaluate the performance, where the
log-average miss rate is computed by averaging the miss
rates at nine False-Positive-Per-Image (FPPI) rates, which
are evenly spaced in log-space in the range from 1072
to 10°. Moreover, we test on the reasonable subsets of
both datasets. These subsets are widely used and consider
pedestrians with heights larger than 49 pixels according to
the ground truth.

We compare with the best-performing methods as sug-
gested by the Caltech and ETH benchmarks”, which report
the top results of these two datasets, including VJ [34],
HOG [5], DBN-Isol [24], ACF [6], ACF-Caltech [6],
MultiFtr+CSS [35], MultiResC [28], Roerei [1], MOCO
[3], MT-DPM [38], ChnFtrs [8], HogLbp [36], Pls [29],
CrossTalk [7], LatSVM-V2 [1 1], MLS [22], ConvNet [30],
and UDN [25]. All of these approaches detect pedestrians
on static images, like our method, rather than using video
motion as additional information. We have also excluded
the results of using contextual information. For example,
Ouyang and Wang [26] used a two-pedestrian detetor to
improve single-pedestrian detection and showed that their

2 http://www.vision.caltech.edu/Image_Datasets/
CaltechPedestrians/
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Figure 4. Overall performance of Caltech-Test dataset.

two-pedestrian detector can be used to improve any single-
pedestrian detectors. In [27] two neighboring pedestrians
were jointly detected. Yan er al. [38] used a vehicle
detector to improve pedestrian detection. These context-
based approaches are complementary to ours. The above
works use various features, classifiers, deep networks, and
context information. We summarize them below.

Features: Haar (VJ]), HOG (HOG, LatSVM-V2, MT-
DPM), LBP (HogLbp), CSS (MultiFtr+CSS); Classifiers:
latent-SVM (LatSVM-V2, MOCO, MT-DPM), boosting
(V], ChnFtrs, CrossTalk); Deep Learning: DBN-Isol,
ConvNet, UDN.

4.1. Performance on the Caltech-Test Dataset

Overall Performance. For evaluation purposes we pre-
train and fine-tune the SDN using the Caltech-Train dataset,
which is also adopted as training data by the recent best-
performing methods, such as [38, 6]. We compare the
result with the existing approaches in Fig.4, where SDN
achieves the smallest miss rate of 37.87 percent among
all the detectors without using context information. SDN
outperforms the other two detectors (DBN-Isol and Con-
vNet) with deep learning by at least 15 percent. DBN-
Isol did not learn features and used DBN to infer the
visibility status of body parts. ConvNet learned features
in an unsupervised way. Our SDN learns low- and mid-
level features and high-level mixture representations jointly
in a supervised way. SDN also outperforms the methods
based on deformable part models such as LatSVM-V2 and
MT-DPM, which extracted the HOG features of multiple
resolutions, while our method directly learns features from
raw pixels in multiple resolutions. It takes three hours to
train a SDN (including both pre-training and fine-tuning)
on a single NVIDIA GTX 760 GPU.

Effectiveness of Architecture. The switchable layers
in the SDN utilize the output of the convolutional layer
as input. In fact, they can employ any other hand-
crafted features as input. We test different features
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Caltech-Test dataset.

combined with the switchable layers, including HOG,
HOG+CSS, and HOG+LBP, and compare our approaches
with the existing methods, which are HOG+latent-SVM,
HOG+LBP+linear-SVM, and HOG+CSS+linear-SVM. All
the above methods employ the same experimental set-
ting. The results are given in Fig.5. For instance,
HOG+SDN improves HOG+latent SVM by 11 percent and
the HOG+CSS+SDN reduces the miss rate by 3 percent
compared to HOG+CSS+linear SVM. In the above settings,
we observe that HOG+LBP+SDN achieves the best result
that is 48 percent. Since multiple features can improve per-
formance, the difference of miss rates between combining
HOG+CSS is smaller than only utilizing HOG features.
Effectiveness of Feature Learning. We evaluate the use
of multiple scales of the images as input for feature learning.
There are three different combinations: (1) size of the
bounding box of the pedestrian multiply by 1.1 (one scale),
(2) size of the bounding box multiply by 1.0 and 1.25 (two
scales), and (3) size of the bounding box multiply by 1.0,
1.25, and 1.45 (three scales). We separately examine the
influence of the Y-channels and the edge maps as introduced
in Sec.3. Fig.6 shows the results, which are obtained by
directly employing the output of the convolutional layer as
features and using logistic regression for classification. We
demonstrate that Y-channels are more informative than the
edge maps and the use of multiple scales tends to improve
the performances of both of them. The best miss rate (43.98
percent) is obtained by using Y-channels in three scales.
However, the multi-scales combination of the Y-channels
and the edge maps achieves the miss rate of 40.12 percent.

4.2. Performance on the ETH Dataset

We follow the existing approaches [24, 11, 1] that
evaluate their methods on the ETH dataset with a common
setting, which is to use the INRIA-Train dataset as training
data. This is done in order to evaluate the generalization

miss rate
'
[}

——49.57% edge map, one scale
48.34% edge map, two scales
47.61% edge map, three scales
45.79% Y-channel, one scale

——=44.60% Y-channel, two scales

=—=43.98% Y-channel, three scales

102 2y

false positives per image

.30

.20

Figure 6. Performance of multiple scales feature learning on the
Caltech-Test dataset.

capacity of the SDN. Fig.7 plots the results on the ETH
dataset. SDN again achieves the lowest average miss rate.
It outperforms the deep learning based methods DBN-Isol
and ConvNet by 6.38 percent and 9.64 percent, respectively.

5. Conclusions

In this paper, we have proposed a switchable deep net-
work to model background clutter and complex appearance
variations in pedestrian detection. This SDN improves
the conventional convolutional neural network by adding
multiple switchable layers, which are built with a new
switchable restricted Boltzman machine. This new deep
model jointly learns hierarchical features, salience maps,
and mixture representations of body parts. It achieves state-
of-the-art performance on the public benchmark datasets.
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