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Abstract

While clustering has been well studied in the past
decade, model selection has drawn less attention. This
paper addresses both problems in a joint manner with an
indicator matrix formulation, in which the clustering cost
is penalized by a Frobenius inner product term and the
group number estimation is achieved by a rank minimiza-
tion. As affinity graphs generally contain positive edge val-
ues, a sparsity term is further added to avoid the trivial so-
lution. Rather than adopting the conventional convex relax-
ation approach wholesale, we represent the original prob-
lem more faithfully by taking full advantage of the particu-
lar structure present in the optimization problem and solv-
ing it efficiently using the Alternating Direction Method of
Multipliers. The highly constrained nature of the optimiza-
tion provides our algorithm with the robustness to deal with
the varying and often imperfect input affinity matrices aris-
ing from different applications and different group numbers.
Evaluations on the synthetic data as well as two real world
problems show the superiority of the method across a large
variety of settings.

1. Introduction
Many computer vision problems, such as image segmen-

tation, multi-structure recovery and so on, involve solving
the clustering problem at some point. Often, an affinity
graph is set up and then fed into a spectral clustering frame-
work [20] to infer the clustering of the data into groups.
Such spectral graph methods include Ratio Cut [15], Nor-
malized Cut [30], etc. However, deciding on the number of
clusters remains an open problem for all such algorithms.

The simplest way to estimate the group number is to
count the number of zero eigenvalues of the Laplacian ma-
trix of the affinity graph. However, it performs not very
well in practice when data contain structures at different s-
cales of size and density, and when data are contaminated
by noise. In these cases, these eigenvalues deviate from ze-
ro in a complex manner, and it is non-trivial to determine

Figure 1. Left: A contaminated affinity matrix A with 5 clusters.
Right: The recovered G contains 5 almost perfect blocks. Further
processing by the proposed Boolean matrix factorization algorith-
m will obtain perfect blocks from this G.

the number of eigenvalues close to zero in a robust manner.
In this paper, we propose a novel algorithm to perform si-

multaneous clustering and model selection (SCAMS). Giv-
en an affinity matrix A with non-negative entries, our task
can be conceptually viewed as discovering which A(i, j)
are small enough; this is essentially saying that elements i
and j are dissimilar and should be placed in different clus-
ters. Just as importantly, we should also ensure that ele-
ments i and j are not linked indirectly through other el-
ements in the graph. This is realized by adopting an in-
dicator matrix formulation explained as follows. We take
the Frobenius inner product of the affinity matrix A and
G = ZZT , where Z is an indicator matrix whose rows in-
dicate to which group a point belongs. We maximize this
Frobenius inner product term ⟨A,G⟩ so as to keep G as
close to the data term A as possible, while at the same time,
we impose several constraints so as to ensure meaningful
solutions for G. Firstly, there should be a trade-off between
the complexity of the model and goodness of fit. The model
complexity is indicated by the rank of G (see Section 3);
thus, we seek to minimize the rank of G to discriminate
against a more complex model. Secondly, we should also
limit the cardinality of G — the number of nonzero entries
in G — so as to discover structure in the data (indicated by
the sparsity pattern of G). In fact, without this penalty ter-
m on cardinality, we will end up with the trivial solution of
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G being the all-one matrix (all data belong to one cluster).
Together with the {0, 1} constraint on G, this formulation
in effect examines the connectivity of the entire graph and
tends to set G(i, j) to one if elements i and j are linked
indirectly through other elements. This highly constrained
formulation also provides our algorithm with the robustness
to deal with the varying and often imperfect input affinity
matrices generated from different applications and different
group numbers (despite the best efforts of works to gener-
ate these matrices [12, 19, 37]). Figure 1 shows a recovery
result of our algorithm. Notice that our algorithm is able
to recover a nearly perfect 0-1 block diagonal G from the
contaminated affinity matrix.

Our problem now involves solving for a low-rank and
sparse matrix G, subject to a number of constraints over
the integer variables, all of which lead to an NP-hard prob-
lem. In many problem instances, the convex proxy to an
NP-hard problem may not be a good approach. Instead,
there might be a need to represent the original problem more
faithfully — an approximate solution to the right problem
can be better than the exact solution to the wrong problem.
In our case, we take full advantage of the particular struc-
ture present in the optimization problem, optimizing over
the rank and ℓ0-norm directly and yet solving the problem
efficiently using the Alternating Direction Method of Mul-
tipliers (ADMM) method [9, 18].

A common heuristic to obtain the final clustering is to
factorize G back to ZZT using Cholesky decomposition
[14], and assign each data point to the index with the max-
imum value in each row of Z. However, Cholesky decom-
position occasionally produces bad results even if G con-
tains nearly perfect blocks because it does not impose any
Boolean constraint on the factor matrices. Thus, we pro-
pose a variant of an existing Boolean matrix factorization
(BMF) algorithm [23] to finesse a better decomposition.

The contribution of this paper is summarized as follows.
1) We formulate the model selection as a rank minimization
problem, leading to a joint optimization of clustering and
model selection. Trivial solution is avoided by adding a s-
parsity penalty term. The low rank penalty, together with
other constraints that enforce the indicator matrix formula-
tion, highly constrains the solution space and provide our al-
gorithm with the ability to repair imperfections in the affini-
ty matrix, e.g. filling in the connectivity gap or ignoring du-
bious connections. 2) The inner optimization subproblems
in each iteration are designed to take full advantage of the
particular structure present in our problem. This results in
an effective and efficient algorithm that represents the orig-
inal problem more faithfully and works well under a wider
range of changing conditions such as increasing group num-
ber and noise level. Our extensive experiments shed light
on how the different attributes of the affinity matrices con-
structed by different methods impact on model selection,

further highlighting the strength of our algorithm. 3) We
propose a novel Boolean matrix factorization algorithm to
obtain a better decomposition which lends itself to more ac-
curate clustering.

2. Related works
There have been many algorithms devised for the cluster-

ing problem; we will briefly review some major approach-
es here. In the spectral graph approach, one needs to de-
termine the number of zero eigenvalues of the Laplacian
matrix of the affinity graph in a robust manner. Heuristics
particularly designed for this purpose include the eigengap
heuristic, the elbow criterion, the gap statistic [33], the sil-
houette index [28], and several recent measures [3, 19, 31].
In the information-theoretic approach, one aims to balance
the goodness of fit against the complexity of the model. A
classical measure is the AIC [2], which is followed by many
variants [16, 34]. Another measure is based on compression
efficiency, such as the Minimum Description Length (MDL)
[21, 27, 32]. The major drawback of this kind of methods
is that they are usually model-dependent. Among the many
clustering methods, one can also distinguish another cate-
gory which is based on the stability of the solutions [8, 17].
The stability is measured by the pairwise similarities be-
tween clustering results with respect to perturbations such
as sub-sampling or the addition of noise, and the optimal
number of clusters is then given by the most stable solu-
tion. Many of the above methods involve particular choices
to be made at the outset, for example the value of a par-
ticular thresholding parameter. Many of them also require
that the number of clusters to be found by another criteri-
on. That is, a two-step procedure is performed: a cluster-
ing criterion determines the optimal assignments for a giv-
en number of clusters and a separate criterion measures the
goodness of the classification to determine the number of
clusters. Our method involves very little domain-specific
assumptions, and it performs a joint optimization of clus-
tering and model selection in one single step. While our
algorithm also involves choice of weights, the experimental
results show that these chosen values works well across a
wide range of different settings, which is not what can be
said about other compared methods.

Our method is also related to the probabilistic mixture
model approach in the sense that both combine clustering
and model selection in a single step. However, in the prob-
abilistic mixture approach, one needs to assume that the da-
ta can be described by a mixture of multivariate distribu-
tions with some parameters that determine their shape with
known distribution of the data. Our method involves no
such assumption. Another similarity between such proba-
bilistic mixture model approach and our method lies in the
objective function. In fact, if we view our affinity matrix A
as a covariance matrix, the objective functions are identical
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except for the integer constraint(e.g. see [5, 10, 24]).
Lastly, we have in the preceding section likened the op-

timization as one of discovering which affinity values are
small enough to be set as zero. This can be regarded as
a thresholding operation on the affinity values. In fact, if
we know the threshold, we can convert our problem into a
correlation clustering (CC) problem [6]. We can either use
the original unweighted form of CC, in which the affinity
matrix A defines a graph with all edges assigned weights
of either +1 or −1 (representing “similar” and “dissimilar”
respectively), or one can use the general form of CC with
real edge weights [4, 11]. In either case, CC maximizes
the Frobenius inner product term ⟨A,ZZT ⟩ which is iden-
tical to our problem. The difficulty of this line of approach
is in determining a proper threshold to distinguish between
“similar” and “dissimilar”. Our method eschews such di-
rect thresholding and instead utilizes the generic low rank
and sparsity assumption to perform the operation. Further-
more, the CC problem is an instance of the quadratic semi-
assignment problem (QSAP) [36], which is NP-complete
when the cluster number is unknown. Our method provides
a tractable solution via carefully exploiting the structure of
the problem and appropriate relaxations, and we show in
our experiments that the results are of good quality and sta-
ble across a range of noise level and cluster number.

3. Clustering with Model Selection
3.1. Problem formulation

Suppose we are given a graph G = (V, E ,A), where
V = {vi}Ni=1 is the set of the N nodes, E ⊆ V × V denotes
the set of the edges between the nodes, and A ∈ RN×N is
an affinity matrix constructed by some method, with each
element A(i, j) ≥ 0 being the affinity between sample
vi and vj . A(i, j) = 0 suggests that vi and vj are com-
pletely dissimilar, and thus likely to be disconnected, while
A(i, j) > 0 means there is the possibility for the two nodes
to be clustered into the same group. The larger the val-
ue, the more likely these two nodes should be in the same
group. Now the task is to cluster these N nodes into K
groups, where the group number K is unknown a priori and
needs to be estimated.

For ease of problem formulation, let us assume for now
that K is known. Denote Z ∈ RN×K as the indicator ma-
trix, whose row entries indicate to which group the points
belong, i.e., if point i belongs to group k, Z(i, k) = 1 and
the remaining entries of the i-th row are all 0’s. Thus, if
point i and j belong to the same group, ⟨Z(i, :),Z(j, :)⟩ =
1; otherwise, ⟨Z(i, :),Z(j, :)⟩ = 0, where ⟨·, ·⟩ denote the
inner product of two vectors, or the Frobenius inner product
of two matrices, as the case may be. As discussed before,
we want to maximize the following objective function:

f(Z) = ⟨A,ZZT ⟩ = tr(ATZZT ), (1)

where tr(·) indicates the trace operator of the given matrix.
From the preceding, we have G = ZZT ; therefore, G

is positive semi-definite (PSD) and the rank of G is exactly
K. We can convert the above problem into the following
minimization problem over G by adding a negative sign in
front of the affinity matrix and denoting W = −A:

min . tr(WTG),
s.t. G ∈ S+,

diag(G) = 1,
rank(G) = K,
G ∈ {0, 1}N×N ,

(2)

where S+ is the PSD cone and diag(·) are the diagonal en-
tries of the matrix, this constraint merely reflecting the fact
that the same point cannot be split into different groups.

Since K is unknown a priori and usually K ≪ N , we
estimate it by minimizing the rank of G. However, this will
result in a trivial solution for G, i.e., the all one matrix,
which is rank-one and “covers” all the entries of the affinity
matrix by 1. To avoid the trivial solution, we further add
an ℓ0 penalty on G to enforce sparsity on its entries. This
would force the optimization to only insert ones at those
G(i, j) locations where the magnitude of the corresponding
A(i, j) is large. Accordingly, we now have

min . tr(WTG) + λrank(G) + γ||G||0,
s.t. G ∈ S+,

diag(G) = 1,
G ∈ {0, 1}N×N ,

(3)

where || · ||0 is the ℓ0 norm, which counts the number of
nonzero elements, and λ and γ are the parameters to weigh
the respective penalty terms. To make the problem tractable,
we first relax the constraint G ∈ {0, 1}N×N to obtain real-
valued entries G ∈ [0, 1]N×N . Next, instead of replacing
the rank and the ℓ0 norm with their convex proxies, we op-
timize them directly by taking full advantage of the partic-
ular structure present in the problem. In particular, as we
will show later, the resulting inner optimization problems
can be solved analytically by eigen-decomposition and soft-
thresholding operations. By now, the problem to be solved
has the following form

min . tr(WTG) + λrank(G) + γ||G||0,
s.t. G ∈ S+,

diag(G) = 1,
G ∈ [0, 1]N×N .

(4)

3.2. Solver

For efficiency, we adopt the ADMM method [9, 18] to
solve this problem. We first convert (4) to the following
equivalent problem:

min . tr(WTG) + λrank(G) + γ||H||0 + g(H),
s.t. G ∈ S+,

G = H− diag(H) + I,
(5)
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where g is the indicator function of the convex set
[0, 1]N×N , which returns 0 if it is in the set, ∞ otherwise,
and H is an intermediate variable introduced to make the
problem tractable. The augmented Lagrange function is
L = tr(WTG) + λrank(G) + γ||H||0 + g(H)+

tr(YT (G−H+ diag(H)− I))+
1
2µ∥G−H+ diag(H)− I∥2F ,

s.t. G ∈ S+,
(6)

where Y is the Lagrange parameter, and µ > 0 is a penalty
parameter. The function can be minimized with respect to
G and H alternatingly, by fixing the other variable, and then
updating the Lagrange multipliers Y. The overall frame-
work of the alternating direction method is shown in Algo-
rithm 1, with the detailed solver for each subproblem to be
described later.

Algorithm 1 Solving (4) by ADMM
Input: Negative affinity matrix W, parameters λ and γ.

Initialize: G = H = Y = 0N×N , µ = 106, ρ = 1.1,
µmin = 10−10 and ϵ = 10−8.
while not converged do

Step 1 Fix the others and update G as
G =argminG ∥G−H+µ(W+Y)∥2F +2µλrank(G),
s.t. G ∈ S+.

Step 2 Fix the others and update H as
H′ = argminH ∥H−G−µY∥2F+2µγ∥H∥0+g(H),
H = H′ − diag(H′) + I.

Step 3 Update the multipliers
Y = Y + 1

µ (G−H).

Step 4 Update the parameter µ by µ = max(µρ , µmin).

Step 5 Check the convergence conditions:
∥G−H∥∞ ≤ ϵ.

end while

Solving G. In step 1 of Algorithm 1, the solution of G
involves minimizing the rank plus a convex quadratic func-
tion in the PSD cone. It can be efficiently solved using the
following theorem. The proof is analogous to that of Theo-
rem 16 in [25], with the nuclear norm replaced by the rank.

Theorem 1. For any square matrix S ∈ RN×N , the unique
closed form solution to the optimization problem

G∗ = argminG ∥G− S∥2F + λrank(G),
s.t. G ∈ S+.

(7)

takes the form
G∗ = QHλ(Λ)QT , (8)

where QΛQT is the spectrum(eigen-) decomposition of
Ŝ = (S + ST )/2 and Hλ(·) is the thresholding operator

acting on each element of the matrix, and defined as

Hλ(v) =

{
0 if v < 0 or v2 ≤ λ,

v otherwise .
(9)

Solving H. In step 2 of Algorithm 1, the update of H′

involves minimizing the ℓ0 norm plus a convex quadratic
function in the convex set [0, 1]N×N . Since this problem
is obviously separable, each elements can be optimized in-
dividually and simple manipulation suggests the following
theorem.

Theorem 2. For any matrix M ∈ RM×N , the unique
closed form solution to the optimization problem

H∗ = argmin
H
∥H−M∥2F + γ∥H∥0 + g(H), (10)

takes the form
H∗ = Tγ(M). (11)

where Tγ(·) is the thresholding operator acting on each el-
ement of the matrix, and is defined as

Tγ(v) =


1 if v > 1 and min(v2, 2v − 1) > γ

0 else if v < 0 or v2 ≤ γ or v > 1

v otherwise .
(12)

With the closed-form solutions, global minimums are as-
sured for both sub-problems. Nevertheless, the algorithm as
a whole does not have guarantee to convergence as the two
sub-problems are non-convex. As far as we know, there is
no general convergence theory for ADMM applied to non-
convex problems, but numerical results in [29] on low-rank
matrix factorization show that ADMM performed well for
solving certain non-convex models. Indeed, our algorithm
also has strong convergence behavior empirically.

4. Constrained Boolean Matrix Factorization
As the Cholesky decomposition occasionally yields poor

binary result of Z even if G is nearly a 0-1 block diagonal
matrix, we adapt the idea of BMF to achieve a better de-
composition. Our proposed BMF method is similar to the
Asso algorithm [22, 23] but takes into account the addition-
al PSD constraint, and that each row of Z contains only one
1 (this latter constraint can be interpreted as an orthonormal
constraint under Boolean algebra).

For the sake of completeness, we first give a brief intro-
duction of BMF; for more details, see [22, 23]. We then for-
mally define our BMF problem with its PSD and orthonor-
mal constraints.

BMF aims to (approximately) represent a Boolean ma-
trix as the Boolean product of two Boolean matrices. Here
“Boolean” matrix means that the matrix contains only 0’s
and 1’s. Using the superscript b to stand for Boolean ma-
trix, let Bb ∈ {0, 1}N×K and Cb ∈ {0, 1}K×M be the two
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Boolean matrices, whose Boolean matrix product, Bb ◦Cb

yields Ab, with Ab(i, j) = ∨Kk=1B
b(i, k)Cb(k, j), and the

OR operation ∨ is the normal sum but with addition defined
as 1 + 1 = 1. Our problem can now be formally defined as

Problem 1. Constrained Boolean Matrix Factorization
(CBMF) with the PSD and Boolean orthonormal con-
straints. Given a Boolean matrix Gb ∈ {0, 1}N×N and
an upper bound K0, find Boolean matrix Zb ∈ {0, 1}N×K ,
K ≤ K0, such that Zb satisfies

min . |Gb ⊕ (Zb ◦ ZbT )|,
s.t. ZbT ◦ Zb = IK×K ,

(13)

where | · | is the norm of a Boolean matrix and defined as the
number of 1’s in it, i.e., |Ab| =

∑
i,j A

b(i, j), and ⊕ is the
Exclusive-OR operation applied element-wise, and defined
as the normal addition but with 1 + 1 = 0.

The original Asso algorithm solves the BMF problem via
the heuristic approach of generating the candidate column-
s using pairwise association accuracies. More specifically,
it generates a matrix D with D(i, j) = ⟨Gb(i, :),Gb(j, :
)⟩/⟨Gb(j, :),Gb(j, :)⟩, i.e., D(i, j) is the association ac-
curacy as defined in association rule mining [1] for rule
Gb(j, :) ⇒ Gb(i, :). After D is binarized to a Boolean
matrix Db (see Algorithm 2), the columns of the factor ma-
trices are selected from the columns of Db in a greedy fash-
ion. In the context of our problem with the two additional
constraints, the algorithm is modified as follows. Firstly,
each candidate column of Db is concatenated to the curren-
t Zb, and the next best Zb is the one that minimizes (13).
Note that by virtue of the formulation, the PSD constraint
is automatically satisfied. This step is repeated K ≤ K0

times until there is no candidate column in Db left or (13)
cannot be reduced anymore. Secondly, to reduce the prob-
ability that a row of Zb contains multiple 1’s and violates
the Boolean orthonormal constraint, we only retain as can-
didate those columns which are sufficiently different from
the selected columns (based on some threshold td) for the
next iteration. The full details are presented in Algorithm 2,
in which the input K0 is usually selected as the rank of G.

Since we only approximately enforce the orthonormal
constraint, it is possible for a row of Zb to contain multi-
ple 1’s. Usually, these constitute a very small proportion
of the rows. Thus, most points can be uniquely assigned
to clusters and the clusters are adequately populated. As a
result, we can resolve the assignment conflict by a simple
post-processing step as follows. We postpone the cluster
assignment of all those points with conflicts. Assuming the
resultant clustering is X = {X1, . . . , XK} and that there
is an unassigned data point i, we assign the point i to the
group XK′ with whose members it has the largest affini-
ty; that is, K ′ = argmaxk

∑
j∈Xk

A(i, j), where A is the
affinity matrix as defined in Section 1.

Algorithm 2 The AssoCBMF algorithm
Input: G, K0

Initialize: Construct the Boolean matrix Gb from G with
rounding threshold tb = 0.5, Zb ← [ ], e =∞, td = 0.1.
for τ = 0.1, 0.2, . . . , 1 do

Construct Db with Db(i, j) = ⟨Gb(i,:),Gb(j,:)⟩
⟨Gb(j,:),Gb(j,:)⟩ > τ .

for k = 1, 2, ...,K0 do
i = argmini |Gb⊕([Zb Db(:, i)]◦ [Zb Db(:, i)]T )|.
Zb ← [Zb Db(:, i)].
Delete all j-th columns with ⟨Db(:,i),Db(:,j)⟩

∥Db(:,i)∥∥Db(:,j)∥ > td

from Db.
if Db is empty or (13) is not reduced in this loop

break
end if
if ∥G− ZbZbT ∥2F < e

Zb∗ = Zb.
e = ∥G− ZbZbT ∥2F .

end if
end for

end for
return Zb∗

5. Experiments

In this section, we compare our method with various
model selection methods. In the spectral graph approach,
the key to performance lies in how well one is able to deter-
mine the number of eigenvalues close to zero in the Lapla-
cian matrix. We choose as representatives of these spectral
graph methods both the basic gap heuristic (GH) method
[20] as baseline, as well as one of the most robust ones—the
soft thresholds (ST) method [19] which produces the best
result reported in the motion segmentation problem so far.
In addition to these two methods, we also compare with a
model specific method—the second order difference (SOD)
method [38], which reports state-of-the-art results in sever-
al datasets. A potential disadvantage of SOD is that it re-
quires knowledge of the model; in particular, the subspace
dimension is assumed known and constant. Note also that
its model selection does not depend solely on the affinity
matrix, hence requiring the original data as input. Since the
performance of the model selection step also depends on the
type of affinity matrix passed in, we also experiment with d-
ifferent ways of constructing the affinity matrix. We choose
the two state-of-the-art algorithms in subspace clustering,
SSC [12] and LRR [19] 1, to construct affinity matrices.
For ST and SOD, we use the same parameter settings as in
the original papers; for SCAMS, we use the fixed values of

1Here, by SSC and LRR, we refer only to those part of the respective
algorithms that produce the affinity matrix, i.e., not including the original
model selection step proposed by the authors.
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λ = 2 and γ = 0.005 in all the experiments.
To evaluate algorithm performance, we adopt the Rand

index [26] as a measure of similarity between two data clus-
terings. This metric counts the pairs of points on which two
clusterings agree or disagree. It is a better metric compared
to the classification error rate when the number of groups is
unknown. It is defined as follows.

Definition 1. Given a set of N elements V = {vi}Ni=1 and
two clusterings of V , namely X = {X1, . . . , Xr} with r
clusters and Y = {Y1, . . . , Ys} with s clusters. We define
• a: the number of pairs that are in the same cluster in

both X and Y.
• b: the number of pairs that are in the different clusters

in both X and Y.
• c: the number of pairs that are in the same cluster in

X but in the different clusters in Y.
• d: the number of pairs that are in the different clusters

in X but in the same cluster in Y.
The Rand index, RI , is

RI =
a+ b

a+ b+ c+ d
. (14)

Note that RI has a value between 0 and 1, with 0 indicating
that the two data clusters do not agree on any pair of points
and 1 indicating that the data clusters are exactly the same.

5.1. Synthetic data

We first investigate the performance of the various meth-
ods using synthetic data with different noise levels and
varying number of groups. Similar to [31], we sample K
subspaces chosen uniformly at random from d-dimensional
subspaces in R50. We then sample 50 points on each sub-
space and normalize them to unit-norm vectors for the ex-
periments.

5.1.1 Different noise levels

In the noise level test, we fix K = 5, with each group having
different dimensions of d = [2, 4, 6, 8, 10] respectively. The
latter is to reflect model degeneracy, quite a common occur-
rence in real-world applications. As per [31], we perturb
each unit-norm data point by adding a noisy vector chosen
independently and uniformly at random on the sphere of ra-
dius ρ (noise level) in R50. We consider 11 different noise
levels: ρ = 0, 0.05, . . . , 0.5. The test runs 20 times and the
average results are reported in the top of Figure 2.

As can be seen, despite the increasing noise, SCAMS
performs consistently well (above 0.9) using either SSC or
LRR to construct the affinity matrix. SOD performs less
well although its performance also does not degrade much
with increasing noise level. In contrast, the performances
of GH and ST degrade significantly when the noise level in-
creases. This experiment shows that SCAMS is more robust
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Figure 2. Comparison on the Synthetic Data. Top: RI on the syn-
thetic data when the noise level changes. Bottom: RI on the syn-
thetic data when the number of subspaces changes.

to noise. One may also notice that when the affinity matrix
is provided by SSC, the RIs of all methods are somewhat off
the perfect score of 1 even with the noise level at 0. This is
probably because the LASSO version of SSC that we use is
designed for noisy data at all levels. Unfortunately, this re-
sults in a slight loss of accuracy in the affinity matrix when
the noise level is 0.

5.1.2 Varying group numbers

In the group number test, we fix the noise level ρ = 0.05
and gradually increase the group number K from 1 to 12.
For a given K, each of the K groups has a different dimen-
sion d ranging from [2, 4, . . . , 2K] respectively. Note that
the sum of the dimension of the subspaces is greater than
the ambient dimension of 50 when K > 6. As K increases
still more, the various subspaces become increasingly de-
pendent, posing difficulties for the construction of affinity
matrix by SSC and LRR. This raises the spectre of poor-
quality affinity matrix as the number of groups increases.
We again repeat the experiment 20 times and report the av-
erage results in the bottom of Figure 2.

As is evident again, SCAMS performs consistently well
(above 0.9) with both versions of affinity matrix. SOD is
a second order method, and its mechanism can only handle
those cases when group number is greater than one. Oth-
er than this drawback, SOD again produces fairly competi-
tive results, its performance not degrading significantly until
group number exceeds 8 or 9. ST is also fairly competitive
but degrades earlier when the affinity matrix is constructed
by LRR. GH and SOD perform badly when the group num-
ber is 1. In general, one can say that the performances of
most methods are affected by the declining quality of affini-
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ty matrices when the subspaces or groups increasingly over-
lap, with the effect being more pronounced in the case of
LRR-constructed affinity matrix. On the other hand, some
methods (notably GH) are seemingly affected by the spars-
er connectivity of the SSC-constructed affinity matrix, es-
pecially when the group number is small. Only our method
is adequate to the handling of the varied attributes of the
affinity matrices produced by different methods and under
changing conditions.

To show the improvement brought about by the CBMF
algorithm in Section 4, we also report the result of SCAMS
using just Cholesky decomposition (SCAMS-CK) to per-
form the G = ZZT factorization. While the improvement
is not significant in the case of the affinity matrix produced
by LRR, it is significant when the affinity matrix is con-
structed by SSC and the group number is small. This per-
formance boost is further corroborated in the later motion
segmentation experiment in which CBMF improves the RI
score by about 0.02.

5.2. Motion segmentation

We further evaluate the performance of SCAMS in deal-
ing with real world problems. In this subsection, we tack-
le the motion segmentation problem using the Hopkins155
[35] as dataset. This dataset comprises 155 sequences con-
taining either two or three motions. This problem can be
formulated as a subspace clustering problem, because the
trajectories of a rigid motion across multiple frames lie in
an affine subspace with a dimension of no more than 3, or
a linear subspace with a dimension of at most 4 under the
affine camera assumption [35]. In our experiments, we use
the original 2F -dimensional feature trajectories without any
compression, where F is the number of frames in each se-
quence. The results in Table 1 report the RI scores averaged
over the 155 sequences.

Table 1. RI on Hopkins155

Affinity by LRR Affinity by SSC
Method Mean Median Mean Median
GH 0.6584 0.6490 0.7699 0.7418
ST 0.9154 0.9815 0.9095 0.9972
SOD 0.9026 0.9923 0.8834 0.9944
SCAMS 0.9202 0.9827 0.9068 0.9740

Since this dataset is almost noise-free and contains a s-
mall number of subspaces in each sequence, all the methods
except GH perform well and there is no significant differ-
ence among these methods. GH’s poor performance can be
correlated with the corresponding simulation results in the
preceding section. Firstly, when the affinity matrix is pro-
duced by LRR, slight noise can be detrimental to the GH
method. Secondly, when the affinity matrix is produced by

SSC, GH performs badly with a small group number.

5.3. Face clustering

The other real world problem that we address is the face
clustering problem. In this subsection, we test the algo-
rithms on the Extended YaleB dataset [13], which contains
cropped frontal human face images of 38 subjects. Each
subject has 64 images taken under different light illumina-
tions. This problem can also be cast as a subspace clustering
problem, because images of a subject with a fixed pose and
varying illumination lie close to a linear subspace of dimen-
sion 9 [7]. To evaluate the performance of our algorithm,
we randomly pick K subjects (K ranging from 5 to 15) and
cluster the features associated with these subject images. As
a preprocessing step, we resize the images to 42 × 48, and
then use PCA to reduce the dimensionality of the vectorized
raw pixel features to 30. We repeat the experiment 20 times
and show the average results in Figure 3.
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Figure 3. Comparison on the Extended YaleB dataset with increas-
ing number of subjects.

As can be seen from Figure 3 and has been observed ear-
lier, the affinity matrix constructed by LRR still poses prob-
lems for most methods (though to varying degrees) when
the number of groups increases. In contrast, SCAMS per-
forms consistently well (above 0.9) even when the LRR-
constructed affinity matrix is not in an obliging form for
most other methods. With SSC-constructed affinity matrix,
all methods yield promising and more stable results, at least
with respect to the number of subjects tested in this experi-
ment. SCAMS performs consistently better than most other
algorithms, with GH also turning in a stable performance.
This latter phenomenon is again consistent with the results
of the synthetic experiment.

6. Conclusion and Discussion
We simultaneously solve the model selection and cluster-

ing problems in a unified optimization scheme. The original
structure of the affinity matrix is preserved by the Frobenius
inner product (the data term) and the sparsity penalty, both
terms acting locally. The rank minimization enforces glob-
al smoothness and tends to reduce the complexity of the
model. These global and local considerations reveal the un-
derlying structure of the clusters, resulting in a near-perfect
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0-1 block diagonal matrix. Our highly-constrained indicator
matrix formulation also has the effect of rectifying imper-
fections in the affinity matrix, such as filling in connectivity
gap in the SSC-constructed affinity matrix. We then pro-
pose a constrained BMF to obtain a better decomposition
and this in turn yields better assignments of data points.
The experiments on the synthetic data as well as two re-
al world problems show that our method performs signifi-
cantly better with noisy data and large number of groups.
Our experiments with both the LRR- and SSC-constructed
affinity matrix reveal their different characters, and further
showcase the strength of our proposed SCAMS method in
handling different types of affinity matrices.
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