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Abstract

This paper addresses extracting two layers from an im-
age where one layer is smoother than the other. This prob-
lem arises most notably in intrinsic image decomposition
and reflection interference removal. Layer decomposition
from a single-image is inherently ill-posed and solutions re-
quire additional constraints to be enforced. We introduce a
novel strategy that regularizes the gradients of the two lay-
ers such that one has a long tail distribution and the other
a short tail distribution. While imposing the long tail distri-
bution is a common practice, our introduction of the short
tail distribution on the second layer is unique. We formulate
our problem in a probabilistic framework and describe an
optimization scheme to solve this regularization with only a
few iterations. We apply our approach to the intrinsic im-
age and reflection removal problems and demonstrate high
quality layer separation on par with other techniques but
being significantly faster than prevailing methods.

1. Introduction
This paper addresses the problem of layer separation

from a single-image with application to 1) intrinsic image
decomposition and 2) single image reflection interference
removal using focus. Both of these problems take the form:

I = L1 + L2, (1)

where I is the observed image and L1 and L2 are the com-
bined layers. For example, the intrinsic image model [3]
assumes that an image scene is the product of a scene’s
reflectance and illumination at each pixel, expressed as
I = RL, where R is the reflective property or albedo at
each pixel and L is the illumination falling on this pixel. In-
trinsic image decomposition’s aim is to estimate R and L
given an input I . This can be reformulated into the form in
Eqn. 1 by taking the log, i.e. log(I) = log(R)+log(L). Re-
flection interference arises when a photo of a scene is taken
behind a glass window. This can be expressed as a linear
combination of a reflection layer LR and and the desired
background scene LB , as I = LB + LR. We use a slightly
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Fig. 1. This figure shows the two problems our method is applied
to: intrinsic image decomposition and single image reflection re-
moval using focus. The corresponding gradient histograms of each
layer is shown below. In both of these problems one layer has
fewer large gradients than the other layer. Note that the layers’
intensity has been boosted to improve visualization.

modified version based on Schechner et al.’s [14] proposi-
tion of using focus such that the desired layer is more in
focus while the reflection is blurred. This can be expressed
as: I = LB+LR∗h, where the reflection layer is convolved
with the depth of field kernel hmodelled as a Gaussian blur.

Layer separation is inherently challenging as it attempts
to obtain two unknowns (L1 and L2) from a single input I .
To make the problem tractable prior knowledge on the solu-
tions must be imposed. For example, prevailing methods for
intrinsic image decomposition (see [6, 8, 18, 20]) typically
adapt the idea that natural images have piecewise constant
reflectance while the illumination is smoothly varying. This
means that the illumination layer L is smoother than the re-
flectance R.

A successful approach in single-image reflection separa-



tion [11] employs a strategy that imposes a gradient sparsi-
ty prior on the recovered layers. The gradient sparsity prior
(also called the natural image prior) has been shown to be
successful in other ill-posed problems where multiple so-
lutions are possible (e.g. image deblurring [5]). The basic
idea is to require the image gradient histogram to have a
long-tail distribution.

Our work is inspired by the success of imposing a gradi-
ent sparsity constraint on the images, however, in our prob-
lem, the two layers’ gradients do not have the same distri-
butions. Instead, one of the layers is assumed to be smooth,
i.e. illumination L and the defocused reflection LR ∗ h, and
therefore should have very little large gradient. Figure 1
shows an example. This means we need an additional con-
straint on the smooth layer.
Contribution We propose a novel method to solve the lay-
er separation problem by building two likelihoods for each
layer from the gradient histograms in which one layer is
smoother than the other. To get the desired layer separa-
tion, the necessary objective function is formulated. An effi-
cient scheme is described to optimize the objective function
which is non-convex and has an inequality constraint. Our
method provides high-quality results on megapixel images
in a matter of seconds. This is much faster than existing
intrinsic image and reflection separation methods.

The remainder of this paper is organized as follows. Sec-
tion 2 provides more details of related methods in our tar-
geted applications; Section 3 overviews our approach; Sec-
tion 4 provides experimental comparisons with prior ap-
proaches. A discussion and summary concludes the paper
in Section 5.

2. Related Work

2.1. Intrinsic Image Decomposition

One of the earliest work addressing intrinsic image de-
composition was the Retinex algorithm [10] that employed
simple heuristics that assumed strong edge gradients be-
longed to reflectance changes in the image. Other intrinsic
image decomposition methods using multiple images [24]
or using user markup [4] have been proposed and shown
to produce good results. For automatic single image intrin-
sic image estimation, many later works [8, 17, 20] followed
the idea of the Retinex algorithm and focused on separating
reflectance and illumination edges. These methods are re-
ferred to as edge-based methods, and according to a recent
survey [8], the color version Retinex algorithm [8] was still
a top performing method. The authors of [8] also created a
ground-truth dataset (the MIT dataset) for intrinsic images
containing 16 real objects.

More recent approaches in intrinsic images took the ad-
vantage of the recent progress in probabilistic models and
optimizations methods. Unlike edge-based methods which

rely on local information, these new methods use the idea
that there is a sparse set of reflectance value present in the
scene, which is usually referred to as global sparsity pri-
or [2, 6, 15, 18]. Note that this sparsity is not applied on the
gradient histogram, but directly on the allowable reflectance
values. These approaches achieve excellent results on the
MIT dataset.

Since our method does not make the use of a prior on the
reflectance values directly, we categorize using our method
as edge-based. We show, however, that our method can
achieve much better performance than other edge-based
methods. Our results are close (sometimes even better in
a few cases) to those obtained by the state-of-art method-
s that use sophisticated models and inference while being
significantly faster.

2.2. Reflection Removal

Most reflection removal algorithms rely on multiple in-
put images. These methods require taking a set of im-
ages with different mixing of layers, e.g. rotating a po-
larized lens [9, 16], using flash/no-flash image pairs [1],
capturing a lone video sequence [13], or changing view
points [12, 19, 21]. From these multiple inputs various
schemes are used to recover the desired background layer.
Single-image reflection removal is much harder. One of the
successful approaches is by Levin and Weiss [11] and re-
lies on user markup to denote gradients that belong to back-
ground and reflection. They also proposed an optimization
framework that imposes the gradient sparsity. Their method
produces compelling results when the user provides proper
markup.

The method by Schechner et al. [14] discussed in Sec-
tion 1 also requires two input images, specifically one where
the reflection was in focus and one where the background
was in focus. We show that using our method we can ob-
tain a high-quality separation of reflection with only a sin-
gle image focused on the background. Moreover, we do not
need to explicitly estimate the blur point-spread-function h
as done in [14].

3. Our Approach
3.1. Model

Inspired by the gradient sparsity prior used in [11], we
introduce our priors on the two layers’ gradients. Suppose
L2 is smoother than L1, then large gradients are more likely
to belong to L1. We encode this into two probabilities as:

P1(x) =
1

z
max{e

− x2

σ21 , ε},

P2(x) =
1

2πσ2
2
e
− x2

σ22 ,

(2)

where x is the gradient value, z is a normalization factor, σ1
and σ2 are both small values making two narrow Gaussians
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Fig. 2. This figure shows the effect of different λ setting on the final separation results on a synthesized case. Larger λ leads to smoother
L2 and therefore controls the detail transfer in the layer separation. When λ was small (λ = 10), L1 lost many details which incorrectly
appeared in L2. When λ was large (λ = 1000), L2 became over-smooth and the part of the detail appeared back in L1. Setting λ = 100
is an appropriate choice as it gives the most pleasing result.

which drop very fast. However by using the max operator
with ε in P1 we explicitly add a tail to prevent the probabil-
ity from getting close to zero.

In order to solve the layer separation problem, we adapt
a probabilistic model to seek the most likely explanation
of the input image using the probabilities of the two layers
defined in Eqn. 2. In essence, we are maximizing the joint
probability P (L1, L2). This can be achieved by minimizing
the negative log probabilities. Taking the negative log to the
probabilities in Eqn. 2, we obtained:

− logP1(x) ∝ min{ x2

σ2
1(− log ε)

, 1}+ C1,

− logP2(x) ∝ x2

σ2
2
+ C2.

(3)

Here, C1 and C2 are constants that we can drop later. While
− logP2(x) is in L2 form, − logP1(x) is in truncated L2

form which we further simplify as ρ(x) = min{x2/k, 1}.
The term k is still a small number fixed as a constant 10−4

in our method. The function ρ is similar to the sparse penal-
ty used in [25]. With the assumption that the two layer-
s are independent (i.e. P (L1, L2) = P (L1) · P (L2)) and
the derivative filter output are independent (i.e. P (Lt) =∏
i Pt(fj ∗ L)i, t ∈ {1, 2}), minimizing − logP (L1, L2)

becomes:

min
L1,L2

∑
i,j

(
ρ(L1 ∗ fj)i + λ(L2 ∗ fj)2i

)
, (4)

where i is the pixel index, fj denotes different deriva-
tive filters. We used two directional first order derivative
filters and a second order Laplacian filter, namely f1 =

[−1 1], f2 = [−1 1]T , f3 =
[
0 1 0
1 −4 1
0 1 0

]
, and for simplicity

we write F ji L = (L ∗ fj)i in the rest of the paper. From the
experiments we found using first order derivative filters for
L1 and a second order Laplacian filter forL2 produced good
results. The first order derivative filter helps to recover the
significant edges in L1, while the Laplacian filter encodes
smooth variations in L2. We integrate the weight between

the two terms and the multiplier 1
σ2
2

together as one param-
eter λ which controls the smoothness of the output L2. The
effect of different λ setting is shown in Figure 2.

Our probabilities are defined on the gradients and to
recover meaningful layers we have to bound the solution
range i.e. (L1)i ∈ [lbi, ubi]. The ranges are set according to
the application which will be discussed in Section 4. More-
over, we can substitute L2 with I − L1 into the objective,
making the final objective function on parameter L1 as:

min
L1

∑
i

( ∑
j=1,2

ρ(F ji L1) + λ(F 3
i L1 − F 3

i I)
2
)

s.t. lbi ≤ (L1)i ≤ ubi.
(5)

3.2. Optimization

Our objective function is non-convex due to the non-
convex ρ(x) component. There is also an inequality con-
straint. Such problems require care when optimizing. We
employ a two stage approach. First, we use the half-
quadratic separation scheme [7, 22] to solve the non-convex
problem without the inequality constraint and at the end of
each iteration we perform a normalization step to force the
solution to fall within the constrained range.

Using the half-quadratic method, auxiliary variables gji
are introduced at each pixel that allow us to move the F ji L1

term outside the ρ(·) function, giving a new cost function:

min
L1,gj

∑
i

( ∑
j=1,2

(β(F ji L1−gji )
2+ρ(gji ))+λ(F

3
i L1−F 3

i I)
2

)
,

(6)
where β is a weight that we will increase during the
optimization (in our implementation , starting from 10 or
20 and multiplied by η = 2 each time). As β gets larger the
solution gets closer to that of Eqn. 5. Minimizing Eqn. 6
for a fixed β can be performed by alternating between
computing L1 and updating of gj . The computation of L1

and gj-updates are described in the following paragraphs.



Update gj Keeping L1 fixed, the closed-form solu-
tion at each pixel is found to minimize Eqn. 6 w.r.t. gj

as:

gji =

{
F ji L1, (F ji L1)

2 > 1
β

0, otherwise.
(7)

This simple thresholding rule holds when β < 1
k .

Compute L1 With gj fixed, the function of Eqn. 6 w.r.t. L1

is quadratic. Assuming circular boundary conditions, we
can apply a 2D FFT F which diagonalizes the convolution
matrices F j’s, allowing us to find the optimal L1 directly:

L1 = F−1(A),

A =
β
∑
j(F(F j)?F(gj)) + λF(F 3)?F(F 3)F(I)

β
∑
j(F(F j)?F(F j)) + λF(F 3)?F(F 3) + τ

,

(8)
where ? is the complex conjugate, the parameter τ added
to the denominator is a small number necessary to increase
the stability of our algorithm (τ = 10−16 in our implemen-
tation). The multiplication and division are both performed
element-wise. Solving Eqn. 8 requires only two FFT for g1

and g2 and one IFFT at each iteration since the other terms
can all be precomputed.
Normalize L1 After getting L1, we perform a normaliza-
tion step to bring the solution to a meaningful range. This
step is important since the solution to Eqn. 6 is not unique
and is related by a global constant. Therefore the goal of the
normalization step is to make the solution fall in the range
[lbi, ubi]. To find a suitable constant t we try to minimize
the following objective function

min
t

∑
i

mi((L1)i+t−lbi)2+
∑
i

ni((L1)i+t−ubi)2, (9)

where mi, ni are indicative functions such that mi is equal
to 1 only when (L1)i + t < lbi, and ni is equal to 1 only
when (L1)i + t > ubi, otherwise they all equal to 0. From
this, L1 is updated to L1+t. Simple gradient descent can be
used for this step. After this, a few values may still fall out-
side the interval [lbi, ubi]. These values are clipped to lbi or
ubi. We summarize the whole process in Algorithm 1. In all
of our experiments, the optimization converges very quick-
ly (within 5 iterations) and produces high-quality results.
Convergence is empirically demonstrated in Section 4.

4. Experimental Results

Our experiments are done on a PC with Intel I7 CPU
(3.4GHz) and 8GB RAM. The implementation is done us-
ing Matlab without any GPU acceleration. Demo code can
be downloaded at the author’s webpage 1.

1http://www.comp.nus.edu.sg/ liyu1988/

Algorithm 1 Layer Separation using Relative Smoothness
Input: input image I; smoothness weight λ; initial β0; it-

erations number imax; increasing rate η;
Initialization: L1 ← I; β ← β0; i← 0.

while i < imax do
update gji using Eqn. 7;
compute L1 using Eqn. 8;
normalize L1 using Eqn. 9;
β = η ∗ β, i++;

end while
L2 = I − L1;

Output: The estimation of two layers L1 and L2;

4.1. Intrinsic Image Decomposition

We denote log(I), log(R), and log(L) as Î , R̂, L̂ re-
spectively in the equations. In our implementation, the o-
riginal images are normalized to [1/256, 1]. Therefore, af-
ter log, R̂ should fall in the range [Î , 0]. Using our method,
the objective function becomes:

min
R̂

∑
i

( ∑
j=1,2

ρ(F ji R̂) + λ(F 3
i R̂− F 3

i Î)
2
)

s.t. Îi ≤ R̂i ≤ 0.

(10)

If we set the smoothness weight λ to zero and just run our
whole process once, meaning only threshold the gradient
once to get the gj and then recover R̂, our method acts just
like the Retinex algorithm [8]. We denote this configura-
tion as Retinex (Ours). Our implementation of the Retinex
algorithm can achieve better performance than the original
one described in [8]. Therefore we report the Retinex result
using our implementation.

4.1.1 Evaluation on the MIT dataset

We have tested our algorithm on the MIT intrinsic image
dataset [8].
Fast convergence We show here that our optimization
framework can converge to a good solution very fast (no
more than 5 iterations needed). We plot the energy values
at each iteration for one intrinsic decomposition example in
Figure 3. At each iteration we measure the error between
our layer estimation at the current state w.r.t. the ground
truth data using Local Mean Square Error (LMSE) [8]. The
curve is also plotted in Figure 3 to show that our method
can converge to high quality results quickly.
Comparison with previous methods We have compared
the performance of our method with several representative
intrinsic image estimation methods and reported the run-
ning time per image as well as the LMSE on the MIT dataset
in Table 1. Tappen et al.’s method [20] is an edge-based
method that learns a classifier to distinguish reflectance
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Fig. 4. This figure shows the decomposition results by Retinex [8], the method in [6] and our approach on three images from the MIT
intrinsic dataset. LMSE errors shown below are in 10−3.

edges and illumination edges. Methods in [2, 6, 18] use the
global sparsity prior and the framework in [2] uses more
constraints to solve the shape from shading problem joint-
ly with intrinsic images. These three methods are generally
considered as state-of-art in terms of the performance on the

Energy

0      1        2        3        4       5 6        7        8        9       10

Error

iter 0

iter 1 iter 5

iter: 

Fig. 3. This figure illustrate the convergence of our algorithm. The
red line and the blue line denote the energy defined by our objec-
tive function and the error between current estimation and ground
truth using LMSE measurement respectively. Note that the scales
of the energy and the error are different. We put them together here
for illustration. The estimated reflectance of some of the steps are
also plotted above.

MIT dataset. Note that for methods [6] and [2], we cannot
get the LMSE as small as in the original paper. We report re-
sults provided by the authors that are considered to be their
best performance.

Table 1. Quantitative Comparison with Previous Methods
Method Runtime LMSE
Tappen et al. 2005 [20] >200 s 0.0347
Shen & Yeo 2011 [18] >300 s 0.0204
Gehler et al. 2011 [6] >600 s 0.0131*
Barron & Malik 2012 [2] >200 s 0.0133*
Retinex [8] (Ours) <1 s 0.0217
Ours 1–3s 0.0149

As can be seen, our optimization with Matlab implemen-
tation is efficient compared with others due to the FFT ac-
celeration. Even without using the global sparsity prior, our
method can achieve high quality performance close to spe-
cially designed methods for intrinsic image (e.g. [2, 6]).

We also show three example results in Figure 4 and com-
pare with the Retinex method [8] and the best over-all per-
formance method [6]. Our method gives visually better re-
sults than Retinex [8] since our results shows clearer edges
and no bleeding artifacts. For the raccoon and teabag cas-
es, our results are even better than [6]. The results of [6]
has more regions with incorrect separations of the two lay-
ers, e.g. illumination components remaining in raccoon’s
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Fig. 5. Comparison of decomposition results on a photo with the user-assisted approach [4] and other representative automatic approaches
of [20, 18, 6]. All illumination images are shown in gray scale.

reflectance and illumination details near the border of the
teabag appears in the reflectance image.

4.1.2 Comparison on Real Input

We have also tested our method on the input image used in
previous work in [4]. The method in [4] is a user-assisted
one that can generate more piece-wise constant reflectance
with user’s labelling of regions sharing same reflectance or
same illumination. However, their local 2D subspace mod-
el would fail on high contrast region (e.g. the border of the
doll), resulting in artifacts in the reflectance image. Oth-
er three methods [6, 18, 20] more or less mixed the texture
on the cloth into the illumination map. Our method shows
arguably the the best reflectance and illumination decom-
position results, considering the piece-wise flat reflectance,
clear edges and texture information.

4.2. Single-Image Reflection Removal with Defocus
Blur

For the reflection removal problem, the estimated back-
ground value (LB)i should fall in the range [0, Ii], giving
the objective function:

min
LB

∑
i

( ∑
j=1,2

ρ(F ji LB) + λ(F 3
i LB − F 3

i I)
2
)

s.t. 0 ≤ (LB)i ≤ Ii.
(11)

4.2.1 Results on Synthetic Data

Based on the mixing process I = LB + LR ∗ h, we have
synthesised layer mixing data. A 2D Gaussian of standard
deviation five is used as the defocus blur kernel h in our
synthesis. The input mixing images as well as the final

SSIM = 0.8891SSIM = 0.6249

SSIM = 0.8089 SSIM = 0.9197

SSIM = 0.7538 SSIM = 0.8763

Input I LB LR

Fig. 6. Three reflection removal examples on synthesized data.
The corresponding SSIM with regard to the ground truth back-
ground layer are also listed below for quantitatively showing the
effectiveness of our separation. Note that we just write the recov-
ered reflection layer as LR.
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Fig. 7. Two examples of reflection removal results of our method and prior single image approach in [11]. Our method provides visually
clearer separation results. But in the top case, a small part of the background is smooth (pointed out by yellow arrow) which breaks our
assumption, leading to incorrect separation at that small region (How to correct such cases is shown in Figure 8).

separation results are shown in Figure 6. To quantitatively
assess our algorithm, we have computed the the Structural
Similarity Index (SSIM) [23] as the quality measure of the
recovered background layers.

As can be seen, after separation on the synthesized im-
ages using our method, the SSIM is increased by at least
0.1 compared with the original mixed image; visually, the
background layer is much clearer after separation.

4.2.2 Results on Real World Data

We have tested our method on reflection separation on real
world cases and compared ours with the Levin and Weis-
s’s user-assisted method in [11]. For the results produced
by [11], large amount of user-markup is provided. How-
ever, at some locations, the background edges and reflec-
tion edges intersect, making it hard for the user to label the
gradients, especially because the reflection layer has defo-
cus blur. Our method can generate clearer separation of the
background and the reflection layer than that of [11]. It is

worth noting that the method in [11] is time consuming.
Manually providing sufficient labelling can be challenging.
In addition, this method solves the non-convex optimization
using Iterative Reweighed Least Square that takes several
minutes. Our method is automatic and requires less than t-
wo seconds to produce the results. However, the top image
in Figure 7 does reveal a limitation in our work. In partic-
ular, the specular highlight (pointed by the yellow arrow)
on the ball pattern of the book cover is falsely categorized
to reflection layer. This is due to the fact that the highlight
is a smooth pattern which violates our assumption that the
background layer is sharper than reflection.

5. Discussion and Conclusion
We have presented a method to automatically extract two

layers from one image where one layer is smoother than the
other. Our approach works by building two likelihoods for
each layer from gradient histograms, that models this rela-
tive smoothness. In order to solve the layer separation prob-
lem, the necessary objective function that finds the most



likely explanation of the two layers is proposed. We also de-
rived an efficient scheme to optimize the objective function
which is non-convex and has an inequality constraint. We
have tested our method on two layer separation problems of
intrinsic image decomposition and reflection removal using
defocus blur. Our method provides high-quality results in a
manner that is significantly faster than prior work.

One challenging issue is that if our assumption that the
two layer have different smoothness is violated, our meth-
ods will fail to correctly separate the layers. An example
was shown in Section 4. If this happens, user intervention
may be used to help. For example, we can simply have the
user denote which layer a particular region should belong to
as shown in Figure 8.

In the future, we would like to explore other layer sepa-
ration problems that may benefit from our method.

Input +

User mark-up
LB LR

Fig. 8. This is the previous example from Figure 7 where part of
the image is incorrectly separated. We show here that a simple
user interaction (e.g. drawing a red rectangle indicating the region
belongs to background) can help solve the problem.
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