
Diversity-Enhanced Condensation Algorithm and Its Application for Robust and
Accurate Endoscope Three-Dimensional Motion Tracking

Xiongbiao Luo1∗ Ying Wan2† Xiangjian He2 Jie Yang3 Kensaku Mori1

Nagoya University1 University of Technology, Sydney2 Shanghai Jiaotong University3

Xiongbiao.Luo@gmail.com Ying.Wan@student.uts.edu.au Xiangjian.He@uts.edu.au

Abstract

The paper proposes a diversity-enhanced condensation
algorithm to address the particle impoverishment problem
which stochastic filtering usually suffers from. The particle
diversity plays an important role as it affects the perfor-
mance of filtering. Although the condensation algorithm is
widely used in computer vision, it easily gets trapped in lo-
cal minima due to the particle degeneracy. We introduce
a modified evolutionary computing method, adaptive differ-
ential evolution, to resolve the particle impoverishment un-
der a proper size of particle population. We apply our pro-
posed method to endoscope tracking for estimating three-
dimensional motion of the endoscopic camera. The exper-
imental results demonstrate that our proposed method of-
fers more robust and accurate tracking than previous meth-
ods. The current tracking smoothness and error were signif-
icantly reduced from (3.7, 4.8) to (2.3 mm, 3.2 mm), which
approximates the clinical requirement of 3.0 mm.

1. Introduction
Stochastic filtering methods are widely introduced in dy-

namic state estimation problems, e.g., target tracking, video
surveillance, and camera 3-D motion tracking [9, 15, 7]. As
one of stochastic filtering methods, the condensation algo-
rithm (CA), which was originally proposed to detect and
track the contour of objects moving in a cluttered environ-
ment [6], is widely used in the field of computer vision and
pattern recognition to solve nonlinear state estimation prob-
lems. It employs the sampling importance resampling (SIR)
strategy to estimate dynamic system states, i.e., the original
part of CA is the application of particle filtering estimation
techniques. Compared to Kalman filtering, CA has the abil-
ity to tackle multimodal probability density functions and
tractably solve nonlinear non-Gaussian problems [1]. Un-
fortunately, particle degeneracy or impoverishment, which

∗indicates corresponding author.
†denotes equal contribution with corresponding author.

frequently occurs in the SIR step of CA, constrains its abil-
ity at finding the optimal solution for dynamic systems since
less of particle modes hardly approximates the probability
density function (PDF) of the current state. In an extreme
situation, a number of different particles might collapse to
a set of particles with same state weights and parameters
after a sequence of updates. In an usual situation, even
though several particles were updated to be different from
each other, it is somewhat impossible to approach the ex-
pected PDF. Although various work to address such a prob-
lem has published in the literature [2, 4, 5, 13, 12, 8], it still
remains challenging in CA.

Currently, as one of powerful evolutionary computation
algorithms, differential evolution (DE), which was primar-
ily proposed by Storn et al. [14], is widely introduced to ad-
dress multidimensional complex optimization problems. It
has the ability to deal with non-differentiable, nonlinear and
multimodal optimization problems under easily selecting
few parameters to control the optimization procedure [14].
It was demonstrated to be the best evolutionary algorithm
for tackling real parameter optimization problems [3]. The
attractive properties of DE are easy implementation, better
convergence performance, few control parameters, and low
space complexity [3], resulting in its popularity in global
optimization over continuous dynamic state estimation.

This work aims to address the particle impoverishment
problem of stochastic filtering methods. By inspired these
unique properties of DE, our basic idea is to use the DE
algorithm to deal with the particle impoverishment in CA.
We propose a diversity-enhanced condensation algorithm
(DECA) that first differentially evolves each particle to en-
hance the diversity of particle population before the SIR
step, and then transmits each particle by a state propagation
model to approximate the posterior density distribution.

The main contribution of this work is summarized as
follows. First, since the DE’s performance depends heav-
ily on evolutionary parameters of the mutation factor and
crossover rate, we modified DE to be adaptive differential
evolution (ADE) that automatically determines the evolu-
tionary parameters on the basis of the current observation
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information. More importantly, an ADE-based strategy was
introduced to successfully handle the particle impoverish-
ment problem. Finally, from an application point of view,
we apply DECA to endoscope 3-D motion tracking and our
experimental results prove that it can provide a more accu-
rate and robust tracking method than previous approaches.
We also believe that DECA are definitely useful for other
applications, e.g., object tracking and video surveillance.

The rest of this paper consists of six parts. We first recall
the standard CA in Section 2. Section 3 details the proposed
DECA on the basis of the ADE method to handle the parti-
cle impoverishment. Section 4 applies DECA to endoscope
3-D motion tracking. Experimental setups are described in
Section 5, followed by experimental results and discussion
in Section 6, before concluding this work in Section 7.

2. Condensation Algorithm
Basically, CA is one of sequential Monte Carlo methods

to solve the recursive Bayesian filtering problem. It uses a
set of weighted particles to approximate the posterior den-
sity distribution and recursively search for the optimal es-
timation at each state of one stochastic dynamic system on
the basis of noisy partial observations.

Let xi and yi be the current state and observation at
time i of a dynamic system. The history observations are
Yi = {y1,y2, · · · ,yi} (i = 1, · · · , N , N is the number of
observations). CA seeks to approximate posterior probabil-
ity distribution p(xi|Yi) of current state xi. It first generates
a set of particles Xi = {(xj

i , ω
j
i , c

j
i ), j = 1, ...,M} (M is

the number of particles) with particle weight ωj
i and accu-

mulative weight cji . After that, p(xi|Yi) is approximated by
these particles with respect to xj

i and ωj
i [1]:

p(xi|Yi) ≈
M∑
j=1

ωj
i δ(xi − xj

i ), (1)

where δ(·) is the Dirac delta function; ωj
i is described by:

ωj
i ∝ ω

j
i−1

p(yi|xj
i )p(x

j
i |x

j
i−1)

q(xj
i |x

j
i−1,yi)

, (2)

where proposal q(·) is an importance density function rel-
ative to the degree of the particle degeneracy. It is conve-
nient to select q(·) as prior p(xj

i |x
j
i−1): q(xj

i |x
j
i−1,yi) =

p(xj
i |x

j
i−1); we then obtain: ωj

i ∝ ω
j
i−1p(yi|xj

i ) [1].
Essentially, a pseudo-code description of CA using the

SIR scheme can be summarized in Algorithm 1.

3. Proposed Method – DECA
Although CA works well in realistic state estimation

problems, it suffers from the particle impoverishment that

Algorithm 1: Condensation algorithm [6]

if i = 0 then
Generate M particles X0 = {(xj

0, ω
j
0, c

j
0)}Mj=1:

Set initial importance density q(x0|x0,y0) = p(x0);
for j = 1 to M (M : the number of particles ) do

Draw particle xj
0 ∼ p(x0);

Compute particle weight ωj
0 = 1/M ;

Set accumulative weight cj0 = 0;
end

else
for i = 1 to N (N : the number of observation yi) do

Ê for j = 1 to M (M : the number of particle xi)
do

1. Choose particle x̂j
i :

Generate uniform random number r ∈ [0, 1];
Find the smallest j to satisfy: cji−1 ≥ r;
Choose x̂j

i = xj
i−1;

2. Propagate x̂j
i to xj

i by a transition model;
3. Compute weight ωj

i = p(yi|xi−1 = xj
i );

end
Ë Normalize ωj

i = ωj
i /

∑M
j=1 ω

j
i ,
∑M

j=1 ω
j
i = 1;

Ì Update accumulative weight cji = cji−1 + ωj
i ;

Í Calculate the expectation of xi using Eq. 1;
Î Store the estimate and go to the next iteration;

end
end

easily collapses the procedure of state estimations since few
particle modes are impossible to approximate the required
PDF. In this work, we introduce an ADE strategy to handle
the particle degeneracy problem that is originated from the
SIR step (1. Choose particle x̂j

i in Algorithm 1), observa-
tion noise increasing, and estimation error accumulation.

Basically, DECA consists of several steps: (1) ADE-
based particle diversification, (2) particle transition on the
basis of a dynamic model, and (3) observation model to
construct the probabilistic density, as described as follows.

3.1. ADE-Diversified Particles

The section uses ADE to diversify the particles as differ-
ent as possible to avoid the particle impoverishment. Given
particles Xi−1 = {(xj

i−1, ω
j
i−1, c

j
i−1)}Mj=1 (xj

i−1 ∈ <D, D
is the dimension of state xj

i−1 ) ADE performs three op-
erations: (1) mutation, (2) crossover, and (3) selection, to
enhance the diversity of particle population Xi−1.

3.1.1 Mutation

Let xb
i−1 denotes the particle with the best or maximal

weight in particle population Xi−1. For each particle xj
i−1,

its mutant vector vj
i−1 can be calculated by a frequently
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used mutation scheme in DE algorithms [3]:

vj
i−1 = xj

i−1 + µb
i−1∆b

i−1 + µr
i−1∆r

i−1, (3)

∆b
i−1 = (xb

i−1 − xj
i−1),∆r

i−1 = (xr1
i−1 − xr2

i−1), (4)

where µi−1 is a mutation factor, vector ∆b
i−1 perturbs base

state xj
i−1, and ∆r

i−1 represents the difference vector. Index
number r1 and r2 are mutually exclusive integers chosen
randomly from set {1, · · · , j − 1, j + 1, · · · ,M}.

The mutation operation is the core of DE algorithms.
The advantages and limitations of different mutation strate-
gies were discussed in [3]. Unfortunately, none of these
strategies takes the current observation into consideration,
possibly resulting in the loss of the population diversity. To
address such a limitation, we modify the mutation strategy
in Eq. 3 by introducing the current observation information:

vj
i−1 = xj

i−1 + λji∆
i
i−1 + µb

i−1∆b
i−1 + µr

i−1∆r
i−1, (5)

where ∆i
i−1 = oi − oi−1, oi and oi−1 are the observations

at times i and i − 1. Factor λji determines how much the
current observation oi to be reserved and we set it to be an
uniformly distributed random number: λji ∈ [0 1].

On the other hand, the mutation performance also de-
pends on mutation factor µi−1. In this work, we introduce
two factors µb

i−1 and µr
i−1 in Eq. 5. We adaptively calcu-

late µb
i−1 and µr

i−1 on the basis of particle weights ωb
i−1 and

ωj
i−1of particle states xb

i−1 and xj
i−1:

µb
i−1 =

2ωb
i−1

(ωb
i−1 + ωj

i−1)
, µr

i−1 =
2ωj

i−1

(ωb
i−1 + ωj

i−1)
. (6)

Mutant factors µb
i−1 and µr

i−1 automatically control best
particle state xb

i−1 and stochastic difference vector ∆r
i−1.

3.1.2 Crossover

After the mutation step, a binomial crossover operation is
performed to generate trial state uj

i−1 = {uj,1i−1, · · · , u
j,D
i−1}

on the basis of target state xj
i−1 = {xj,1i−1, · · · , x

j,D
i−1} and

mutant state vj
i−1 = {vj,1i−1, · · · , v

j,D
i−1}:

uj,ai−1 =

{
vj,ai−1 if (ac ≤ Cr) or (a = ar)

xj,ai−1 otherwise
, (7)

where a = 1, 2, · · · , D, random number ac yields an uni-
form distribution, crossover rate or probability Cr deter-
mines whether or not uj,ai−1 ∈ uj

i−1 is copied from vj,ai−1 ∈
vj
i−1, and ar is randomly selected from set {1, 2, · · · , D}.

The crossover rate during the binomial crossover opera-
tion is also adaptively determined in terms of weights ωj

i−1
and vωj

i−1 of states xj
i−1 and vj

i−1. Since Cr was suggested

Algorithm 2: Particle diversification using ADE

Input: Particles Xi−1 = {(xj
i−1, ω

j
i−1, c

j
i−1)}

M
j=1;

Output: Particles X̂i−1 = {(x̂j
i−1, ω̂

j
i−1, ĉ

j
i−1)}

M
j=1;

for j = 1 to M (M : the number of particles) do
Ê Mutation:
Randomly select xr1

i−1 and xr2
i−1 from Xi−1;

Generate λj
i and compute µb

i−1 and µr
i−1 by Eq. 6;

Calculate mutant vector vj
i−1 by Eq. 5;

Ë Crossover:
Calculate crossover rate Cr by Eq. 8;
Compute trial state uj

i−1 using xj
i−1 and vj

i−1;

Ì Selection:
Evaluate xj

i−1 and uj
i−1 to determine x̂j

i−1;

Í Normalize ω̂j
i−1 =

ω̂
j
i−1∑M

j=1 ω̂
j
i−1

,
∑M

j=1 ω̂
j
i−1 = 1;

Î Accumulative weight ĉji−1 = cji−1 + ω̂j
i−1 − ω

j
i−1;

Ï Store (x̂j
i−1, ω̂

j
i−1, ĉ

j
i−1) and go to the next iteration;

end

to range in the interval [0 1] for balancing the global and lo-
cal searching abilities [3], it can be adaptively updated by:

Cr =
ωj
i−1 + vωj

i−1
2

, (8)

which gives an adaptive strategy to control crossover rate
Cr relative to the particle weight that will be computed on
the basis of the current observation information.

3.1.3 Selection

The selection operation seeks to choose the better particle
or individual x̂j

i−1 from uj
i−1 in accordance with its weight

uωj
i−1. Such an operation is performed by:

x̂j
i−1 =

{
uj
i−1 if uωj

i−1 ≥ ωj
i−1

xj
i−1 otherwise

. (9)

We also renew weight ω̂j
i−1 of particle x̂j

i−1:

ω̂j
i−1 =

{
uωj

i−1 if uωj
i−1 ≥ ωj

i−1
ωj
i−1 otherwise

. (10)

Each particle weight ω̂j
i−1 is further normalized: ω̂j

i−1 =

ω̂j
i−1/

∑M
j=1 ω̂

j
i−1,

∑M
j=1 ω̂

j
i−1 = 1. Accumulative weight

ĉji−1 is also updated: ĉji−1 = cji−1 + ω̂j
i−1−ω

j
i−1. Finally, a

set of diversified particles X̂i−1 = {(x̂j
i−1, ω̂

j
i−1, ĉ

j
i−1)}Mj=1

is obtained. Particle population X̂i−1 not only has the better
diversity but also includes the better particles to be resam-
pled in SIR. The implementation of ADE to enhance the
particle diversity is generalized in Algorithm 2.
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3.2. Particle Transition

After obtaining particle set X̂i−1, we resample from
X̂i−1 and get particle x̂j

i = x̂j
i−1. We transmit x̂j

i to new
state or particle xj

i on the basis of current observation oi:

xj
i = ∆i

i−1x̂
j
i + Π(nji ), (11)

where Π(nji ) is a stochastic noise term with an independent
variable nji that is assume to yield a normal distribution.

Therefore, the conditional density p(xi|xi−1 = xj
i ) of

dynamic state xi can be computed by:

p(xi|xi−1 = xj
i ) ∝ exp(

(∆i
i−1)−1(Π(nji )− xj

i )

2
). (12)

3.3. Observation Model

Since CA that is used for dynamic state estimation prob-
lems involves the history and current observations to build
the PDF of the current state, the observation probability
p(oi|xi) needs to be determined after getting xj

i during the
particle transition. The particle weights are used to approx-
imate p(oi|xi) [6]:

p(oi|xi = xj
i ) ∝

ωj
i∑M

j=1 ω
j
i

. (13)

The processing within several steps of DECA was dis-
cussed above. The performance of DECA will be evaluated
by applying it to endoscope 3-D motion tracking. DECA
will be proved to outperform CA in realistic applications.

4. Application to Endoscope Tracking

This section shows utilizing DECA for endoscope 3-D
motion tracking. An endoscope, which is inserted into the
body by physicians to directly observe hollow organs in the
operating room, is usually integrated with a video camera
at its distal tip. Endoscope tracking seeks to find endo-
scope position and orientation with six degrees of freedom
(6DoF) in a reference coordinate system, e.g., a computed
tomography (CT) image coordinate system in our case. To
track the endoscope, an electromagnetic sensor is usually
attached at the endoscope distal tip. Therefore, during en-
doscope tracking, the input information includes CT images
and two kinds of observation: (1) endoscopic video images
and (2) electromagnetic sensor measurements, and the out-
puts are the endoscope 6DoF position and orientation in the
CT space. We first parameterize endoscope 3-D motion.

4.1. Motion Parameterization

Our task is to estimate endoscopic camera position and
orientation in the CT space, i.e., transformation CTTC from

Algorithm 3: Endoscope tracking using DECA

Input: CT images to generate virtual rendering image mj
i ,

electromagnetic sensor measurement si ,
and endoscopic video image mi;

Output: Endoscope 3-D motion estimation CTTi
C ;

if i = 0 then
Initialize CTT0

C = x0 = [CT t0C ,
CT k0

C ];
Generate M particles X0 = {(xj

0, ω
j
0, c

j
0)}Mj=1:

for j = 1 to M (M particles ) do
xj
0 = x0, ωj

0 = 1/M , cj0 = 0;
end

else
for i = 1 to N (N observations of si and mi) do

Ê Call Algorithm 2 and obtain X̂i−1;
Ë Particle resample and propagation:
for j = 1 to M (M particles) do

¬ Select particle x̂j
i = x̂j

i−1 from X̂i−1;
 Transmit particle x̂j

i to xj
i using Eq. 18;

® Calculate particle weight using Eq. 19;
end
Ì Normalize ωj

i = ωj
i /

∑M
j=1 ω

j
i ,
∑M

j=1 ω
j
i = 1;

Í Update accumulative weight cji = cji−1 + ωj
i ;

Î Find the optimal estimation x̃i using Eq. 20;
Ï Store x̃i ↔CT Ti

C and go to the next iteration;
end

end

the endoscopic camera to CT coordinate systems:

CTTC =

(
CTRC

CT tC
0T 1

)
, (14)

where translation or position vector CT tC has three compo-
nents: CT tC = [CT txC ,

CT tyC ,
CT tzC ]. Orientation CTRC

is characterized by a quaternion CTkC with four elements
[CT k0C ,

CT kxC ,
CT kyC ,

CT kzC ] in the CT x-, y-, and z-axes:

CTRC ←→CT kC , (15)

(CT k0C)2 + (CT kxC)2 + (CT kyC)2 + (CT kzC)2 = 1. (16)

Therefore, endoscope 3-D motion CTTi
C at time i and par-

ticle xi can both be parameterized as a seven-dimensional
vector (D = 7) with respect to CT tiC and CTki

C in tracking:

CTTi
C ←→ xi =

[
CT t

i

C
CTk

i

C

]T
7×1

, (17)

Hence, endoscope 3-D motion tracking aims to deter-
mine transformation CTTi

C or the optimal particle xi using
the proposed DECA in our case.
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4.2. Optimal Estimation Selection

At time i, observation oi involves two kinds of out-
puts: oi = {si,mi}, where si denotes the current electro-
magnetic sensor output and mi is the current video image.
We diversify Xi−1 = {(xj

i−1, ω
j
i−1, c

j
i−1)}Mj=1 and obtain

X̂i−1 = {(x̂j
i−1, ω̂

j
i−1, ĉ

j
i−1)}Mj=1. We randomly select x̂j

i

from X̂i−1 and propagate x̂j
i deterministically and stochas-

tically to new state or particle xj
i :

xj
i = F(∆i

i−1x̂
j
i ,Π(nji )), (18)

where F(·) is a transform function. Note that ∆i
i−1 is equal

to (si − si−1) in particle diversification (Eq. 5) and propa-
gation (Eq. 18) during endoscope 3-D motion tracking.

After particle propagation (Eq. 18), we obtain new parti-
cle set Xi = {xj

i}Mj=1. Weight ωj
i and accumulative weight

cji of each particle xj
i ∈ Xi must be determined. We here

use another observation information, endoscopic video im-
age mi, to compute these weights.

We define the particle weight as an image similarity
value between current video image mi and virtual rendering
image mj

i [16]: ωj
i = s(mi,m

j
i ), where mj

i was generated
from 3-D motion state xj

i using volume or surface rendering
techniques in terms of CT data. Based on such a definition,
the similarity value can be calculated by:

s(mi,m
j
i ) =

1

2

(
1 +

4ϑ1,2κ1κ2
(ϑ21 + ϑ22) (κ21 + κ22)

)
, (19)

where ϑ1,2 is the correlation between images mi and mj
i ;

ϑ1 and ϑ2 are the covariances of mi and mj
i , and κ1 and κ2

are the average values of mi and mj
i . Note that s(mi,m

j
i )

ranges within the interval [0 1]. We also update the accu-
mulative weight: cji = cji−1 + ωj

i .
Each particle xj

i in Xi = {(xj
i , ω

j
i , c

j
i )}Mj=1 is a potential

solution or estimation for current endoscope 3-D motion pa-
rameters CTTi

C . We search for the optimal particle that has
the maximal particle weight:

x̃i = arg max
ωj

i∈Xi

{xj
i ↔ ωj

i }, (20)

which is the optimal estimation for current 3-D pose CTTi
C :

x̃i =
[
CT t̃iC

CT k̃i
C

]T
7−→ CTTi

C . (21)

5. Experiments
We apply our proposed DECA to endoscope 3-D mo-

tion tracking and evaluate on seven datasets of endoscopic
videos and electromagnetic sensor outputs (in total 10468
video images or senor measurements). We manually gener-
ated ground truth for these datasets. Hence we can compute

tracking position and orientation errors by:{
ζ = ‖t− tG‖ ,
φ = arccos((trace(RRG

T )− 1)/2),
(22)

where ζ denotes the Euclidean distance between ground
truth position tG and estimated position t and φ indicates
the rotation difference between ground truth matrix RG and
estimated rotation matrix R by various tracking methods.

Theoretically, endoscope movement is a continuous pro-
cedure, i.e., its motion path should be a smoothing curve.
Since it is impossible for a camera to record all continuous
motion information without any interval, it is necessary to
evaluate the smoothness of tracking results. We define the
smoothness as the average Euclidean distance and standard
deviation of estimated positions among continuous frames
as well as orientations and compute them by :

τ =

∑N−1
i=1 ‖ti+1 − ti‖

N − 1
, (23)

ψ =

∑N−1
i=1 arccos((trace(Ri+1Ri

T )− 1)/2)

N − 1
, (24)

where N is the number of video images. The larger of τ
and ψ, the more unsmoothed of estimated motion results,
and the more jitter or jump occurred in tracking results.

We also introduce a visual quality measure to evaluate
the tracking results estimated from different approaches.
The 3-D motion estimation parameters {CTTi

C}Mi=1 can be
used to generate virtual rendering images on the basis of CT
images. It is very important to inspect whether or not these
virtual rendering images resemble to endoscopic video im-
ages to provide an augmented visualization environment in
the operating room. After getting all 3-D motion estima-
tions, visual quality ξ(mr,mv) between real video image
mr and its corresponding virtual rendering image mv gen-
erated from its estimation is defined in terms of Eq. 19:

ξ(mr,mv) =
1

2

(
1 +

4ϑr,vκrκv
(ϑ2r + ϑ2v) (κ2r + κ2v)

)
. (25)

The larger ξ(mr,mv), the better visual quality of the track-
ing results, and the more accurate tracking method.

We compare our proposed DECA to several endoscope
3-D motion tracking methods (1) Schwarz et al. [11], di-
rectly using absolute electromagnetic sensor measurements;
(2) Mori et al. [10], a hybrid tracking method; (3) Luo et
al. [7], using CA to track endoscope movements.

6. Results and Discussion
Table 1 summarize the tracking position and orientation

errors of using the four approaches. The average tracking
errors were significantly reduced at least from (4.8, 8.0) to
(3.2 mm, 6.5◦). Figure 1 plots the tracking errors against
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Table 1: Quantitative comparison of average position and orientation errors, ζ, φ, of using the different methods (Eq. 22).

Methods Schwarz et al. [11] Mori et al. [10] Luo et al. [7] DECA
Experiments ζ φ ζ φ ζ φ ζ φ

A 6.5 mm 7.7◦ 5.2 mm 3.7◦ 4.4 mm 4.2◦ 3.3 mm 3.7◦

B 5.3 mm 11.6◦ 5.0 mm 10.2◦ 4.4 mm 11.6◦ 2.7 mm 10.2◦

C 5.4 mm 3.9◦ 5.2 mm 9.9◦ 4.7 mm 4.3◦ 3.6 mm 3.8◦

D 4.5 mm 10.0◦ 3.9 mm 8.2◦ 3.5 mm 10.0◦ 2.9 mm 8.6◦

E 9.1 mm 10.4◦ 5.2 mm 4.0◦ 4.5 mm 4.5◦ 3.6 mm 4.0◦

F 5.1 mm 12.4◦ 4.2 mm 11.2◦ 3.6 mm 12.4◦ 2.8 mm 10.5◦

G 10.6 mm 9.5◦ 10.3 mm 10.2◦ 8.7 mm 9.6◦ 3.5 mm 4.9◦

Average 6.6 mm 9.4◦ 5.6 mm 8.2◦ 4.8 mm 8.0◦ 3.2 mm 6.5◦

Figure 1: An example (Experiment B) of plotted tracking position and orientation errors of using the four methods.

ground truth frame by frame of Experiment B. Figure 2 il-
lustrates an example of the tracking position and orienta-
tion smoothnesses of Experiment D. Table 2 quantifies the
smoothness of 3-D motion estimates of using the compared
methods. The position smoothness was greatly improved
from 3.7 to 2.3 mm, which implies that our proposed DECA
involves much less jitter or jump errors in its motion esti-
mates than other methods. Figure 3 displays the visual qual-
ity value of estimates using each method. A visual compar-
ison of video and virtual rendering images from the four ap-
proaches is shown in Figure 4, which further demonstrates
that DECA outperforms other tracking methods.

The purpose of this work is to tackle the particle im-
poverishment problem in the standard CA. In general, we
successfully achieved such a purpose by exploring DECA.
From the experimental results of its application to endo-
scope motion estimation, the tracking accuracy, smooth-
ness, and visual quality of using DECA are significantly
better than other methods. We attribute our success in much
better tracking to the particle diversity that was significantly
improved using the proposed ADE strategy. Figure 5 com-
pares the diversity of CA and DECA with 120 particles at
one estimation and demonstrates that DECA has the ability
to obtain the much better particle diversity than CA. DECA

distributes particles much more diversely than CA. The ma-
jority of particles in CA has the same weight, easily get-
ting trapped in particle impoverishment. Not only the diver-
sity of DECA is much better than CA but also the particle
weights in DECA are much larger than CA, i.e., the more
diverse of the particles, the more potential solutions could
be provided in a multidimensional optimization space; the
larger of the particle weight, the more powerful of the par-
ticle’s searching ability in solution space.

The potential limitations are clarified as follows. The
computation of particle weights is possibly incorrect since
it relates to the observation of endoscopic videos that might
involve image artifacts or uninformative sequences. An-
other open problem of DECA is the computational time that
can not reach a real-time processing in current experiments.

7. Conclusions

This paper proposed a diversity-enhanced condensation
algorithm and its application to endoscope 3-D motion
tracking. The proposed approach uses an adaptive differ-
ential evolution strategy to successfully address the parti-
cle impoverishment problem that frequently happens in the
standard condensation algorithm. In the task of endoscope
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Figure 2: Plotted position and orientation smoothnesses of using the four methods validated on Experiment D.

Table 2: Quantitative comparison of position and orientation smoothnesses, τ , ψ (Eqs. 23, 24), of using the different methods.

Methods Schwarz et al. [11] Mori et al. [10] Luo et al. [7] DECA
Experiments τ ψ τ ψ τ ψ τ ψ

A 4.4 mm 4.2◦ 3.3 mm 3.9◦ 3.2 mm 2.3◦ 2.8 mm 2.2◦

B 4.8 mm 2.6◦ 4.9 mm 5.4◦ 4.7 mm 2.7◦ 1.5 mm 3.3◦

C 4.6 mm 6.8◦ 3.9 mm 5.0◦ 3.8 mm 3.7◦ 3.5 mm 3.7◦

D 4.8 mm 2.6◦ 4.5 mm 5.4◦ 3.8 mm 2.7◦ 1.4 mm 2.7◦

E 5.6 mm 6.2◦ 3.6 mm 5.1◦ 3.6 mm 3.3◦ 3.0 mm 3.3◦

F 3.9 mm 2.2◦ 3.9 mm 4.6◦ 3.3 mm 2.3◦ 1.3 mm 2.7◦

G 5.1 mm 6.5◦ 4.0 mm 5.2◦ 3.5 mm 3.5◦ 3.0 mm 3.5◦

Average 4.7 mm 4.4◦ 4.0 mm 4.9◦ 3.7 mm 2.9◦ 2.3 mm 3.0◦

3-D motion tracking, the experimental results demonstrate
that the proposed method provides more accurate and robust
tracking than previous approaches. The current tracking po-
sition error were significantly reduced from 4.8 to 3.2 mm,
which approaches the clinical requirement of 3.0 mm.
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Figure 3: Comparison of the visual quality of using the different methods: An example (Experiment G) of the visual quality
(left) and the average visual quality of the total experiments (right).
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Video images

Schwarz et al. [11]

Mori et al. [10]

Luo et al. [7]

DECA

Figure 4: An example (Experiment F) of visually comparing virtual rendering images that were generated from the tracking
results of using the four approaches. Top row shows the frame numbers, and second row shows their corresponding real im-
ages that were uniformly selected by every 100 frames from endoscope video sequences of Experiment F. Other rows display
virtual rendering images. Our proposed DECA framework for endoscope 3-D motion tracking shows the best performance.

Figure 5: Comparison of the particle diversity of CA (left) and DECA (right). The more different weights that exist, the more
potential modes in solution space and less particle impoverishment.
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