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Abstract

Heart rate is an important indicator of people’s physio-
logical state. Recently, several papers reported methods to
measure heart rate remotely from face videos. Those meth-
ods work well on stationary subjects under well controlled
conditions, but their performance significantly degrades if
the videos are recorded under more challenging conditions,
specifically when subjects’ motions and illumination varia-
tions are involved. We propose a framework which utilizes
face tracking and Normalized Least Mean Square adap-
tive filtering methods to counter their influences. We test
our framework on a large difficult and public database
MAHNOB-HCI and demonstrate that our method substan-
tially outperforms all previous methods. We also use our
method for long term heart rate monitoring in a game eval-
uation scenario and achieve promising results.

1. Introduction

Heart rate (HR) is an important indicator of people’s
physiological state. Traditional HR measurement methods
rely on special electronic or optical sensors, and most of the
instruments require skin-contact which makes them incon-
venient and uncomfortable. On the other side, commercial
cameras can be found everywhere nowadays such as web-
cams, surveillance cameras, and cellphone cameras. The
technique of remote HR monitoring using ordinary cameras
would have many potential applications. It has been re-
ported that skin color change caused by cardiac pulse can be
captured by ordinary cameras for HR measurement [[12}20]],
but it is still a challenging task since the change caused by
the cardiac pulse is very small compared to other numerous
factors that can also cause fluctuation of the gray value of
local skin. Among all these factors, illumination variations
and subjects’ motions are two important ones. In this paper,
we propose a novel HR measurement framework, which can
reduce the noises caused by illumination variations and sub-
jects’ motions. Our results show that the framework can
achieve promising results under realistic human computer
interaction (HCI) situations.

HR measurement research is a conventional topic in the
field of biomedical study, but it is seldom concerned in the
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Figure 1. Proposed framework for HR measurement from facial
videos in realistic HCI situations.

video (of visible light) processing domain. The latter is
known to be good at recognizing and analyzing explicit
characteristics like shapes, textures or movements; while
implicit bio-signals like the HR are considered ‘out of the
range’ without the help of special optical equipment. In this
paper we demonstrate that computer vision methods can
help to solve the problem of remote HR measurement.

Remote HR monitoring has many potential applications.
With the ability to ‘see’ inner changes like the heartbeat,
video processing research can be broadened in many ways.
For example: 1) For remote health care: web-cam can be
used for real-time remote medical examinations and sup-
port long-term HR monitoring. 2) For affective computing:
the focus of the past study is mainly about facial expres-
sions and speech, which are only the out tip of the emo-
tion iceberg; physiological states like the change of HR is
inextricably linked with people’s emotions, thus should be
also integrated to build a comprehensive emotion recogni-
tion system. 3) For human behavior analysis: aside from the
analysis of explicit behaviors like poses and gestures, in-
ner physiological changes provide additional knowledge for
better understanding of people’s behavior. 4) For biomet-
rics: the heartbeat could also work as an indicator of vital
sign for the anti-spoofing system.

Recently, some investigations [2, 110} |12} 13 have shown
that HR can be measured from face videos under well con-
trolled laboratory conditions. But in realistic situations the



task is more difficult because many factors could contami-
nate the pulse signal measured from face area. For exam-
ple, in a HCI scenario of video watching or game play-
ing, both environmental illumination variations and sub-
jects’ motions can be expected to affect the gray value of
the face region. Illumination variations include all forms of
noise caused by the change of environment, like the blink
of indoor lights, the flash of reflected light from a computer
screen and the inner noise of the digital camera. Subject’s
motion include both rigid movements like head tilt and non-
rigid movements like eye blinking and smiling. To our best
knowledge, no method has been demonstrated to be able to
measure HR successfully under such realistic conditions.

We propose a framework (Figure [I)) to reduce the im-
pact of afore-mentioned interferences for remote HR mea-
surement. We use face tracking to solve the problem of rigid
head movements; and use the green value of background as
a reference to reduce the interference of illumination varia-
tions; then segment and shear the signal to reduce the noise
caused by sudden non-rigid movements. We demonstrate
that our method can significantly reduce the impact of afore-
mentioned interferences and increase the accuracy of HR
measurement under realistic HCI situations.

2. Related works

Remote non-intrusive HR measurement is an attractive
topic for both commercial and academic purposes. Many
past works that attempt for remote heart rate monitoring in-
clude the use of photoplethysmography (PPG) [5, 9]. The
blood volume of micro-vascular all over the body changes
together with cardiac pulse, so the blood volume pulse
(BVP) measured at peripheral body tissues (like palm or
fingertip) is usually used as an indicator of cardiac cycle
measurement. The principle of PPG method is to illuminate
the skin with a light-emitting diode (LED) and then mea-
sure the amount of light reflected or transmitted to a photo-
diode. Since the amount of light absorption is a function of
the blood volume, PPG can measure the local blood volume
pulse. Although it is possible to use PPG based settings to
measure HR without any contact, this method still requires
special lighting sources and sensors.

In the past few years several papers proposed color-based
methods for remote HR measurement using ordinary com-
mercial cameras [10} [12} [13]]. Poh et al. [12]] explored
the possibility to measure HR from face videos recorded
by a web-cam. They detected the region of interest (ROI,
i.e. the face area) using Viola-Jones face detector and com-
puted the mean pixel values of the ROI of each frame from
three color channels. Then Independent Component Analy-
sis (ICA) was applied to separate the PPG signal from the
three color traces, and the PPG signal was transferred into
frequency domain to find the frequency with the max power
within the range of [0.7, 4] Hz as the HR frequency. Ac-
cording to previous findings [20]], the green channel trace
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contains the strongest plethysmographic signal among the
three color channels. Poh’s results showed that comparing
to the raw green trace, ICA separated sources can achieve
higher accuracy for measuring HR.

The results in [[12]] were challenged by Kwon et al. [10].
Kwon et al. recorded face videos with the built-in cam-
era of a smart-phone, and extracted HR using both the raw
green trace and the ICA separated sources. They found that
ICA slightly dropped the performance which is contrary to
Poh’s result. Later Poh et al. [13]] improved their method
by adding several temporal filters both before and after ap-
plying ICA. The improved method achieved very high ac-
curacy for measuring HR on their self-collected data.

A motion-based method was proposed by Balakrishnan
et al. recently [2]]. Balakrishnan et al. tracked subtle head
oscillations caused by cardiovascular circulation, and used
PCA to extract the pulse signal from the trajectories of mul-
tiple tracked feature points. The method achieved promis-
ing performance on their self-collected videos. Since the
method relies on motion tracking, subjects must avoid vol-
untary movement in their experiment. Balakrishnan et al.
indicated that measuring HR on moving subjects would be
a valuable future direction.

All these mentioned methods [2, [10} |12} [13]] have the
following limitations while considering the adaptability and
robustness in general application scenarios:

1) In their testing data, neither illumination variations
nor subjects’ motions were involved since no task was as-
signed and subjects were asked to keep still during video
recording. Controlled settings lead to simple and almost
noiseless data, so all the reported results achieved high
accuracy (error rate less than 3%). But in realistic HCI
scenarios such as people watching movies from a screen,
the reflected light from the screen can change dramatically
from time to time; rigid head movements and non-rigid mo-
tions like facial expressions are also inevitable. It was not
known how these methods would perform on challenging
data when illumination variations and subjects’ motions are
both involved.

Poh et al. [12] did report an experimental result of HR
measurement during motion, but in their experiment mo-
tion only meant performed slow and uniform head swings,
which is different from spontaneous movements.

2) None of their data [2 [10l [12} [13]] is publicly avail-
able, and new methods have to come out with new datasets.
Repetitive data collection is a waste of time and most im-
portantly the cross-database difference makes it difficult to
make fair comparisons of different methods.

In this paper, we propose a new framework for remote
HR measurement which can work under challenging real-
istic HCI situations, and we evaluate it on a multi-modal
database MAHNOB-HCI [17]. MAHNOB-HCI is selected
for three reasons: 1) it includes large samples of facial



videos and corresponding ground truth HR signals recorded
by Electrocardiography (ECG); 2) the videos were recorded
in realistic HCI scenarios that both illumination varia-
tions and subjects’ motions were involved; 3) it is a pub-
lic database that can be easily accessed by all researchers
which makes fair comparison possible.

We describe our framework in Section 3, and then report
the results of three experiments in Section 4. In Experiment
1, we compare our method with others on a simple self-
collected database; in Experiment 2 we compare them again
on MAHNOB-HCI database to demonstrate the robustness
of our framework under realistic situations; in Experiment
3 we show that our method can be used in applications like
long-term HR monitoring in game evaluation scenario.

3. Framework

Our framework is composed of four steps as shown in
Figure [I] In the first step, we need to get the ROI which
includes the raw pulse signal from the face video, and deal
with the problem of rigid head movement. We use Discrim-
inative Response Map Fitting (DRMF) method [1] to de-
tect facial landmarks and generate a mask of ROI in the
first frame, and then employ Kanade-Lucas-Tomasi (KLT)
algorithm [19] to track the location of the ROI. The aver-
age green value of the ROI in each frame is computed as
the raw pulse signal. The purpose of the second step is to
reduce interferences caused by illumination variations. We
segment the background region using the Distance Regular-
ized Level Set Evolution (DRLSE) method [[11], and use its
average green value as a reference to model the illumina-
tion variations at the ROIL. Normalized Least Mean Squares
(NLMS) filter [[16] is employed to find the optimized coef-
ficient of the model. The aim of the third step is to reduce
interferences caused by sudden non-rigid motions. We di-
vide the pulse signal into segments and discard segments
contaminated by sudden non-rigid movements. In the fourth
step, several temporal filters are applied for excluding pow-
ers of frequencies that are out of HR range, and Welch’s
power spectral density estimation method [22] is employed
to estimate the HR frequency. Details of each step are ex-
plained in the following subsections.

3.1. ROI Detection and Tracking

Previous HR measurement methods use the Viola-Jones
face detector [21] of OpenCV [4] to detect faces. It only
finds coarse face locations as rectangles, which is not pre-
cise enough for HR measurement task since non-face pixels
at corners of rectangles are always included. The case be-
comes even worse when the face rotates. To this end, we
first apply Viola-Jones face detector to detect the face rect-
angle on the first frame of the input video, then use Dis-
criminative Response Map Fitting (DRMF) method [1] to
find the coordinates of 66 facial landmarks inside the face
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rectangle. DRMF is a discriminative regression based ap-
proach for the Constrained Local Models (CLMs) frame-
work, which can find precise facial landmarks in generic
face fitting scenario. We use [ = 9 points out of 66 land-
marks to define our region of interest (ROI), and generate a
mask of the ROI as the blue region showed in Figure [2}

Figure 2. ROI detection and tracking. The yellow line shows
the face rectangle, inside which feature points are detected and
tracked. The red points indicate 66 landmarks and the light-blue
region is the defined ROL.

Two rules are followed for defining the ROI: the first one
is to exclude the eye region since blinking may interfere
with the estimated HR frequency; the second one is to in-
dent the ROI boundary from the face boundary, otherwise
non-face pixels from background might be included during
the tracking process.

Then we use tracking to counter the problem of rigid
head movement. Poh er al. [12] proposed to use face detec-
tion on every frame for HR measurement on moving sub-
ject, but it is not precise enough as the detected rectangle
slightly moves even when the face does not move at all.
For our tracking process, feature points are detected inside
the face rectangle using the standard ‘good feature to track’
proposed by Shi et al. [[15]], and are tracked through the fol-
lowing frames using the Kanade-Lucas-Tomasi (KLT) al-
gorithm [19]. For the ith frame, we get the locations of the
tracked feature points P; as [p1(4), p2(%), . . ., pr(7)], where
k is the number of feature points; and the locations of the
ROI boundary points Q,; as [q1(%), g2(%), ..., ¢ (i)]. We can
estimate the 2D geometric transformation of the face be-
tween the current and the next frame as: P,y = AP;,
where A is the transformation matrix. We apply transforma-
tion A to the current ROI coordinates to get the coordinates
of the ROl in the next frame: @, ,; = AQ,.

The tracked ROI contains pixels of facial skin whose
color values change with the cardiac pulse. Previous work
found that although red, green and blue channels all con-
tains some level of plethysmographic signals, the green
channel contains the strongest one among all three [20].
This finding is consistent with the fact that green light is
better absorbed by (oxy-) hemoglobin than red light [14],
and penetrates deeper into the skin to probe the vasculature
as compared to blue light. In our preliminary test we also
found the green channel works the best, so we use the green



value in our framework. The raw pulse signal is calculated
as the mean green value of pixels inside the ROI of each
frame gg,.. = [g1, &2, - - -, gn], Where n is the frame num-
ber.

3.2. Illumination Rectification

In Section 3.1, we tackle the interference caused by rigid
head movements. In this section we focus on how to reduce
the illumination interference. Let’s assume the face video is
recorded from a motionless subject, the mean green value
of ROl is a function of time. One example of gy, is shown
in Figure [3|(the top curve). Two factors affect the values of
Gi.ce: the first one is the blood volume variations caused by
cardiac pulse; the second one is the (temporal) environmen-
tal illumination variations during the video recording. We
assume the variations of g,.. caused by these two factors
are additive:

Gface = s+uy, (1)

where s denotes the green value variations caused by car-
diac pulse, and y denotes the green value variations caused
by illumination changes.

Our goal is to achieve the target signal s and eliminate
noise signal y. The problem is that y can not be measured
directly. However, in an ordinary HCI environment (e.g.
subject watches movies from a screen) the lighting sources
for the ROI and other objects in the scene are the same,
which are mainly composed of indoor lights and the com-
puter screen. In our framework we use the background re-
gion as a reference, and denote the background mean green
values of each frame as g,, = [g}, g5, ..., &,] (Figure
E], middle curve). According to the idea of [3], we assume
both the face ROI and the background are Lambertian mod-
els and share the same light sources. We can use a linear
function to estimate the correlation of y and g,,:

Y = hGyy- 2)
Instead of eliminating y directly from g, .., we can utilize
(2) and define the illumination rectified pulse signal as

IR = Gtace — hgbga (3)
which according to (1)) becomes
gr = 8+ (Y — hgpy)- 4)

Now our goal is to find the optimal & to minimize the error,
which is the part of (y — hgy,) in @).

The optimal & can be found iteratively by using Normal-
ized Least Mean Square (NLMS) adaptive filter [16], which
is a variant of the Least Mean Square (LMS) adaptive fil-
ter [8]. It is shown that the LMS filter can efficiently reduce
motion artifacts in PPG researches [3, 6]

Let’s assume at each time point j, h(j) is the currently
estimated filter weight. The LMS filter starts from an initial
h(0) and updates it after each step with a stepsize p as
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Wi +1) = h(5) + ngr (7)gng (4), (5)

until h(j) converges to the optimum weight that minimize
(y — hgy,) (or the input signal reaches the end).

A problem with the LMS filter is that it is sensitive to the
scaling of input signals, which can be solved by normalizing
the power of the input signals [[16]:

KGR (j)gbg (4)

. )

Gix(7)Gbe ()
where gg( j) is the Hermitian transpose of gy, (j), and the

h(j+1) = h(j) + (6)

normalizing quantity gg{g (7)gng(4) is the input energy.

We use the Distance Regularized Level Set Evolution
(DRLSE) method [11] to segment the background region
of the video, and achieve g,,, by computing the background
mean green value of each frame. With gg . and gy, as
known variables, we can use @ to obtain the optimal h,
which can be put in equation (@) to obtain the illumination
rectified signal g;z. One example of g is shown in Fig-
ure [3| (bottom curve), in which the illumination variations
are reduced and the pulse becomes more visible. The values
of the optimal h vary for different input videos, since the
distances from the lighting source to the face and the back-
ground may vary and the reflectivity of subjects’ skin are
also different.
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Figure 3. Use NLMS filter to reduce noise caused by illumination
variation. The green curve is a raw pulse signal of ROI, the black
curve is the corresponding mean green values of background; the
blue curve is the filtered signal, of which the noise caused by illu-
mination variations is reduced and the pulse becomes more visible.

3.3. Non-rigid Motion Elimination

One problem remaining unsolved is the non-rigid move-
ments inside the ROI. For example, facial expressions could
contaminate the pulse signal and the previous two processes
cannot remove it. Figure W4 (top curve) shows one signal
which presents the onset of a smiling. The face is neutral
in phase 1; and the subject starts to smile in phase 2 which
leads to quick and dramatic fluctuations of the signal; then
the face reaches to a comparatively stable state in phase 3.
If noisy segments like in phase 2 are not excluded, they will
end up as big sharp peaks after all the temporal filtering
process in the next step. When transfered to the frequency
domain, these big sharp peaks will significantly affect the
power spectral density (PSD) distribution as they contain



the major part of the power of the whole signal, thus impede
the detection of true pulse frequency. It is the remaining part
of the signal with smoother changes that contributes to the
HR related power spectrum.

Pha Phase 3

sel ase 2

SD

Figure 4. Motion elimination of a pulse signal contaminated by
sudden non-rigid motions. The top curve shows the contaminated
signal, where a smile was onset in phase 2; the middle bar chart
shows the standard deviation (SD) of each segment of the top curve
divided by vertical lines; the bottom curve shows the sheared (dis-
card three segments of phase 2) and re-concatenated signal.

Since we are measuring the average HR over a time span
(e.g. 30 seconds), such noisy segments can be excluded to
achieve more stable results. We divide the gz into m seg-
ments of the same length gir = [s1, S2, ..., Sm], each seg-
ment s is a signal of length . The standard deviation (SD)
of each segment (Figure [ middle) is calculated, and 5%
(of all testing samples) of segments with the largest SD
are discarded. The remaining segments are re-concatenated
(Figure [] bottom curve). The process aims for exclud-
ing the noisiest segments contaminated by sudden non-rigid
movements, so not all pulse signals need to be cut.

3.4. Temporal Filtering

In this step we apply several temporal filters to exclude
frequencies outside the range of interest. We set the fre-
quency range of interest to [0.7, 4] Hz to cover the normal
range of HR from 42 beat-per-minute (bpm) to 240 bpm.
Several temporal filters have been demonstrated to be help-
ful for HR measurement in previous research [13]]. Here we
use three filters: the first one is a detrending filter based on
a smoothness priors approach [18]], which is used for reduc-
ing slow and non-stationary trend of the signal. The second
one is a moving-average filter, which removes random noise
using temporal average of adjacent frames. The third one is
a Hamming window based finite impulse response bandpass
filter with cutoff frequency of [0.7, 4] Hz.

After filtering, the pulse signal is converted to the fre-
quency domain and its power spectral density (PSD) distri-
bution is estimated using Welch’s method [22]. The PSD
estimates the signal’s power distribution as a function of
frequency. We use the frequency with the maximal power
response as the HR frequency fur (Figure [I]top-right), and
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the average HR measured from the input video is computed
as HRyigeo = 60 fyr bpm.

4. Experiments

We evaluate our framework using three experiments. All
approaches are implemented using MATLAB of version
2013a under Windows 7 operating system.

4.1. Experiment 1: VideoHR Database

We re-implement previously proposed methods and test
them on a simple database ‘VideoHR’ collected by our-
selves, since none of the datasets used in the previously
published papers is public. The purpose of Experiment 1
is to demonstrate that we have correctly re-implemented the
methods. We refer VideoHR as a ‘simple database’, because
neither ambient illumination variations nor body movement
was involved during the video recording.

We use the built-in frontal iSight camera of an IPAD to
record videos in a lab with two fluorescent lamps as the il-
lumination sources. All videos are recorded in 24-bit RGB
color format at 30 frames per second (fps) with resolution
of 640 x 480 and saved in MOV format. A Polar S§10 HR
monitor system [7]] is used to record the ground truth HR.
Ten subjects (two females and eight males) aged from 24
to 38 years were enrolled. During the recording, subjects
were asked to sit still on a chair and try to avoid any move-
ment. The IPAD was fixed on a tripod at about 35 cm from
the subject’s face. Each subject was recorded for about 40
seconds, and 30 seconds (frame 301 to 1200) video of each
subject is used for the testing.

We re-implement four previous methods: three color-
based methods (Poh2010 [12]], Kwon2012 [10], Poh2011
[13]) and one motion-based method (Balakrishnan2013
[2]]). In Poh2011 and Balakrishnan2013, they also used cus-
tomized peak detection functions to find the location of
each heart beat for further HR variation analysis. We did
not replicate the peak detection process here since we only
aim to compare the accuracy of the methods on estimat-
ing the average HR. Fourier transformation is applied at the
last stage for each method to find the average pulse fre-
quency. The results of all methods on VideoHR database
are shown in Table 1. The measure error is computed as
HRerror = HRyideo — HRyg;, where HRyige, denotes HR mea-
sured from video, and HR; is the ground truth HR obtained
from Polar system.

Different kinds of statistics were used in previous papers
for evaluating the accuracies of HR measurement methods.
To comprehensively compare the methods in multiple as-
pects, we include all five kinds of statistics used in former
research works. The first one is the mean of HR,, denoted
as M.; the second one is the standard deviation of HRe o
denoted as SD.; the third one is the root mean squared error
denoted as RMSE; the fourth one is the mean of error-rate
percentage Merae = 7 25:1 | HRerror (v)|/ HRg (v), where



N 1is the number of videos of the database, and the fifth
one is the linear correlation between HRyigeo and HEy ac-
cessed using Pearson’s correlation coefficients 7 and its p
value. Pearson’s r varies between -1 and 1, where » = 1
indicates total positive correlation and » = —1 indicates to-
tal negative correlation. The p value is the probability of the
statistical significance test about if the calculated r were in
fact zero (null hypothesis). Usually the result is accepted as

statistically significant when p < 0.01.

Method Mc(SD.) | RMSE | McRrate r
(bpm) (bpm)

Poh2010 0.37(1.03) 1.05 1.07% | 0.99*

Kwon2012 -0.16(1.59) 1.52 1.54% | 0.98%

Poh2011 0.37(1.50) 1.47 1.65% | 0.98*

Balakrishnan2013 | -0.14(1.41) 1.35 1.51% | 0.99*

Ours 0.72(1.10) 1.27 1.53% | 0.99*

Table 1. Performance on VideoHR database. The marker * indi-
cates the correlation is statistically significant at p = 0.01 level.

From Table 1 we can see that all four methods per-
formed perfectly with Mrye lower than 2% and correla-
tion r larger than 0.98 on VideoHR database. It shows that
all these methods got almost perfect results on this dataset
as these methods performed over their own datasets. How-
ever, VideoHR dataset is prone to be ideal without illumina-
tion variations and subjects’ motions. In realistic situations,
these challenges always happen. To test the robustness of
these methods over these challenges, we catry out an exper-
iment over a difficult database in Experiment 2.

4.2. Experiment 2: MAHNOB-HCI Database

In this experiment we test the four previous methods
again on MAHNOB-HCI database. We demonstrate that
our proposed method can reduce noises caused by illumi-
nation variations and subjects’ motions, and substantially
outperform previous methods. MAHNOB-HCI is referred
as a difficult database here since the videos were recorded
in realistic HCI scenarios, both illumination variations and
subjects’ movements were involved.

MAHNOB-HCI is a public multi-modal database
recorded by Soleymani et al. [[17]. MAHNOB-HCI includes
data from two experiments: one is ‘emotion elicitation ex-
periment’ and the other is ‘implicit tagging experiment’. We
use the color videos recorded in their ‘emotion elicitation
experiment’ for our testing.

27 subjects (15 females and 12 males) were involved,
their ages varied from 19 to 40 years. 20 frontal face videos
were recorded for each subject with resolution of 780 x 580
pixels at 61 fps, while they were watching movie clips from
a computer screen. ECG signals were recorded using three
sensors attached on participants body, and we used the sec-
ond channel (EXG2) to obtain the HER,. Altogether 527 (13
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cases lost) intact video clips and their corresponding ECG
signals are used in our test. Original videos are of differ-
ent lengths. We exerted 30 seconds (frame 306 to 2135)
from each video and measured the average HR. More de-
tails about MAHNOB-HCI database are given in [17]].

Method M.(SD.) RMSE | Merate T
(bpm) (bpm)

Poh2010 -8.95(24.3) 25.9 25.0% | 0.08
Kwon2012 -7.96(23.8) 25.1 23.6% | 0.09
Poh2011 2.04(13.5) 13.6 13.2% | 0.36*
Balakrishnan2013 | -14.4(15.2) 21.0 20.7% | 0.11
Ours

Step 1+4 -3.53(8.62) 9.31 8.03% | 0.69*
Step 14+2+4 -3.46(7.36) 8.13 7.02% | 0.79*
All steps -3.30(6.88) 7.62 6.87% | 0.81*

Table 2. Performance on MAHNOB-HCI database. The marker *
indicates the correlation is statistically significant at p = 0.01 level.

The results on MAHNOB-HCI are shown in Table 2. The
statistics of errors are computed in the same way as we did
in Experiment 1. Comparing to the results of Experiment
1, the performance of all four previous methods drops sig-
nificantly. Poh2011 method performs better than the other
three, because it employs several temporal filters (we adopt
these filters in step 4 of our framework) to purify the signal.
But a correlation of 7527y = 0.359 and a Mrae of 13.2%
indicate that Poh2011 method is not robust enough to make
reliable estimations about the true HRs.

We test our method on MAHNOB-HCI step-by-step and
the performance is shown in Table 2. Step 4 is always in-
cluded as it is a must for achieving the average fug. For
the Step 1 of ROI detection and tracking, the face detector
made false detections on 14 of 527 cases. To avoid the false
alarms, we discard detected rectangles whose edge lengths
are less than 100 (the average face size in MAHNOB-HCI
is about 200 x 200). Then the DRFM method is applied to
detect face contours and eye positions according to the cor-
rect face rectangles. In some cases the detected landmarks
may not be precise, but generally they are good enough for
the purpose of defining ROIL. The defined ROI covers an
area of about 20000 pixels. Compared to the performance
of Poh2011, the better selected ROI and tracking process
help to achieve a much lower Mgy Of 8.03 % and increase
the correlation 7 from 0.36 to 0.69.

For the Step 2 of illumination rectification, we use
the background as the reference. Since the videos of
MAHNOB-HCI were recorded in a relatively dark environ-
ment, the illumination variations caused by the computer
screen can be captured by the background. By using NLMS
filter we further increased the correlation 7 to 0.79 and low-
ered the Mgy by 1.01%. The value of the stepsize p can
affect the performance of NLMS filter, which was also no-



ticed in previous papers [6]]. The response curve of the cor-
relation coefficient r versus stepsize p is shown in Figure
[] (a). When the stepsize is small, the input signal might
not be long enough for the filter to reach convergence. Here
the best r was achieved when p is bigger than 0.003. The
weight of the NLMS filter was initialized as zero.
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Figure 5. (a). Correlation coefficient » computed at different step-
sizes p. The filter reaches convergence when g is bigger than
0.003. (b). The cumulative distribution function of SDs of all sam-
ple segments from MAHNOB-HCI. Threshold of SD = 0.215 is
used for shearing the top 5% segments with the largest SD values.
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For the Step 3 of non-rigid motion elimination, we divide
signals into segments of one second, and the cumulative dis-
tribution function (CDF) of SDs of all sample segments are
shown in Figure |§] (b). A cutoff threshold of SD = 0.215
is used for the shearing, and 228 out of 527 signals are
sheared. The improvement made by Step 4 is not as big as
two former steps since not all cases are affected.
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100

- HR,; (bpm)

40 50 70 80 90 100 110

60

Figure 6. The scatter plot comparing the HRyid¢eo measured by our
method with the ground truth HRy from ECG.

The HR,jgeo measured with all four steps of our frame-
work are plotted against the HR, in Figure It can be
seen from this figure that overall our predicted HR is well
correlated with the ground truth. On a wide range of HR
from 46 bpm to 103 bpm, good HR estimations are made
in most cases. There are some out-lier points falling far
from the correlation line which indicate poor estimations.
We check these poorly estimated cases and find that in some
of these videos head rotations of more than 60 degrees were
involved, which caused errors in the tracking of the face
ROIL. For application scenarios like detecting the vital signs
of an emergency situation, HR measurement with error less
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than 5 bpm is likely to be acceptable [12]. In order to check
how many cases were well estimated, we further compared
the distributions of HR.y o of our method with Poh2011
method, which got the best performance among four pre-
vious methods. As shown in Figure [7] we estimate the HR
of 403 cases (76.5%) with errors less than 5 bpm, while for
Poh2011 method the number is only 296 (56.2%).
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Figure 7. Comparing the distributions of HReror 0of our method
with Poh2011 method.

4.3. Experiment 3: HR monitor for game evaluation

Without the restriction of motion and illumination
changes, our method can be applied for long-term HR mon-
itoring when subjects are performing some tasks. Here we
test it on one subject in a game playing scenario. In game re-
search, user tests are usually carried out for analyzing users’
experiences of game playing. Results of user tests will help
game developers in their future designing work.

We record the face video of one subject for 10 minutes
while the subject is playing a video game. The same setting
is used for data recording as in Experiment 1. The distance
between subject’s face and the camera is about 50 cm. The
average HR of every 10 seconds is computed from both the
face video and the ground truth, and the results of HRyigeo
and HR,; are plotted in Figure @ It can be seen that the
subject’s HR changes as the content of the game progresses,
which can be used for later analysis about the player’s expe-
rience. HRs measured by using our framework has a mean
error rate of 1.89%.
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Figure 8. HR monitoring of one subject while playing a video
game. The black curve is the ground truth HR measured by Po-
lar system; the green curve is HR measured from video by using
our framework.



5. Conclusions

Previous methods of remote HR measurement from or-
dinary face videos can achieve high accuracies under well
controlled situations, but their performance degrades when
environmental illumination variations and subjects’ mo-
tions are involved. Our proposed framework contains three
major processes to reduce these interferences: first, we em-
ploy DRMF to find the precise face ROI and use tracking to
address the problem caused by rigid head movement; sec-
ond, NLMS adaptive filter is employed to rectify the inter-
ferences of illumination variations; third, signal segments
with big SD values are discarded in order to reduce the noise
caused by sudden non-rigid movements. We have demon-
strated that all three processes help to improve the accuracy
of HR measurement under realistic HCI situations.

MAHNOB-HCI database is used for the testing since all
afore-mentioned interferences are involved in the videos.
For the ROI detection, we include the mouth region to cover
more skin pixels in the ROI since talking is seldom involved
in MAHNOB-HCI videos. But in conversation scenarios the
mouth region could be excluded to avoid motion noise. For
the step of illumination rectification, we use the background
as the reference, because the videos of MAHNOB-HCI are
dark and no other object is present in the scene. In scenarios
when the background is not suitable as the reference, other
static objects can be used as the reference; for example a
gray board can be placed aside the subject’s head.

Our proposed method substantially outperformed the
four previous methods and achieved an average error rate
of 6.87% on all 527 samples of MAHNOB-HCI. One factor
that impacts our results is head rotations of an large angle,
especially in the yaw direction. In such situations feature
points on half of the face are lost and the tracked ROI lo-
cation may be erroneous thus degrade the accuracy of HR
measurement. In the future work, the ROI tracking could be
improved to tolerate more extreme head movements.

In the current study averaged HR is estimated for one
input video as the first trial to make the system work un-
der realistic situations. HR monitoring during game playing
is shown as an example of applications of this system. In
future, more efforts will be devoted to detecting the peak of
each heartbeat, so that sophisticated analysis about the heart
rate variation (HRV) can be made which will help us to get
more information about the subject’s physiological status.
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