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Abstract—A transient image is the optical impulse response
of a scene which visualizes light propagation during an ultra-
short time interval. In this paper we discover that the data
captured by a multifrequency time-of-flight (ToF) camera is the
Fourier transform of a transient image, and identify the sources
of systematic error. Based on the discovery we propose a novel
framework of frequency-domain transient imaging, as well as
algorithms to remove systematic error. The whole process of
our approach is of much lower computational cost, especially
lower memory usage, than Heide et al.’s approach using the
same device. We evaluate our approach on both synthetic and
real-datasets.
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I. INTRODUCTION

Transient imaging is a family of techniques that aim to
capture non-stationary distributions of light. Starting with
early efforts in optics literature [1], this direction of research
more recently captured attention from researchers in the field
of computer vision and graphics. In this work, we follow the
defination in [2] and denote by a transient image a time-
image sequence i(x, y, t) that represents an optical impulse
response of a scene at a high enough temporal resolution to
observe light “in flight” before its distribution in the scene
achieves a global equilibrium. This concept breaks with the
longstanding (and in most cases, reasonable) assumption
in graphics and vision that the speed of light is infinite.
Recent research has given rise to many exciting applications
of ultrafast time-resolved measurements, including scene
reflectance capture [3], looking around corners [4], [5] and
bare sensor imaging [6]. The state of the art in terms
of imaging quality is currently held by high-end systems
consisting of a femtosecond laser and a streak camera
[7]. These systems directly sample the time dimension and
achieve a temporal resolution of about 2 picoseconds per
frame. However, they are prohibitively expensive for many
laboratories, fragile, complex to operate, slow and extremely
sensitive to ambient light.

To lower the barrier of transient imaging, Heide et al. [8],
[9] demonstrated a compact acquisition system on a much
smaller budget without ultrafast light sources and detectors,

and successfully reconstruct transient images by a compu-
tational technique. Their system is a modified inexpensive
time-of-flight (ToF) camera. A transient image of a scene
is reconstructed from a collection of images of the scene
captured by their system operating on hundreds of different
modulation frequencies. Their reconstruction is formulated
as a linear inverse problem solved by numerical optimiza-
tion, which makes the ill-condition and noise problem diffi-
cult to be analyzed.

In this paper, we discover that ToF camera based tran-
sient imaging is essentially a frequency-domain sampling
technique, compared with the time-domain sampling tech-
nique using a femtosecond laser and a streak camera [7].
Taking advantage of the frequency-domain sampling, we
introduce the Fourier analysis for a better understanding and
reconstruction of the transient image. Based on our Fourier
analysis, we identify the sources of the systematic errors,
including the non-sinusoidal and frequency-variant modu-
lation signal, and the limited working frequency range. To
resolve these systematic errors, a frequency-domain transient
image reconstruction approach works in a pixel-wise manner
is proposed.

The proposed reconstruction approach has been tested
on both synthetic and real data and yields good results.
Compared with the approach in [8], our approach takes
full advantage of the intrinsic characteristic of the multi-
frequency ToF system and is fast and memory efficient. The
source code of this work is open to public. We believe
that this work will contribute to a better understanding
of ToF transient imaging systems in both acquisition and
reconstruction.

II. RELATED WORK

A ToF camera is a scannerless range imaging system that
resolves the depths of the entire scene simultaneously with
each laser or light pulse, as opposed to scanning LIDAR
systems using point-by-point laser beam. Such a realtime
depth sensor simplifies many computer vision tasks and
enables convenient solutions [10] for shape reconstruction
[11], motion capture [12], gesture recognition [13], etc.



To enable high-quality depth sensing for the above ap-
plications, one of the main challenges is the multipath
interference (MPI) problem [14]. MPI refers to false depth
measurement due to optical superposition of multiple light
paths—global illumination in space and time. MPI inversion
and the reconstruction of transient images are closely related
but have different goals. The latter aims at resolving the
amount of light bouncing back from the surface as a function
of time, while the former tries to remove all the indirect
light components bouncing back from the depth surface and
extract only the direct light component (which typically also
corresponds to the shortest possible path).

Fuchs et al. [15] and Jimenez et al. [16] resolve diffuse
MPI with Lambertian scene assumption using only one
modulation frequency and solving with high computational
iterative optimization. Dorrington et al. [17] models two-
path interference arising from specular surfaces with two-
frequency measurements using numerical optimization. God-
baz et al. [18] uses 3 or 4 modulation frequencies and
proposes a close-form solution while Kirmani et al. [19]
uses 5 frequencies. Both of them mitigate MPI under spec-
ular scene assumption. With multifrequency sampling, MPI
under more general scene assumption is recently investigated
by Freedman et al. [20] and Bhandari et al. [21]. They
achieve real-time resolving of MPI in these works. However,
both of them use sparse reflection regularizers which limits
their application scenario. The sparsity assumption has also
recently been adopted in transient image reconstruction [22].
Our technique does not enforce such sparsity constraints but
requires more frequencies.

Our work is also related with frequency-domain com-
puting of one-dimensional signals under multifrequency
sampling frameworks. In remote sensing, Simpson et al. [23]
introduce an Amplitude Modulated Continuous Wave (AM-
CW) technique with discrete stepped frequency in Lidar
system and use inverse Fourier transform to recover the
scattering function of the environment across time. In fluo-
rescence lifetime imaging microscopy (FLIM) [24], time-
resolved fluorescence light can be captured and recon-
structed by either time domain techniques [25] or frequency-
domain techniques [26]. The relationship between time- and
frequency-domain FLIM is similar to time-domain tran-
sient imaging using a streak camera [7] and our proposed
frequency-domain technique using a ToF camera.

III. FOURIER ANALYSIS ON TRANSIENT IMAGING

In this section we show that the transient image and the
data acquired by a multifrequency ToF camera are related
through the Fourier transform. Based on this discovery,
we propose a framework of frequency-domain transient
imaging. Throughout this paper, we use lower-case letters
for time-domain signals and the corresponding upper-case
letters for their Fourier counterparts.
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Figure 1. Operating principle of the transient imaging system.

A. Multifrequency ToF Camera

The referred transient imaging system is a ToF camera
consisting of a light source and an optical sensor. Both units
are modulated by the same periodic signal generator that can
be operated across a wide frequency range.

Fig. 1 illustrates the working principle of the camera. The
output of the light source is a periodic wave denoted by
sl(ωt), where ω = 2πf and f is the modulation frequency.
Light is transmitted to the scene and bounces back to the
sensor along different paths. When reaching the sensor the
light signal along a single ray path is delayed by τ and
attenuated by α. The delay time τ and the attenuation
coefficient α are uniquely determined by the ray path. The
photons along all ray paths are superimposed at the sensor
end, resulting in the light signal received by the sensor
represented as

sr(ωt) = E0 +

∫ ∞
0

α(τ)sl(ω(t− τ))dτ, (1)

where E0 is environmental illumination. The second term
on the right hand side of (1) is the convolution of the
input sl(ωt) with a scene-related term α(t), namely the
impulse response of the scene at a point. The imaging
system simultaneously acquires this response across a 2D
sensor plane. The temporal sequences of all the points
constitute a sequence of images, α(x,y)(t), known as a
transient image i(x, y, t). In this paper, we do not consider
any relation between adjacent pixels. Therefore, we omit the
pixel coordinates (x, y) in all symbols throughout this paper,
and α(t) is the desired transient image.

At the sensor the received light signal sr(ωt) carrying
the transient information of the scene is integrated over an
exposure time of NT , where N is an integer and T = 1/f
is the period of the modulation signal. The sensor gain is
modulated by a zero-mean signal ss(ωt+ φ), where φ is a
programmable phase offset with respect to the light source
signal sl(ωt). Thus the acquired image is

H(ω, φ) =

∫ NT

0

sr(ωt)ss(ωt+ φ)dτ. (2)

Substituting (1) into (2) and noting that the integration of
E0ss(ωt+ φ) over a period is zero, we have (see [8])

H(ω, φ) =

∫ ∞
0

α(τ)c(τ, ω, φ)dτ, (3)



c(τ, ω, φ) =

∫ NT

0

sl(ω(t− τ))ss(ωt+ φ)dt, (4)

where c(τ, ω, φ) is the scene-independent correlation func-
tion between sl(ωt) and ss(ωt), and the working frequency
ω and the phase offset φ are both programmable parameters.
The discrete version of the correlation function is a correla-
tion matrix. Since the exact shapes of sl(ωt) and ss(ωt) of a
real system are unknown, the correlation function cannot be
computed from (4) and should be obtained by a calibration
process.

Given the correlation matrix c(τ, ω, φ) and the acquired
image collection H(ω, φ) by a multifrequency ToF camera
working at a group of different frequencies and phases, the
transient image α(τ) can be reconstructed by solving the
discrete version of (3). Heide et al. [8] optimize on α(τ)
by imposing spatial and temporal priors and even surface
model constraints and solving a massive linear optimization
problem. Kadambi et al. [22] design temporal illumination
codes to make the correlation matrix invertible under the as-
sumption that scene response is sparse, and then deconvolve
the transient image on the acquired temporal sequence. Both
approaches operate in time domain.

B. Fourier Analysis on Ideal Case

To better present our idea, we start from an ideal case that
both the light source and the sensor gain are sine waves. It
can be derived from (4) that their correlation function is also
a sine wave

c(τ, ω, φ) = A cos(ωτ + φ), (5)

where A is a constant amplitude. We define the complex
correlation function and the complex image collection as

c̃(τ, ω) = c(τ, ω, 0) + i · c(τ, ω, π/2) (6)
and H̃(ω) = H(ω, 0) + i ·H(ω, π/2), (7)

respectively. From (3) and (5)-(7) we have

H̃(ω) =

∫ ∞
0

α(τ)c̃(τ, ω)dτ

= A

∫ ∞
0

α(τ)(cos(ωτ)− i sin(ωτ))dτ

= A

∫ ∞
0

α(τ)e−iωτdτ

= A · F [α(τ)] . (8)

Here, we reach the key conclusion from (8) that the acquired
complex image collection H̃(ω) is the Fourier transform of
a transient image α(τ). If H̃(ω) is acquired with working
frequency across the whole frequency spectrum of α(τ),
exact α(τ) can be reconstructed by implementing the inverse
Fourier transform on H̃(ω). Compared with an ultrafast
camera as in [7] which samples the optical response of a
scene in the time domain, a multifrequency ToF camera
samples the optical response of a scene in the frequency
domain.

C. Extended Analysis on Non-ideal Case

For a non-ideal ToF camera we consider potential defects
as follows: 1) the modulation signal is periodic but not sinu-
soidal; 2) the waveform of the modulation signal varies with
frequency; 3) the modulation frequency is only available in
a limited range from a low frequency fL to a high frequency
fH . In this subsection we investigate systematic error in
transient image reconstruction introduced by these problems.

Since the light source and the sensor gain are periodic
functions, the correlation function is also a periodic function
of the same frequency, such that it can be expanded into a
Fourier series, i.e.,

c(τ, ω, φ) =

±∞∑
n=±1

Ãn(ω)e
−i(nωτ+nφ), (9)

where Ãn(ω) are complex coefficients of the Fourier series
and

∑±∞
n=±1 =

∑−1
n=−∞+

∑+∞
n=1. The DC component in (9)

is zero since the sensor gain ss(ωt) is a zero-mean function.
Then the complex correlation function (6) becomes

c̃(τ, ω) =

±∞∑
n=±1

B̃n(ω)e
−inωτ , (10)

B̃n(ω) = Ãn(ω)(1 + ie−inπ/2), (11)

and the complex image collection is

H̃(ω) =

∫ ∞
0

α(τ)c̃(τ, ω)dτ

=

±∞∑
n=±1

B̃n(ω)

∫ ∞
0

α(τ)e−inωτdτ

=

±∞∑
n=±1

B̃n(ω)

n

∫ ∞
0

α
( τ
n

)
e−iωτdτ. (12)

Since the waveform of the modulation signal varies with
frequency, the coefficient B̃n in H̃(ω) vary with ω. Note
that the integration part on the right hand side of (12) is the
Fourier transform of α(τ/n), the inverse Fourier transform
on H̃(ω) can be obtained by the convolution property of the
Fourier transform:

h̃(τ) = F−1[H̃(ω)] =

±∞∑
n=±1

α
( τ
n

)
∗ bn(τ), (13)

where * denotes convolution operator and

bn(τ) = F−1[B̃n(ω)/n] (14)

is a window function. Since B̃−1(ω) = 0, (13) can be
rewritten as

h̃(τ) = α(τ) ∗ b1(τ) +
±∞∑
n=±2

α
( τ
n

)
∗ bn(τ). (15)

At the right hand side of (15), the term that contains the
transient image α(τ) is called fundamental component (n =
1), and the other terms contain dilated versions α(τ/n) are
called dilated components (|n| > 1). To extract the transient
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Figure 2. Rectangular frequency window functions rL(τ) and rH(τ).

image α(τ) from h̃(τ), one needs to remove the dilated
components and then invert the window function b1(τ).

Moreover, since the working frequency ω can only be
available in a limited range [fL, fH ], the frequency spectra
of h̃(τ) beyond [fL, fH ] are missing. This is equivalent to
impose a windowing function on h̃(τ), i.e.

h̃c(τ) = h̃(τ) ∗ [rH(τ)− rL(τ)], (16)

where rH(τ) and rL(τ) are rectangular frequency windows
cutting off at fH and fL, respectively. Fig. 2 shows the
shapes of the two window functions in the time domain and
in the frequency domain.

In summary, the imaging model represented by (12),
(15) and (16) identifies three causes of systematic errors
in multifrequency ToF transient imaging:

• Non-sinusoidal shapes of modulation signal introduce
harmonic components in the correlation function (9)
and consequently cause a transient image α(τ) mixed
with its dilated versions α(τ/n) in (15).

• Frequency-varying shapes of the modulation signal
impose a frequency window function b1(τ) on the
transient image α(τ) such that the amplitude and the
phase of frequency spectrum of α(τ) are distorted in
(15).

• Limited working frequency range of the modulation
signal results in frequency spectrum truncation of the
transient image α(τ) in (16).

D. Framework of Fourier Domain Transient Imaging

Based on the above analysis, we propose a framework of
transient imaging in the frequency domain, as illustrated in
Fig. 3. First we use a multifrequency ToF camera to acquire
image set H(ω, φ) at a group of frequencies and phase
offsets. The working frequency is specified in available
frequency range of the camera. Then the image set H(ω, φ)
is rectified to remove the effect of the frequency window
function based on the knowledge of the camera correlation
function precomputed through a camera calibration process.
Finally, we reconstruct the transient image by taking the
inverse Fourier transform followed with the removal of
the dilated components and the compensation for the low
frequency spectrum.
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Figure 3. Framework of frequency domain transient imaging. The
correlation function is obtained through a calibration process.

IV. DATA RECTIFICATION

We rectify the distorted amplitude and phase of the
acquired data by computing

R̃(ω) = H̃(ω)/B̃1(ω), ω ∈ [2πfL, 2πfH ]. (17)

It can be derived from (12) that, by ignoring the dilated
components we have

R̃(ω) =

∫ ∞
0

α (τ) e−iωτdτ. (18)

Then taking the inverse Fourier transform on R̃(ω) yields
the transient image α(τ) mixed with the dilated component.

In (17), the parameter B̃1(ω) can be computed by
B̃1(ω) = 2Ã1(ω) (see (11)), where Ã1(ω) is the correlation
function obtained through the following calibration process.

Camera Calibration. We install the light source and
the camera closely, and face them towards a diffuse white
board. We capture calibration data at selected flying times
τ and frequencies ω and use the following parameterized
correlation function

A0(ω) +

n0∑
n=1

An(ω) exp{−i[nω(τ + τ0)− φn(ω)]} (19)

to fit the captured calibration data. Here,

Ãn(ω) = An(ω) exp[φn(ω)]. (20)

We use a Fourier series with a small number of components
(for example n0 = 4), since in general cases the fundamental
component in the Fourier series of a periodic function is
dominant. Moreover, in (13) and (14) the dilated components
are suppressed by 1/n, such that the high order harmonic
components have little effect on the reconstruction results.

This model has four parameters: τ0, A0(ω), An(ω), and
φn(ω). τ0 is the flying time of the shortest ray path. It
corresponds to a reference location used to determine object
depth. A0(ω) is a complex function denoting unfiltered
DC component, and has no further use. An(ω) and φn(ω)
are real functions denoting amplitudes and phase offsets of
corresponding components, respectively.

We employ the gradient descent method to fit the calibra-
tion data from [8]. Fig. 4 shows that our model is well fit us-
ing the proposed method. The amplitudes of the fundamental
component and the harmonic components are compared in
Fig. 5. It is obvious that the fundamental component is
predominant over the others, and its amplitude declines when
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the frequency increases. Although the calibration step is
time-consuming, it needs to be performed only once for an
imaging system.

V. TRANSIENT IMAGE RECONSTRUCTION

The core of transient image reconstruction is the inverse
Fourier transform on the rectified data. Since only samples
in limited working frequency range are obtained, the inverse
discrete Fourier transform (DFT) is

β(τ) =
1

M

±2πfH∑
ω=±2πfL

R̃(ω)eiωτ , (21)

where M = 1/fs/τs is the number of points in FFT, fs
frequency step, τs the flying time resolution, and τ > τ0.

It can be derived from (16) and (17) that what we obtain
in (21) is

β(τ) = h̃(τ) ∗ b−11 (τ) ∗ [rH(τ)− rL(τ)], (22)

where b−11 is the inverse of b1. Then by substituting (15)
into (22) we have
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Figure 6. Demonstration of fundamental component extraction. After
dilation, β(τ/2) contains components of β2n(τ) and β(τ/m) contains
components of βmn(τ). Note that βm(τ) = 0 for τ < mτ0. We can
remove βm(τ), τ < 2mτ0 from β(τ) by subtracting β(τ/m) from β(τ).

β(τ) = β1(τ) +

±∞∑
n=±2

βn(τ) ∗ [bn(τ) ∗ b−11 (τ)], (23)

where we define
βn(τ) = α(τ/n) ∗ [rH(τ)− rL(τ)]. (24)

To obtain α(τ), we first obtain β1(τ) by removing the dilated
components and then recover missing frequency spectra.

A. Dilated Component Removal

We remove the dilated components based on the obser-
vation: if the shortest flying time of a scene is τ0, then
α(τ/n) = 0 for τ ∈ [0, nτ0), such that β(τ), τ ∈ [0, 2τ0)
contains only the fundamental component and nothing else.

As shown in Fig. 6, if we dilate β(τ) to β(τ/m), m=1,2,...
its components are also dilated, such that we can remove
βm(τ), τ < 2mτ0 from β(τ) by subtracting β(τ/m) from
β(τ). The remaining components can be removed iteratively
in a similar way. Algorithm 1 summarizes this process.

Algorithm 1: Transient image reconstruction by Fourier
analysis (refer to Fig. 6)

Input: Rectified data R̃(ω), working frequency range [fL, fH ] and
step fs, flying time resolution τs, parameters of complex correlation
function τ0, An(ω), and φn(ω), number of components n0.
Output: β1(τ).
Steps:
1: Compute bn(τ) by (14).
2: Compute β(τ), τ > τ0 by (21).
3: Interpolate β(τ/m), τ ∈ [mτ0, 2mτ0].
4: β(τ) = β(τ)−

∑n0
m=2 β(τ/m) ∗ [bm(τ) ∗ b−1

1 (τ)].
5: Update β(τ) in a similar way as 3 to 4.
6: β1(τ) = β(τ).

B. Frequency Spectra Recovery

Missing high frequency spectrum results in transient im-
age being blurred in the time dimension. The best way to
prevent high frequency spectrum from being truncated is
increasing the highest working frequency of the ToF camera
and acquiring data at higher frequencies.

As for the low frequency spectrum, we propose peak
boosting algorithm to recover missing low frequency spec-
trum in [0, ω1]. By ignoring rH , (24) can be simplified to

β1(τ) = α(τ)− α(τ) ∗ rL(τ). (25)
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The second term is the missing low frequency spectrum
part, which needs to be recovered from β1(τ) and added
to β1(τ). Fig. 2 shows that the convolution of a peak with
rL(τ) is flat and centered at the peak. Therefore, the missing
part α(τ) ∗ rL(τ) makes each peak in α(τ) sink down
locally. Our idea is finding a peak in β1(τ), convoluting
the peak with rL(τ), and adding to β1(τ). In this way, the
peak and its neighborhood will be boosted. By repeating the
steps, the missing low frequency spectrum can be recovered.
Algorithm 2 summarizes the process.

More explanation about Algorithm 2 is given as follows.
Since α > 0, we have β1 < α, consequently βpk < α since
βpk is the positive part of β1 (θ is a small value used to
prevent noise from boosting). In Step 3 adding βpk ∗ rL to
yield βb such that βb approximates α but never over boosted
since βpk < α.

Fig. 7 demonstrates the effect of our peak boosting
algorithm on time profiles of two pixels of a synthetic scene.
The estimate of a transient image, β1(τ), sinks down due to
missing low frequency spectrum. After peak boosting, βb(τ)
is close to the ground truth α(τ).

Algorithm 2: Peak boosting

Input: time profile β1(τ), lowest working frequency ω1, peak
threshold θ.
Output: low frequency spectrum recovered transient image βb(τ).
Steps:
1: Initialize βb(τ) = β1(τ).
2: Find out peaks βpk(τ) = βb(τ)[βb(τ) > θ].
3: Update βb(τ) = β1(τ) + βpk ∗ rL(τ).
4: Repeat 2 to 3 until βb(τ) > 0.

VI. EXPERIMENTAL RESULTS

We evaluated our approach using both synthetic data for
ground truth comparisons, and real data sets downloaded
from [8]. The source code of our reconstruction algorithm
and all the reconstructed transient image videos are available
in the supplemental material. In the following, we show
some of the results with performance discussions.

A. Synthetic data
First we test on two data sets synthesized from the same

ground truth transient image α(τ) captured by Velten et al.
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Figure 8. Reconstructed transient images vs. ground truth. Our result is
able to vary almost simultaneously with the ground truth (the profile of
the tomato in frame 100, 120, 180, 200) and it has no artifact (frame 180,
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[7]. This ground truth is also used by Heide et al. [8] for
evaluation. The captured image collections H(ω, φ) are gen-
erated from (3) with the calibrated correlation matrix from
[8]. The frequency range of one of the image collections is
from 10MHz to 120MHz (called the 10MHz data set), and
the other from 3MHz to 120MHz (called the 3MHz data
set). Gaussian noise N(0, 0.0052) is added to each image
frame.

Fig. 8 shows the transient images reconstructed from the
10MHz data set. Compared with Heide et al.’s result [8],
our result is better in matching with the temporal varying
tendency of the ground truth (the profile of the tomato
in frame 100, 120, 180, 200). Moreover, artifact does not
appear in our results while it is quite obvious in Heide
et al.’s (frame 180, 200). One flaw in our result is that it
does not exhibit the highlight appeared in the ground truth
(frame 220) due to the missing high frequency spectrum.
Another flaw is that the tomato in frame 260 is darker, since
the missing low frequency spectrum is not fully recovered.
This problem can be solved by acquiring images with lower
frequencies, as shown in our result from the 3MHz data set
(see supplementary material).

Fig. 9 further compares the simulation results by showing
the time profiles of some pixels. The plots in the first row
show that our result cannot reach the true top of a sharp
pulse, and the plots in the second row show that our result
can not follow an exponential response. However, compared
with Heide et al.’s result, our result is able to obtain the
shape of the response and does not miss a peak (indicated
by arrows in Fig. 9).

Fig. 10 shows that, although our result from the 10MHz
data set does not follow exponential responses due to loss
of too much low frequency spectrum, our result from the
3MHz data set is able to follow exponential responses. That
means our approach is able to recover exponential responses
without post processing if the low working frequencies are
sampled.
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Figure 9. Time sequences of some pixels from the simulation results in
Fig. 8. Our result is able to capture the shape of the response and does not
miss a peak (compared with Heide et al.’s result indicated by arrows). The
flaws of our result are that it does not reach the true top of a sharp pulse
(first row) and does not follow exponential responses (second row). The
reasons are loss of high frequency spectrum (>120MHz) and loss of low
frequency spectrum (0-10MHz), respectively.
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Figure 10. Comparison of our results from the 3MHz data set and the
10MHz data set. Although our result from 10MHz data set does not follow
exponential responses due to loss of too much low frequency spectrum,
our result from the 3MHz data set is able to follow exponential responses
without more actions (indicated by arrows).

B. Real scenes

These data sets are captured by a real imaging system with
frequencies ranging from 10MHz to 120MHz with 0.5MHz
step increments and phases φ = 0, π/2. The calibrated
correlation matrix of the imaging system is used to train
a parameterized complex correlation function and the result
has been shown in Fig. 4 and Fig. 5. The time resolution of
the reconstructed transient image is τs = 0.33ns.

We reconstructed all of the five public data sets and the
results of two of the data sets are illustrated in Fig. 11.
The top row is a simple scene of a corner while the bottom
row is a complicated scene with several objects and mirrors.
Both of the reconstructed transient images matched to our
imagination of how light propagate in these scenes.

Our results are close to the i-step results in [8], while
the u-step results in [8] contain errors. Fig. 12 shows the
difference in the time sequences of pixels of the mirror
scene. The results in [8] by i-step are similar to our results
before peak boosting. The u-step in [8] uses a mixture of
Gaussians and exponentials to model the scene response
such that exponential response can be recovered, as shown in

frame025 frame035 frame045 frame055 frame065 frame075

frame010 frame015 frame055frame045frame020 frame035

Figure 11. Our reconstructed transient images of two real scenes.
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Figure 12. Time sequences of two pixels from the mirror scene in Fig.
11. Heide et al.’s result by i-step is like our result before peak boosting.
Heide et al.’s result by u-step uses a mixture of Gaussians and exponentials
to model the scene response (left green plot). However, this model may not
work (right green plot).

the left of Fig. 12. However, the right of Fig. 12 shows that
this model may not work. That is why the u-step results
in [8] are worse (refer to the supplemental material). Our
approach is able to achieve good results without relying on
any prior of a scene or assumption on scene response.

Moreover, the whole process of our approach (not includ-
ing calibration) is of much lower computational complexity
both in space and time than [8]. The main computational
intensive operation is the DFT in the reconstruction step.
Its space complexity is O(M), and its time complexity is
O(M logM) per pixel, where M is the number of points in
FFT. Dilated component removal and peak boosting work on
time sequence and usually need to run only once or twice.
Their space complexity is O(n), and their time complexity
is O(n) per pixel, where n is the number of flying time
samples. Comparabally, the approach in [8] is a global
optimization algorithm whose spatial complexity is at least
of order kn, where k is the number of the whole data set.
We test on a PC with a CPU of Intel i7-2600 3.40G and 8G
RAM. Our approach takes an average running time of 17.2s,
while the approach in [8] with a single i-step takes 133.1s,
and the approach in [8] with u-step take several hours.

VII. CONCLUSION

In this work, we use Fourier analysis to investigate
the principle of transient imaging with a multifrequency
ToF camera. Our study reveals the intrinsic relationship
between a captured image collection and the quality of the
reconstructed transient image. We discuss problems such as
measurement noise, harmonic component disturbance and
missing low spectrum in a real imaging system, and propose
a frequency-domain reconstruction approach to solve these
problems. We believe that our Fourier analysis provides not
only new insight to the transient imaging problem, but also



potential new theories and techniques for other ToF imaging
problems like the multipath ToF problem and the looking
through diffusing media problem.
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